Концепции современного естествознания

Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

Рубрика Биология и естествознание
Вид книга
Язык русский
Дата добавления 21.03.2009
Размер файла 353,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Научная революция - это интенсивный период развития науки, ведущий к радикальным изменениям в системе знаний, в принципах и методах научного познания.

Тема 4. История естествознания

1. Знание о природе в древних цивилизациях

Тяжелой, полной опасности была жизнь людей в первобытном обществе. Им непрерывно угрожал голод, холод, эпидемии и междоусобные войны. Чтобы обеспечить себя продуктами питания, необходимо было собирать съедобные растения, охотиться на диких зверей, ловить рыбу. Собирательство позволило накапливать знания о свойствах растений и почвы, которые позже сыграли большую роль в распространении земледелия. В процессе охоты древний человек наблюдал за повадками животных. Пещерная живопись свидетельствует о том, что древних интересовало строение тела животных. На стенах пещер сохранились изображения костей, сердца, внутренностей животных. Всё это пригодилось тем, кто позднее начал заниматься скотоводством.

Различные виды знания, приобретаемые первобытными людьми, сохранились в виде ритуалов и мифов. Иначе они не могли быть использованы в первобытном обществе. Любая информация об явлениях природы, культуры, социальной стороне жизни коллектива воспроизводились как в вербальных, так и в ритуально-предметных формах. В мифах запечатлен сложный донаучный опыт культурного развития человечества, причем опыт целиком не религиозный. Наряду с религиозными идеями, культурными обрядами и мистическими ритуалами, в мифах кристаллизуется и позитивный познавательный и практический опыт древних людей.

Многие мифы имели этиологический характер, то есть рассказ о происхождении мира и человека. Этот рассказ не есть объяснение причинных связей, а просто «картинка того, что было». Мифы являются следствием неадекватного отражения сущности явлений в мышлении человека. В них отражены определенные черты объективной реальности, но фрагментарно. В этом аспекте миф не является просто заблуждением. Он дает «чистое» описание некоторой эмпирической совокупности фактов и явлений.

Миф в первобытном обществе составлял мотивацию любого типа деятельности и обычаев, прежде всего ритуалов, являясь важным элементом общественных отношений. Усложнение структуры практики, дифференциация общества обусловили эволюцию мифологии.

Люди древнего каменного века, занимавшиеся присваивающим хозяйством (охота, собирательство), были неразрывно связаны с природой и зависимы от нее. В эпоху нового каменного века возникает производящее хозяйство, сделавшее человека относительно независимым от окружающей природы. В период неолитической революции, продолжавшейся около семи тысячелетий, как подчеркивается в «Хрониках человечества», были заложены материальные и духовные основы культур Месопотамии, Египта, Китая, Японии и древней Америки.

Коренное изменение материальной и духовной сторон жизни людей произошло (после появления в IV тысячелетии до н.э. письменности) в древних рабовладельческих государствах Шумера и Египта. Появление письменности было вызвано необходимостью регулирования в общегосударственных масштабах ирригационного земледелия, вести учет сбора дани, поддерживать связь с правительственными властями и зарубежными вассалами.

Орошение земель, водоснабжение, прокладывание водных путей сообщения, строительство пирамид, храмов и дворцов невозможно без определенного минимума знаний. Носителями этих знаний была каста жрецов. Они накапливали знания в области астрономии, математики, химии, фармакологии, медицины, психологии, использовали гипноз, разрабатывали и тщательно готовили ритуальные действия, чтобы вызвать уважение и страх, возбудить надежду и веру и тем самым эффективнее осуществлять контроль над обществом.

Вавилоняне изобрели систему письменного исчисления в математике, создали замечательную для столь глубокой древности алгебру и зачатки геометрии. Высшим достижением древнее египетской геометрии были вычисления точной формулы объема усеченной пирамиды с квадратным основанием, площадей треугольника, прямоугольника, трапеции, круга.

Развитие наблюдений за планетами привело вавилонян к уяснению правильной последовательности их отдаления от Земли. Важное практическое значение имело установление древними египтянами солнечного календаря, с «жестко закрепленными датами» (в отличие от лунного, месяцы которого свободно «гуляли по сезонам года»).

