Значение иммуногенетики

Наследственно детерминированные биологические системы. Механизмы иммунного ответа и его генетической обусловленности. Клеточная иммунная защита организма. Генный механизм антителообразования. Генетический полиморфизм белков. Дефекты иммунной системы.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.03.2012
Размер файла 23,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Иммуногенетика - это раздел иммунологии, который изучает генетическую обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых Аг (антигенов), генетическое и популяционное взаимодействие макро- и микроорганизмов, тканевую несовместимость.

Значение иммуногенетики

Наследственно детерминированные биологические системы, такие как иммуногенетические образования, в виде групп крови и полиморфных белков крови и молока не изменяются в процессе онтогенеза и являются пожизненной генетической характеристикой каждой особи, необходимой для использования:

- определения отцовства у животных;

зиготности у близнецов;

фримартинизма у телочек;

разнояйцовых близнецов;

оценки производителей по качеству потомства;

при осеменении свиноматок спермой разных хряков;

совместимости отцовских пар при чистопородном разведении;

прогнозирования продуктивности животных;

прогнозирования резистентности против заболеваний.

Современная иммунология направлена на выявление механизмов иммунного ответа и его генетической обусловленности.

Иммунитет (невосприимчивость, сопротивляемость) - способность организма защищать собственную целостность и биологическую индивидуальность (БРЭ, серия Биология, 1999).

В поддержании иммунитета животных принимают участие неспецифические и специфические защитные механизмы. Неспецифические защитные механизмы - это резистентность, которая включает в себя барьерную функцию эпителия кожи и слизистых оболочек, бактерицидное действие молочной кислоты и жирных кислот в выделениях сальных и потовых желез, бактерицидные свойства желудочного и кишечного соков, лизоцим, присутствующий в слезной жидкости и фагоцитоз (клетки крови, пропердин, комплемент, интерферон). Специфические защитные механизмы включают красный костный мозг, тимус, фабрициеву сумку у птиц, селезенку, лимфатические узлы, а также скопления лимфоидной ткани по ходу пищеварительных и дыхательных путей. Основным элементом иммунной системы служат популяции лимфоцитов двух основных типов: лимфоциты типа В и Т, символы которых приняты в 1969 г. В-лимфоциты формируются в костном мозге. Их основная функция состоит в синтезе антител (Ат), то есть иммуноглобулинов, которые и осуществляют специфическую функцию. Т-лимфоциты образуются в тимусе. Они не вырабатывают антитела, а выполняют защитную роль с помощью рецепторов, находящихся на поверхности лимфоцита. Рецепторы - это макромолекулярные образования на поверхности Т- и В-лимфоцитов, обеспечивающие распознавание конкретного антигена (Аг). Иммуноглобулины (антитела) - это сложные белки (гликопротеиды), которые специфически связываются с чужеродными веществами - Аг. Антитела вырабатываются в организме в ответ на проникновение Аг. Антигены - вещества, которые воспринимаются организмом, как чужеродные и вызывают специфический иммунный ответ; способны взаимодействовать с продуктами этого ответа - Ат. Специфическая связывающая реакция антиген-антитело приводит к образованию иммунного комплекса.

Клеточную иммунную защиту организма обеспечивают Т- и В-лимфоциты, а гуморальную иммунную защиту организма - специфические антитела . В клеточной иммунной защите выделяют 5 классов клеток:

А-клетки - фагоциты;

Т-лимфоциты;

В-лимфоциты - плазматические клетки;

NК - клетки - нормальные киллеры, проявляющие цитотоксическое действие на опухолевые клетки;

К - клетки - или «нулевые» лимфоциты, осуществляющие цитолиз клеток-мишеней.

Генный механизм антителообразования

Суть его состоит в том, что сначала с помощью специальных иммунокомпетентных клеток расшифровывается структура антигенных детерминант Аг, проникшего в организм.

Затем, относительно структуры каждой антигенной детерминанты, происходит перестройка (перестановка) интронно-экзонных участков, вследствие чего изменяется структура и функция гена. После этой перестройки гены дают информацию на синтез специфических по структуре Ат. Синтезированные Ат связываются с Аг, что приводит к снижению или полному прекращению их выработки. Полное уничтожение всех Аг останавливает синтез конкретных Ат. Система генной регуляции антителообразования функционирует постоянно.