В древнем Египте впервые определили продолжительность года, здесь возникла медицина в современном значении этого слова. В начале III тысячелетия до н. э. были накоплены знания в области терапии, хирургии, офтальмологии. Во второй половине III тысячелетия до н. э. в Египте появился первый учебник по хирургии. В 2300 году до н. э. был составлен шумерский сборник врачебных рецептов, где в качестве лечебных средств использовались растения.

На протяжении тысячелетий шло непрерывное накопление сведений и наблюдений о процессах и предметах природы: о жизни животных и движении звезд, о развитии растений и свойствах различных материалов. Так возник огромный запас эмпирических знаний о том, как плавить металлы, делать стекло, получать вину и уксус, пользоваться целебными травами, люди узнали очень давно. Древний Китай знал сейсмограф и магнитную иглу, создал бумагу; шумеры придумали гальваническую ванну; майя разработали методы трепанации черепа.

Таким образом, в сакральных цивилизациях наука еще не выделилась специфическую сферу духовной деятельности. Теоретическое мышление, будучи элементом религиозно-этических представлений, не приобрело самостоятельного развития. Здесь происходило переплетение элементов научного знания с мистикой и суеверием (астрономии с астрологией, математики с кабалистикой, медицины с магией). Зачатки математических и других рационально-практических познаний, измерения, счет, наблюдения мореплавателей еще не получили интегрированного выражения в соответствующих теориях.

2. Античная наука о природе

Впервые наука в истории человечества возникает в Древней Греции в VI веке до н. э. В отличие от ряда древних цивилизаций (Египта, Вавилона, Ассирии) именно в культуре Древней Греции обнаруживаются характерные особенности зарождающейся науки. Древнегреческие мыслители были одновременно и философами, и учеными. Господство натурфилософии обусловило такие особенности древнегреческой науки, как абстрактность и отвлеченность от конкретных фактов. Каждый ученый стремился представить все мироздание в целом, совсем не беспокоясь об отсутствии достаточного фактического материала о явлениях природы. Вместе с тем, достижения античных мыслителей в математике и механике навечно вошли в историю науки.

В ранней древнегреческой натурфилософии господствовала идея о некоторых исходных первоначалах, лежащих в основе мироздания. К таким первоначалам относили четыре стихии (воду, воздух, огонь, землю), либо некое мифическое первовещество - апейрон. Но уже в этот период на смену подобным представлениям о мире приходит стройное по тому времени атомистическое учение о природе. Представителями атомизма были Левкипп, Демокрит, Эпикур, а в натурфилософии Древнего Рима - Тит Лукреций Кар. Основные принципы их атомистических воззрений можно свести к следующим положениям:

1. Вся Вселенная состоит из мельчайших материальных частиц - атомов и незаполненного пространства - пустоты.

2. Атомы неуничтожимы, вечны, а потому вся Вселенная существует вечно.

3. Атомы представляют собой мельчайшие, неизменные, непроницаемые и абсолютно неделимые частицы, которые находятся в постоянном движении, изменяют свое положение в пространстве.

4. Различаются атомы по форме, величине, тяжести и т. д.

5. Все предметы материального мира образуются из атомов различных форм и различного порядка их сочетаний.

Одним из величайших ученых и философов античности был Аристотель. В круг его научных интересов входили математика, физика, астрономия, биология. В истории науки Аристотель известен как автор космологического учения, которое оказало огромное влияние на миропонимание многих последующих столетий. Космология Аристотеля - это геоцентрическое воззрение: Земля, имеющая форму шара, неподвижно пребывает в центре Вселенной. Вокруг Земли распределена вода, затем воздух, затем огонь. Огонь простирается до орбиты Луны - первого небесного тела. Небесные тела вращаются вокруг Земли по круговым орбитам, они прикреплены к материальным, сделанным из эфира, вращающимся сферам. Космология Аристотеля включала представление о пространственной конечности мироздания. В этой конечной протяженности космоса расположены твердые кристально-прозрачные сферы, на которых неподвижно закреплены звезды и планеты. Их видимое движение объясняется вращением указанных сфер. С крайней сферой соприкасается Перводвигатель Вселенной, под ним Аристотель понимал Бога.