Болезнь наступает в том случае, если нарушается равновесие между концентрацией Аг и Ат в пользу увеличения Аг. Это может произойти по причине высокой вирулентности возбудителя или вследствие ослабления организма и замедления антителообразования или неполадок в самой системе. Во время болезни организм мобилизует дополнительные силы за счет других функций, например работоспособности, молокообразования. Использования запаса белков, жиров и т.д.

Иммунореактивность - это способность иммунной системы своевременно отвечать на проникновение инфекции. Реакция зависит от концентрации антител и соотношения численности и связи между Т- и В-лимфоцитами.

Существует и такая форма иммунного ответа, когда организм начинает синтезировать антитела на антигены собственного организма (аутоантитела), например, к гормонам щитовидной железы, что приводит к серьезным нарушениям в обмене веществ. У животных появление антител может происходить в отношении своих гамет, что приводит к бесплодию.

При синдроме приобретенного иммунодефицита (СПИД) иммунная система организма утрачивает свою защитную функцию, что приводит к неизбежной гибели людей.

Иммуногенность - это свойство антигенов вызывать иммунную реакцию организма.

Реакция антиген-антитело специфична, что объясняется генетической специфичностью антител, соответствующих определенному антигену. Реакция антиген-антитело может проявляться в виде агглютинации, преципитации, лизиса и др. Эти реакции используют для диагностики протекающего иммунного ответа организма.

Генетический контроль иммунного ответа (иммунологической реактивности)

Генами иммунного ответа являются Ir-гены. При иммунизации инбредных линий мышей синтетическими антигенами выявлены линии с сильным и слабым иммунным ответом. Анализ потомства от возвратного скрещивания дал основание сделать заключение, что высокое антителообразование кодируется одним доминантным геном, а низкая иммунная реакция - рецессивным. В дальнейшем было уточнено, что высота иммунного ответа детерминирована более чем одной парой генов. Локус, отвечающий за силу иммунного ответа, был обозначен как Ir =1 (иммунный ответ=1). Он оказался сцеплен с главным комплексом гистосовместимости Н-2. Этот локус обусловливает иммунный ответ к многим антигенам. Сейчас известно, что в области I комплекса Н-2 существует не один, а три локуса Ir (Ir-1А, Ir-1В, Ir-1С). Кроме этого, открыты Ir -гены, локализованные вне Н-2-комплекса. Это локусы Ir -2, Ir -4, а также локус Ir, сцепленный с полом. Во многих случаях иммунный ответ против антигенов наследуется полигенно.

Иммунизация свиней различными антигенами позволила также открыть гены иммунного ответа, которые имеют сходство с Ir -генами мышей. Иммунный ответ носит количественный характер, а гены иммунного ответа сцеплены с главным комплексом гистосовместимости SLA. Главный комплекс гистосовместимости аналогичный Н-2 мыши открыт у человека, у крупного рогатого скота, у лошадей, у кур и других видов животных. Установлено, что лейкоцитарные антигены, расположенные на поверхности клеток в качестве компонентов плазматической мембраны, влияют на результаты трансплантации органов и тканей. Эти антигены (аллогены) контролируются главным комплексом гистосовместимости (МНС). Отторжение тканей - иммунологический процесс, так как продуктом гена тканевой совместимости является аллоантиген, а он, как известно, вызывает иммунный ответ при введении в организм, для которого он генетически чужеродный.

Генетический контроль иммунного ответа (Р.В.Петров, 1983):

Ir -гены определяют количество синтезируемых антител против определенных антигенов;

Ir -гены не сцеплены с локусами, кодирующими синтез иммуноглобулинов;

Ir -гены высокоспецифичны. Организмы с одним и тем же генотипом могут обладать высоким иммунным ответом против одного антигена и низким против другого антигена. Не обнаружены гаплотипы, определяющие общую высокую или низкую иммунологическую реактивность;

Генетически обусловленные различия в высоте иммунного ответа сохраняются в различные возрастные периоды;

Между генами, контролирующими высокий или низкий иммунный ответ против различных антигенов, в основном, не существует никакой связи;

Эффекты генов, отвечающих за иммунологическую реактивность, реализуются на уровне популяции лимфоидных клеток.

Антигенными свойствами обладают эритроциты. Набор антигенов у эритроцитов имеет специфичность и индивидуальность у каждого организма. Эта индивидуальность должна учитываться при переливании крови донора в организм реципиента. Если эритроцитарные антигены донора и реципиента несовместимы, то переливание крови проводить нельзя, иначе произойдут патологические процессы и даже гибель реципиента.

Для изучения и тестирования эритроцитарных антигенов в иммуногенетике применяют методы серологических реакций: реакции гемолиза эритроцитов, агглютинации, преципитации.

Эритроцитарные антигены представляют собой сложные биополимерные макромолекулы. Которые накапливаются на оболочке (строме) эритроцитов и соединяются с молекулами веществ оболочки. Структура и химический состав эритроцитарных антигенов разнообразны и характерны для каждой особи.

Антигены имеют различную специфичность: видовую, групповую, типовую, патологическую, органоидную, функциональную. Антигенные особенности обусловлены последовательностью и качественными различиями аминокислот, а также особенностями строения первичной полипептидной молекулы антигена. На поверхности молекулы антигена имеются наиболее активные участки - детерминантные группы, которые определяют специфичность антигена.

Для определения эритроцитарного антигенного состава используют моносыворотку (реагент) с эритроцитами тестируемых животных.

Приготовление моносыворотки: в течение нескольких недель проводится иммунизация животных-реципиентов, путем внесения в их организм эритроцитов определенного антигенного состава от животных-доноров того же или другого вида. В результате у иммунизированного животного-реципиента интенсивно проходит реакция антиген-антитело, накапливаются различные антитела, из которых потом выделяют путем абсорбции антитела к желательному антигену и устраняют все остальные.

В настоящее время создана единая международная система стандартизации сывороток. По утвержденным международным правилам каждое племенное животное должно иметь племенной документ (родословную с указанием тестированных у него групп крови).

В основе наследственности систем и групп крови лежит действие одиночных генов или групп сцепления и их аллелей. Основным типом наследования является кодоминантная или доминантная передача антигенов от родителей потомкам. Каждая особь наследует по одному из двух аллелей от матери и от отца в каждой генетической системе группы крови. Особь с антигенами, которых нет хотя бы у одного из родителей, не может быть потомком такой родительской пары.

На этих особенностях построен метод определения отцовства у животных. Анализ групп крови дает возможность определить происхождение потомков как по линии отца, та и по линии матери и имеет большое значение в разведении и селекции животных.

Группа крови - это одиночные или сцеплено наследуемые в виде постоянного сочетания антигены, которые передаются от родителей потомкам, как наследственные единицы. В состав конкретной группы крови может входить один или несколько антигенов. Контроль каждой группы крови обусловлен действием генов одного локуса и его аллелями.

Совокупность групп крови, контролируемых аллелями одного локуса, образует систему крови. Каждой системе крови присваивают определенное буквенное обозначение. Число уже открытых систем и входящих в каждую антигенов у животных разных видов неодинаково.

Таблица

Видовые характеристики систем эритроцитарных антигенов у сельскохозяйственных животных

Вид животного

Число

систем

Обозначения системы

Число Аг

во всех системах

Число

аллелей

Крупный рогатый скот

12

A, B, C, F-V, I, L, M, S, Z, R`-S`, T, N

Более

100

Более

500

Лошади

9

A, C, D, K, P, Q, T,

U, S

40

40

Свиньи

17

A, B, C, D, E, F, G,

H, I, J, R, L, M, N,

O, P, Q

83

Более 100

Овцы

16

A, B, C, D, J, M, R,

X-Z, Con, F30, F41, Hel, Y, T, V, PV

41

89

Куры

14

A, B, C, D, E, H, I,

Y, K, Z, N, P, R, Vh

47

96

Системы групп крови подразделяют на простые (содержащие один-два антигена и имеет два аллеля - L, N-системы у крс), сложные (входят три антигена и более, образующие комплексные группы - В, С- системы у крс), закрытые (генотипы животных можно выявить по антигенам эритроцитов), открытые (генотип животного можно установить по фенотипу только у некоторых гомозигот).