Историческая заслуга Аристотеля в том, что он стал основателем системы знаний о природе - физики. Центральное понятие аристотелевской физики - понятие движения. Аристотель разработал первое в истории науки учение о движении - механику. Все механические движения он разбил на две большие группы: движение небесных тел в надлунном мире (круговое движение) и движение тел в подлунном мире (насильственные и естественные). Аристотель высказывал интересные идеи и в биологии. Он не только описывал мир живого, он заложил традицию систематизации видов животных. Он первый поставил классификацию животных на научную основу, группируя виды не только по их сходству, но и по родству. Всех животных Аристотель подразделил на кровяных и бескровных. Такое деление соответствует современному делению на позвоночных и беспозвоночных. Аристотель вводит в биологию понятие аналогичных и гомологичных частей тела, идею о сходстве путей эмбриогенеза у животных и человека, понятие «лестницы существ», то есть расположения живых существ на определенной шкале и т.д.

Геоцентрическая космология Аристотеля была впоследствии математически оформлена и обоснована Клавдием Птолемеем (90-168). Птолемей по праву считается одним из крупнейших ученых античности. Он серьезно занимался математикой, увлекался географией, много времени посвящал астрономическим наблюдениям. Главный труд Птолемея - «Математическая система». Греческий оригинал был утерян, но сохранился его арабский перевод, который много позднее, уже в XII веке был переведен на латынь. Он существенно дополнил и уточнил теорию движения Луны, усовершенствовал теорию затмений. Птолемей разработал математическую теорию видимого движения планет, которая основывалась на следующих постулатах: шарообразность Земли, удаленность от сферы звезд, равномерность и круговой характер движений небесных тел, неподвижность Земли, центральное положение Земли во Вселенной. Теория Птолемея позволяла предвычислять сложные петлеобразные движения планет (их ускорения и замедления, состояния и попятные движения). На основе созданных Птолемеем астрономических таблиц положение планет вычислялось с весьма высокой по тем временам точностью (погрешность менее 10''). В течение длительного времени система Птолемея была не только высшим достижением теоретической астрономии, но и ядром античной картины мира.

Геоцентрическая система мира Аристотеля-Птолемея просуществовала чрезвычайно долго - вплоть до опубликования знаменитого труда Н. Коперника, заменившего эту систему гелиоцентрической.

Древнегреческая натурфилософия прославилась вкладом ее представителей в формирование и развитие математики. Прежде всего следует отметить знаменитого древнегреческого мыслителя Пифагора. На счету этого античного ученого имеется целый ряд научных достижений. К их числу помимо «теоремы Пифагора» относится открытие того факта, что отношение диагонали и стороны квадрата не может быть выражено целым числом и дробью. Тем самым в математику было введено понятие иррациональности.

Одним из крупнейших ученых-математиков античности был Евклид, живший в III веке до н. э. В своем объемистом труде «Начала» он привел в систему все математические достижения того времени. Созданный Евклидом метод аксиом позволил ему построить здание геометрии, которая по сей день носит его имя.

Известным ученым, математиком и механиком античности был Архимед (287-212 до н. э.). Он решил ряд задач по вычислению площадей поверхностей и объемов, определил значение числа р (представляющего собой отношение длины окружности к своему диаметру). Архимед ввел понятие центра тяжести и разработал методы его определения для различных тел, дал математический вывод законов рычага. Ему приписывают «крылатое» выражение: «Дайте мне точку опоры, и я сдвину Землю». Архимед положил начало гидростатике, которая нашла широкое применение при проверке изделий из драгоценных металлов и определении грузоподъемности кораблей. Широкое распространение получил закон Архимеда, касающийся плавучести тел. Научные труды Архимеда имели выход и на практику. Ему принадлежат многочисленные изобретения: так называемый «архимедов винт» (устройство для подъема воды на более высокий уровень), различные системы рычагов, блоков, винтов для поднятия больших тяжестей, военные метательные машины. Архимед был одним из последних представителей естествознания Древней Греции.

3. Эпоха Средневековья: религиозная картина мира и естественнонаучное познание

После расцвета античной культуры на европейском континенте наступил длительный период застоя и даже регресса - отрезок времени более 1000 лет, который принято называть Средневековьем. Этот упадок объяснялся все убыстряющимся разложением рабовладельческого общества, которое сопровождалось большими потрясениями в Европе. В образовавшихся государствах жизнь ушла в деревню. Среди самых высших слоев общества царило глубокое невежество. Единственными очагами грамотности были монастыри.

Особенности феодальной жизни привели к тому, что прямые наследники культуры древних греков возвратились к самым примитивным представлениям о природе. «Небо повисло над Землей и сжимало ее в ужасных объятиях».