Каждая генетическая система крови определяется аллелями какого-либо одного локуса и наследуется независимо одна от другой. При этом каждый аллель определяет образование одного эритроцитарного антигена. Если локус имеет два аллельных состояния, то это вызывает формирование двух или трех генотипов и соответствующее количество фенотипов, например, система I у скота имеет аллели I1 и I2 образует генотипы I1I1, I2I2, I1I2. Некоторые локусы могут иметь и большее количество аллелей, то есть они полиаллельны в результате множественного аллелизма. Например, А-система крови скота имеет три аллеля: A2, D, Z1; G-система включает шесть аллелей.

Кровяной тип - это совокупность групп крови всех генетических систем данного вида (популяции). Выражается в виде буквенных записей, что составляет фенотипическую характеристику скота, или в виде генотипической записи.

Фенотип животного записывают латинскими буквами (иногда с подстрочными значками) для каждой группы крови (В или ВСК). Аллели группы крови записывают ВBO1Y2D`.

Генотипическую характеристику группы крови можно выявить, проводя семейный анализ, когда делают сопоставление антигенов отца, матери и потомка по данному локусу. Запись генотипа проводят в виде дроби, в числителе которой антигены (аллели) одного родителя, а в знаменателе - другого. Так, например генотип потомка по системе В крс выражают BGK/Y2 или по системе С - в виде C1/RW.

Генетические особенности антигенов и аллелей имеют ряд других особенностей. Выявлена общность антигена А у овец и человека (переименован в антиген R). У лошадей система Р аналогична АВО-система человека.

Генетический полиморфизм белков

Использование полиморфных систем белков вместе с группами крови повышает точность определения происхождения животных. Так, по группам крови отцовство можно установить в 81% случаев, а дополнительные анализы только типов трансферрина повышают точность до 90%.

Полиморфизм - это одновременное присутствие двух или более генетических форм одного вида в таком численном отношении, что их нельзя отнести к повторным мутациям. Поэтому теримин генетический (биохимический) полиморфизм применяется в тех случаях, когда локус хромосомы в популяции имеет два и более аллелей с частотой больше 0,01. Ген, представленный более чем одним аалелем, называют полиморфным геном. Основными методами изучения полиморфизма белков и ферментов являются электрофорез в крахмальном или акриламидном геле или иммуноэлектрофорез. Белки (в том числе и ферменты) находятся в растворе в виде частиц, несущих определенный электрический заряд, которые под действием электрического тока перемещаются к катоду или аноду.

Сейчас у сельскохозяйственных животных изучено более 150 полиморфных локусов белков крови, молока, тканей, расположенных в аутосомах. В связи с кодоминантным наследованием большинства биохимических систем фенотип животного соответствует его генотипу, поэтому фенотип можно записать HbAA или HbA, HbBB или HbB.

Замещение аминокислот в белке может вызвать функциональные различия полиморфных форм. Например, у человека, кроме нормального гемоглобина HbA, известно более 50 патологических форм S,C,G, которые вызывают различные гемоглобинопатии (серповидно-клеточная анемия S, талассемия C). Одним из первых был открыт гемоглобин серповидных эритроцитов, который от нормального отличается заменой в шестом положении глутаминовой аминокислоты на валин. В районах распространения тропической малярии лица, гомозиготные по HbsHbs, погибают в раннем возрасте от серповидно-клеточной анемии. Гетерозиготы HbAHbs устойчивы к малярии, а люди с нормальным генотипом HbAHbA предрасположены к заболеванию. Это неоспоримый пример сбалансированного полиморфизма, когда приспособленность гетерозигот выше, чем гомозигот, а оба аллеля сохраняются в популяции с промежуточной частотой. Это доказывает существование однолокусного гетерозиса по устойчивости к болезни.

Гемоглобин выполняет важную для организма функцию переноса кислорода из органов дыхания к тканям и переноса углекислого газа от тканей в органы дыхания. У крупного рогатого скота открыто 10 типов гемоглобина, но у скота швицкой, костромской, джерсейской пород встречаются аллели HbВ. У животных черно-пестрой, айрширской, герефордской - один тип А. В Австралии, а потом в Кении у породы овец ромни-марш с типом гемоглобина HbА найдена более высокая резистентность к гемонхозу (нематоды, паразитирующие в сычуге), чем у животных с HbВ и HbАВ. Устойчивость овец к лептоспирозу связана с гетерозиготностью по гемоглобиновому локусу (HbАВ), тогда как особи с типом А и В были более восприимчивыми. У свиней найдена ассоциация лептоспироза с аллелем белка амилазы AmA.

Хорошо изучен полиморфизм трансферрина (Tf), который переводит железо плазмы в диионизированную форму и переносит его в костный мозг, где оно используется вновь для кроветворения. Трансферрин подавляет размножение вирусов в организме. Количество этого белка снижается при циррозе печени, инфекциях. Известно 12 типов трансферрина, но среди европейских пород наиболее часто встречаются аллели A, D1, D2 и E. Схема расшифровки электрофореграмм представлена на рисунке. Многие европейские породы скота имеют очень низкую частоту типов трансферрина Tf A и TfF. У коров бурой латвийской и костромской пород с TfDD удой был выше на 256-270 кг, чем у животных с другими генотипами.

Белок церулоплазмин (Cp) играет центральную роль в обмене меди в организме, являясь основным переносчиком ее в ткани. Нарушение функции церулоплазмина или снижение его содержания в плазме крови ведет, например, у человека к возникновению генетического заболевания нервной системы с некротическими изменениями в печени.

Иммуногенетический анализ белковых систем исследовал Баранов О.К., 1981 г. Аллоантигены сывороточных белков называют аллотипами. У американской норки выявлено 8 аллотипов липопротеина (Lpm). Липопротеины транспортируют липиды. Аллотипы наследуются аллогруппами. Совокупность сцепленных генов одной хромосомы, контролирующих аллогруппу, называют гаплотипом. У свиней идентифицированные аллотипы липопротеина детерминируются генами пяти локусов p, r, s, t, u. Имеются данные о связи некоторых типов Lpp с атеросклерозом у свиней.

Изучение девяти полиморфных систем белков у 10 главных групп скота позволило подтвердить вывод о том, что зебувидный скот Индии значительно отличается от европейских пород и принадлежит другому виду (Bos indicus).

Белок лактоглобулин в связи с аллелем (бетта-LgA) свидетельствует о снижении жира в молоке коров черно-пестрой породы.

Тем самым биохимические маркеры делаются важными элементами современной биотехнологии, как для суждения о генетических процессах, так и для диагностики оценки сбалансированности обмена веществ у отдельных животных. Новым направлением в использовании биохимических маркеров в животноводстве является так называемое геноэкологическое направление.

Первичные (врожденные) дефекты иммунной системы

иммунный наследственный генетический клеточный

Первичные иммунодефициты - это генетически обусловленная неспособность организма реализовывать то или иное звено иммунного ответа (Р.В.Петров, 1983). Вторичные иммунодефициты являются приобретенными в течение индивидуального развития на фоне лейкоза, ионизирующего излучения, недостаточного кормления.

У сельскохозяйственных животных изучены следующие иммунодефициты.

Комбинированный иммунодефицит (CID). Известен у человека, жеребят арабской породы и таксы. У новорожденных жеребят очень мало или нет циркулирующих лимфоцитов, а в сыворотке крови почти отсутствуют иммуноглобулины. Животные не способны отвечать на иммунизацию. Наблюдается гипоплазия (недоразвитие) тимуса. Жеребята остаются здоровыми до 2-месячного возраста, а после уменьшения материнских иммуноглобулинов погибают к 5 месяцам от инфекций. Эта болезнь наследуется как аутосомно-рецессивный признак. Болезнь встречается у самок и самцов.

Летальный признак А-46 у скота черно-пестрой датской и фризской пород является аутосомно-рецессивным. Телята рождаются нормальными, но к 4-8 неделе у них отмечается поражение кожи, сыпи, алопеция (выпадение волос), паракератоз (аномальное ороговение) вокруг рта, глаз, нижней челюсти. У них снижен клеточный иммунитет и без лечения погибают в 4-месячном возрасте. Выражена потребность в цинке.