Культура Средневековья не знала науки в строгом понимании. Астрология, алхимия, натуральная магия представляли собой сплав априоризма, умозрительности и грубого наивного эмпиризма. Единственно возможным способом научно - теоретического освоения мира стала схоластическая натурфилософия. В соответствии с интерпретаторским характером схоластики сложились основные методы средневековой «науки»: компиляция; систематизация; классификация; комментарий и универсальные способы выражения средневековой учености: энциклопедия; словник; сумма.

В начале VII века Исидор Севильский (ок.560 - 636 гг.) в 20 книгах «Этимологии» (своеобразной энциклопедии раннего средневековья) изложил сведения по медицине, естествознанию, геометрии и т.п.

В VIII веке аббат Фульдского монастыря Грабан (Рабан) Мавр выпустил энциклопедический сборник «de Universo libri XXII», в котором были собраны сведения из многих наук, но они не были оригинальными, а почти полностью представляли собой выписки из трактатов античных ученых.

Наряду с ними широкое распространение получил алхимический рецепт как особая форма познавательно-практического освоения действительности.

«Огоньком» в средневековой тьме называют арабский Восток, столица которого становится в начале IX века центром научной деятельности. В VII и особенно IX - X веках арабские ученые сделали важные открытия в области геометрии, тригонометрии, астрономии и географии. Крупнейшим математиком и астрологом IX века был Сабит Ибн Корра. Именно в его переводах дошли до нас сочинения Архимеда, которые сохранились в греческом оригинале. Знание античных медиков осмыслил таджикский мыслитель Абу-Али Ибн Сина (Авиценна) и объединил их с медицинскими предписаниями своего времени в «Каноне лечебной науки». Здесь затрагивались также вопросы астрономии и минералогии.

Фундаментальные работы по математике, астрономии, физике, ботанике, географии, общей геологии и минералогии создал ученый-энциклопедист, современник Авиценны, Абу-Рейхан аль Бируни. Мыслитель допускал возможность движения Земли вокруг Солнца. В области минералогии и геологии он впервые установил плотность и удельный вес многих минералов и металлов.

С конца XI века намечаются некоторые сдвиги в изучении природы на западе Европы. Они были вызваны серьезными переменами в экономике. К этому времени повышается эффективность сельского хозяйства, возникают ремесла, развивается торговля, усиливается рост городов. Крестовые походы способствует знакомству Европы с культурными достижениями Востока.

В XII-XIII вв. европейская научная литература обогатилась большим числом латинских переводов с арабского и греческого языков. Стали доступными сочинения Евклида, Архимеда, Птолемея, Аль-Хорезми, Сабита Ибн Корры, Ибн Сины.

Толчком к возрождению описательного естествознания послужили сочинения Альберта Великого (ок. 1193 - 1280 г. г.). В своих трудах он проявил обширные знания не только в области алхимии и астрономии, но и в физике, географии, биологии и ботанике.

Основы для развития экспериментального метода в естественных науках заложил Роберт Гроссетет (1168-1258 г. г.). Он считается пионером эмпирического доказательства аристотельского естествознания.

Во второй половине XIII в. польский физик и оптик Виттелий (ок. 1125 - 1280 г. г.), занимаясь исследованиями в области оптики, сделал ряд открытий, в частности объяснил явления радуги как результат преломления солнечных лучей отдельными каплями воды.

Роль экспериментального метода в естествознании обосновывает в своих трудах Роджер Бэкон (1214 - 1294 г. г.). В сочинении «Великое дело» он дал энциклопедический анализ науки, включая достижения предшествующих поколений. Р. Бэкон развивает новое представление о материи, которую он отделяет от Бога, о фигурах тел, о движении, о времени и вечности. Он указывает на то, что живые и неживые тела природы состоят из одних и тех же материальных частиц. Он высказал ряд гениальных для того времени научных догадок (о телескопе, летательных аппаратах, порохе). Еще при жизни ему присвоили титул «удивительный доктор», несмотря на то, что он за свои идеи подвергался преследованию. Он разработал проект реформы юлианского календаря, которая, однако, была осуществлена спустя три века.

Томас Брадвардин (1290 - 1349 г. г.) предпринял первую попытку разработать математические начала натурфилософии. Он стремился математически выразить зависимость между скоростью, движущей силой и сопротивлением. Он разрабатывал учения о континууме, актуальной и потенциальной бесконечности.