Агаммаглобулинемия представляет дефект гуморальной системы (В-лимфоцитов). Встречается у человека и лошадей. Признак сцеплен с полом (Х -хромосомой). Животные неспособны синтезировать иммуноглобулины всех классов, но функция Т-лимфоцитов нормальная. Восприимчивы к бактериальным инфекциям. Жеребята доживают до 17-18 мес, тогда как с комбинированным иммунодефицитом - до 5 мес. Это указывает на важную роль Т-лимфоцитов в резистентности жтвотных.

Селективный дефицит IgM встречается у лошадей и характеризуется частичным или полным отсутствием IgM в сыворотке крови. Жеребята погибают в 4-8 мес возрасте от респираторных инфекций. А если доживают до 2 лет, то плохо растут.

Интересным и важным для практики является дальнейшее изучение первичных дефектов всех звеньев иммунологической системы.

Размещено на Allbest.ru


Подобные документы

  • Пути и механизмы регуляции иммунитета с помощью нейромедиаторов, нейропептидов и гормонов. Парасимпатический отдел вегетативной нервной системы и регуляция иммунного ответа. Механизмы регуляции иммунного ответа соматотропином и опиоидными пептидами.

    презентация [243,2 K], добавлен 02.12.2016

  • Основные функции иммунной системы. Генез Т- и В-лимфоцитов. Общие закономерности нарушений иммунной системы. Способность организма отвечать на действие антигена клеточными и гуморальными реакциями. Процессы развития патологических процессов в организме.

    реферат [391,2 K], добавлен 23.09.2014

  • Специфичность и ее значение, взаимодействие антигена и антитела. Основные элементы иммунной системы организма, селекция антител, структура белковой молекулы. Теория "клональной селекции", возникновение разнообразия лимфоцитов или их предшественников.

    реферат [21,8 K], добавлен 05.06.2010

  • Основные вехи развития иммунологии и этапы эволюции иммунной системы. Определение понятия "иммунитет", основные функции и строение иммунной системы человека. Центральные и периферические органы иммунной системы. Врожденный и приобретенный иммунитет.

    презентация [5,3 M], добавлен 26.03.2019

  • Изучение понятия, составляющих элементов иммунной системы. Иммунитет, как способность организма сопротивляться инфекциям. Функции антител и лейкоцитов. Обоснование необходимости вакцинации. Характеристика болезней иммунной системы: аллергия, ангина, СПИД.

    презентация [737,2 K], добавлен 26.10.2014

  • Сигнальные G-белки (связывают гуанозиновые нуклеотиды) как универсальные посредники при передаче гормональных сигналов от рецепторов клеточной мембраны к эффекторным белкам, история открытия. Структура G-белков, их полиморфизм и саморегуляция системы.

    курсовая работа [2,3 M], добавлен 13.04.2009

  • Общая характеристика и функции иммунной системы. Органы и клетки иммунной системы. Основные виды иммунитета. Обеспечение оптимальной для метаболизма массы циркулирующей крови и количества форменных элементов крови (эритроцитов, лейкоцитов и тромбоцитов).

    презентация [1001,2 K], добавлен 21.01.2015

  • Определение цитокинов, их свойства, функции, особенности, виды. Регуляторная роль цитокинов в организме. Механизм действия на клетки. Образование "микроэндокринной системы" (взаимодействие клеток иммунной, кроветворной, нервной и эндокринной систем).

    презентация [1,9 M], добавлен 18.09.2016

  • Ферменты, их кодовый номер, буферные системы и количество локусов, использованные для анализа популяций лиственницы сибирской, лиственницы Сукачева и лиственницы даурской. Оценка степени генетической дифференциации. Генетический полиморфизм лиственниц.

    курсовая работа [1,4 M], добавлен 18.02.2010

  • Регуляция метаболизма как управление скоростью биохимических процессов. Регуляция биосинтеза белков и особенности процесса репликации. Транскрипция генетической информации, механизм катаболитной репрессии, регуляция на этапе терминации транскрипции.

    контрольная работа [816,0 K], добавлен 26.07.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.