Смелостью, новизной и парадоксальностью поражало физическое учение Николая из Отрекура. Он возрождает атомистическое учение древних. По его мнению, рождение и разрушение тел состоит в том, что атомы, сцепляясь, образует тела, а рассеиваясь в пространстве, производят их разложение. Как и Николай из Отрекура, вопросами физики и механики интересовался профессор Парижского университета Жан Буридан. Он стремился объяснить, каким образом движения небесных тел могут вечно продолжаться сами собой, без посторонних двигателей, после того, как Бог дал им в начале сотворения известный импульс, сохраняющийся в дальнейшем в силу обычного божьего содействия. Созданная им динамическая «теория импетуса» была мостом, соединившим динамику Аристотеля с динамикой Галилея. Согласно этой теории при падении тела тяжесть запечатлевает в нем импетус, поэтому скорость тела во время падения возрастает. Величина импетуса определяется и скоростью, сообщенной телу, и качеством материи этого тела. Импетус расходуется в процессе движения на преодоления трения: когда импетус растрачивается, тело останавливается. Эта идея стала предпосылкой для перехода к понятию инерция. Теория импетуса способствовала уточнению и переосмыслению понятия силы. Его развитие пошло по двум направлениям: сила как внешнее воздействие на тело (Ньютон); сила как количество движения, т.е. факторы, связанные с самим движущимся телом (Декарт).

Большой вклад в разработку проблемы движения внес Николь Орем, преподаватель Парижского университета (1323 - 1382 г. г). Он впервые представил графическое изображение движения, которое напоминало разработанный впоследствии метод координат. Он сформулировал закон падения тел, развивая учение о суточном вращении Земли.

В XV - XVI в.в. фактически заканчивается эпоха Средневековья, начинается эпоха Возрождения, которая ознаменовалась возрастанием интереса к природе. Переход от Средневековья к Новому времени ознаменовался началом первой глобальной научной революции и становлением классического естествознания.

4. Эпоха Возрождения: революция в мировоззрении и науке.

Предпосылки классической науки

Научная революция, которая произошла в эпоху Возрождения в XV-XVI веках и подготовила возникновение классического естествознания, была обусловлена всем ходом социокультурных преобразований Западной Европы. Становление капиталистических отношений и промышленный переворот вели к существенному прогрессу науки и техники, способствовали радикальным изменениям в мировоззрении общества и индивида. Менялся не только социальный статус человека, но и менялось представление о его месте и роли в мире. Человек - это Творец. Если Бог - это Творец Вселенной, то человек - преобразователь природы и жизни, и Богом ему отведено особое место в мире.

Революция в мировоззрении эпохи Возрождения вела к радикальным изменениям в отношении к Природе, к Богу, к самому себе. Теоцентрическая картина мира заменяется и постепенно вытесняется антропоцентрической. Однако, эта - картина, в которой два центра: Бог и Человек, два Творца мира. Такой целостный образ мира опирался на пантеизм - учение о тождестве Бога и Природы («Бог во всем»), и на гуманизм - признание человека, его свободы и достоинства высшей ценностью.

Польский астроном Николай Коперник (1473 - 1543 г. г.) на основе большого количества астрономических наблюдений и расчетов создал новую гелиоцентрическую систему мира. В этой системе Коперник низвел Землю до роли рядовой планеты, которая одновременно вращается вокруг Солнца и вокруг собственной оси. В своем труде «Об обращении небесных сфер» Коперник утверждал, что движение - это естественное свойство небесных и земных механизмов, выражаемое некоторыми общими закономерностями механики. Это учение опровергало догматизированное представление Аристотеля о «неподвижном перводвигателе», приводящем в движение Вселенную, и разрушало опиравшуюся на идеи Аристотеля религиозную картину мира. Вместе с тем польский астроном считал, что Вселенная конечна, она где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды. Вселенная похожа на мир в скорлупе.

Философское обоснование идеям Коперника дал знаменитый итальянский философ Джордано Бруно (1548 - 1600). Он настаивал на том, что Вселенная бесконечна, что существует множество миров, подобных нашему миру, многие из них обитаемы. Инквизиция в 1592 году арестовала Джордано Бруно. 8 лет он находился в тюрьме, где подвергался страшным пыткам . 17 февраля 1600 года он был сожжен на костре, на Площади Цветов в Риме. Это произошло на рубеже двух веков, ознаменовавшемся рождением классического естествознания.

Большую роль в формировании предпосылок классического естествознания сыграл Г. Галилей.

5. Галилео Галилей и его роль в становлении классической науки

Галилео Галилея (1564 - 1624) называют «отцом современного естествознания». Именно он стоял у истоков классической механики и экспериментального естествознания. До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и, если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля является ошибочным, и сформулировал совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется равномерно и прямолинейно, если на него не производится какого-либо внешнего воздействия. Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы, как утверждал Аристотель. Пройденный падающим телом путь пропорционален квадрату времени падения. При этом траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, и многое другое.

Истинное знание, по мнению Галилея, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта и математики. Интересны астрономические наблюдения Галилея, обосновывающие и утверждавшие гелиоцентрическую систему Коперника. Он приводит естественнонаучное доказательство справедливости гелиоцентрической системы в работе «Диалог о двух системах мира - Птолемеевской и Коперниковой».

Галилей успел многое: разработал экспериментально - математический метод и обосновал его принципы; сформулировал принцип инерции, принцип относительности, законы свободного падения тел, дал строгое определение понятий скорости и ускорения; с помощью сконструированного им телескопа он экспериментально доказал справедливость учения Коперника.

6. И. Ньютон и его роль в становлении классической науки

Исаак Ньютон (1643-1727) завершил процесс становления классического естествознания, четко сформулировав механические законы всех процессов движения и взаимодействия макроскопических тел и создав для их описания математический язык бесконечно малых. В этом было отступление от атомистических воззрений, но это привело к значительному продвижению в описании и понимании природы. Несмотря на то, что в настоящее время его подход кажется естественным и очевидным на фоне абстрактных представлений современной физики, и с него начинают знакомство с этой наукой в школе, в то время понадобилось почти семьдесят лет, чтобы этот подход окончательно утвердился в умах ученых. Дав свое определение понятиям скорости, ускорения, силы, массы, Ньютон сформулировал законы динамики в виде связей между этими величинами. Проанализировав законы движения небесных тел, обнаруженных Т. Браге и И. Кеплером, он установил закон всемирного тяготения, введя в науку меру гравитационного взаимодействия тел в нашей Вселенной. В результате стало возможным точно предсказывать солнечные затмения и понять природу морских приливов. Отличительной чертой классической механики являлась обратимость движений во времени, что следовало из соответствующих уравнений. При описании механических процессов в различных системах координат, движущихся относительно друг друга равномерно и прямолинейно, следовало использовать принцип относительности Галилея. Согласно этому принципу на ускорения тел, возникшие в результате их силового взаимодействия, относительное движение систем отсчета никакого влияния не оказывает. При этом никакими механическими опытами невозможно установить, какая именно из систем движется. Для расчета достаточно было просто сложить скорость движения тела в данной системе отсчета и скорость относительного движения систем отсчета. Поэтому можно выбрать наиболее удобную систему отсчета и работать с ней. Например, в движущемся вагоне отпущенный камень упадет вдоль вертикальной прямой, но при наблюдении с неподвижной платформы его траектория будет иметь вид кривой линии - параболы. Если описать движение (и предсказать положения камня) в системе движущегося вагона (что проще), то, чтобы сказать, когда и в какой точке он будет при наблюдении с платформы, достаточно просто учесть относительную скорость (скорость вагона) в конечном ответе.

. Научное наследие И.Ньютона разнообразно: создание дифференциального и интегрального исчисления (параллельно с Лейбницем, но независимо от него), важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов. Он внес большой вклад в развитие оптики: он поставил опыты по изучению дисперсии света (дисперсия света - разложение луча света при прохождении через призму на отдельные спектральные лучи) и дал объяснение этому явлению.

В 1687 году вышел главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики. Свою научную программу Ньютон назвал «экспериментальной философией», подчеркивая решающее значение опыта, эксперимента в изучении природы. Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед.

7. Научная революция XVI-XVII веков, ее ход, содержание и основные итоги

Отрезок времени примерно от даты публикации работы Николая Коперника «Об обращениях небесных сфер», т.е. с 1543 г., до деятельности Исаака Ньютона обычно называют периодом «научной революции». Научная революция XVI-XVII в.в. представляет собой мощное движение, которое обретает характерные черты в работах Галилея, идеях Бэкона, Декарта и впоследствии получает свое завершение в классическом механическом образе Вселенной, подобной часовому механизму.

Все началось с астрономической революции Коперника, Тихо Браге, Кеплера и Галилея - наиболее выдающихся ее представителей. Шаг за шагом меняется образ мира, с трудом, но неуклонно разрушаются опоры космологии Аристотеля - Птолемея. Коперник помещает в центр мира вместо Земли Солнце. Тихо Браге устраняет материальные сферы, которые согласно старой космологии вовлекали в свое движение планеты, а идею материальной сферы заменяет современной идеей орбиты. Кеплер предлагает математическую систематизацию открытий Коперника и завершает революционный переход от теории кругового движения планет («совершенного» в понимании старой космологии) к теории эллиптического движения. Галилей показывает ошибочность различения физики земной и физики небесной, доказывая, что Луна имеет ту же природу, что и Земля, и формулирует принцип инерции. Ньютон в своей теории гравитации объединяет физику Галилея и физику Кеплера.

Однако за те 150 лет, которые отделяют Коперника от Ньютона, меняется не только образ мира, меняется образ человека, но постепенно меняется также и образ науки. Научная революция XVI-XVII в.в. - это не только создание новых теорий, одновременно это коренное изменение представлений о знании, о науке. Этот итог революции Галилей объяснил очень четко: наука больше не является ни особой интуицией отдельного мага или просвещенного астролога, ни комментарием к авторитету Аристотеля, который все сказал. Наука становится исследованием и раскрытием мира природы.

У истоков классического естествознания стоял Г.Галилей. Он создал экспериментальное естествознание, обосновав научный метод. В результате наука приобретает автономию от веры и философии. Начиная с Галилея, наука намерена исследовать не что, а как, не субстанцию, а функцию.

Еще один важный итог научной революции - превращение науки в социальный институт: возникновение академий, лабораторий, международных контактов (вспомним переписку ученых).

Другая фундаментальная характеристика научной революции - формирование знания, которое в отличие от предшествующего объединяет теорию и практику, науку и технику, создавая новый тип ученого. Он больше не маг или астролог, владеющий частным знанием посвященных, и не университетский профессор, комментатор и интерпретатор текстов прошлого. Научная революция порождает современного ученого-экспериментатора, сила которого - в эксперименте, становящемся все более строгим благодаря новым измерительным приборам, все более и более точным. Деятельность ученого нового типа часто протекает вне старых структур познания, например, университетов. В XVI и XVII веках университеты и монастыри уже больше не являются, как это было в средневековье, единственными центрами культуры. Инженер или архитектор, проектирующий каналы, плотины, укрепительные сооружения, занимает равное или даже более престижное положение, чем врач, придворный астроном, профессор университета. «Механические искусства» раньше считались «низкими, презренными», недостойными свободного человека. Теперь они стали приравниваться к «свободным искусствам», т.е. интеллектуальному труду. Это сближение техники и науки, их последующее слияние рождает современную науку и составляет ее суть. Науку создали ученые, но развивается она благодаря технологической базе, машинам и инструментам. «Широкое поле для размышлений, - пишет Галилей в «Беседах о двух новых науках», - представляет наблюдательному уму практика в вашем знаменитом арсенале, господа венецианцы, и особенно в том, что касается механики: каждый инструмент и механизм постоянно используют разные мастера, среди которых… есть очень опытные и умнейшие люди». Наука утверждается с помощью экспериментов, которые осуществляются на конкретном материале с помощью испытательных приборов, созданных вручную с использованием инструментов. Чтобы стать ученым теперь не обязательно знание латыни, не требовалась знакомство с книгами или университетская кафедра. Публикации в «Актах» академий и участие в научных обществах были доступны всем - профессорам, экспериментаторам, ремесленникам, дилетантам. Наука распространяется через книги, периодические издания, частные письма, деятельность научных обществ, но не через университетские курсы. Обсерватории, лаборатории, музеи, мастерские, дискуссионные клубы зарождаются вне университетов.

Научная революция проявилась и в быстром росте и совершенствовании инструментария - компаса, весов, механических часов, астролябий, печей и т.д., которые быстро модернизируются. В начале XVI века весь инструментарий сводился к немногим предметам, связанным с астрономическими наблюдениями и топографическими открытиями, а в механике применялись рычаги и блоки. Теперь же в течение всего лишь нескольких десятилетий появляются телескоп Галилея (1610), микроскоп Мальпиги (1660), Гука (1665) и Ван Левенгука, циклоидальный маятник Гюйгенса (1673), воздушный термометр Галилея (1638), водяной термометр Жана Рея (1632), спиртовой термометр Магалотти (1666), барометр Торричелли (1643), пневматический насос Роберта Бойля (1660) и т.п. Главная задача инструментов, по мнению ученых, - усиливать познавательные способности органов чувств. И в то же время использование оптических инструментов, таких, как призма или тонкие металлические пластинки (например, в опытах Ньютона), позволяет характеризовать их не только как вспомогательное средство для увеличения возможностей органов чувств, но и как способ устранить обман зрения. Проникая внутрь объектов, инструмент обеспечивает большую объективность по сравнению со свидетельствами чувств. В это же время возникает и другая важная проблема инструмента - искажение исследуемого объекта. В важной полемике Ньютона и Гука по поводу теории цветов и функционировании призмы возникло существенное разногласие. Гук оценил опыты Ньютона с призмой, отмечая их точность и изящество, но он отверг гипотезу о том, что белый цвет может иметь сложную природу. Гук считал, что цвет не является исходной принадлежностью лучей. По его мнению, белый цвет - продукт движения частиц, проходящих через призму. А это означает, что рассеивание цветов - результат искажения, образуемого призмой. Эта проблема инструмента - исказителя исследуемого объекта в дальнейшем развитии физики (в XX веке) возникнет вновь.

Деятельность Галилея и Кеплера по раскрытию законов механики успешно продолжил английский ученый Исаак Ньютон (1643 - 1727 г.г.). Его научное наследие чрезвычайно разнообразно. Он открыл три закона механики, сформулировал закон всемирного тяготения, динамически обосновав систему Коперника и законы Кеплера. Открытие закона всемирного тяготения оказало огромное влияние на дальнейшее развитие естествознания. Это был универсальный закон природы, которому подчинялось все малое и большое, земное и небесное. На основе ньютоновской классической механики сложилась картина мира, которая представляла Вселенную как совокупность огромного числа неделимых и неизменных атомов, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающихся от тела к телу через пустоту. Свойства пространства и времени неизменны и не зависят от самих тел. Природа, согласно этой картине мира, являет собой простую машину, части которой подчиняются жесткой детерминации.

8. Естествознание в XVIII-XIX вв.

В ХVIII в. естествознание остается в целом механистическим. Физика, выделившись из натурфилософии, была нацелена главным образом на количественные исследования отдельных явлений, установление отдельных экспериментальных фактов, выявление частных закономерностей.

В первой половине ХVIII в. были достигнуты определенные результаты в изучении электрических явлений. Изобретение А. Вольтом источника постоянного тока открыло дорогу стремительному развитию физики и тех-ники электричества. В 80-е годы ХVIII в. Ш. Кулон установил основной закон электричества. Таким образом, к концу ХVIII в. прояснилась природа электричества.

Химия в начале XVIII в. отставала в своем развитии от других наук. Вcе дело в том, что количественные методы, разработанные Галилеем и Ньютоном практически не применялись в химии. Не осознавалась важность точных измерений. Однако к концу ХVIII в. ученые накопили большой экспериментальный материал, который был систематизирован в рамках единой теории. Создателем этой теории стал французский химик А.Лавуазье. Проведя целую серию опытов, он установил закон сохранения массы, который стал краеугольным камнем химии XIX в.

Астрономия в XVIII в. становится наукой, основанной на постоянных исчислениях. Поэтому не удивительно, что среди астрономов были в то время математики: Ж. Л. Д'Аламбер, Л.Эйлер, Ж. Д. Лагранж.

В биологии XVIII в. важное место занимала систематика. Шведский натуралист К. Линней разработал систему классификации растений и животных, в которой было выделено несколько соподчиненных групп: классы, отряды, роды, виды и разновидности. Им была узаконена бинарная или двойная номенклатура видовых названий.

Сформулированная в космогонии идея развития природы постепенно переходит в биологию. Французский естествоиспытатель Ж.Бюффон одним из первых в развернутом виде изложил концепцию трансформизма (ограниченной изменчивости видов и происхождения видов в пределах относительно узких подразделений).

Особенностью развития естествознания во второй половине XVIII в. и на протяжении XIX в. является процесс его стихийной диалектизации. Начало этому процессу положила работа немецкого ученого и философа Иммануила Канта (1724 - 1804) «Всеобщая естественная история и теория неба». В этой работе, опубликованной в 1755 году, была сделана попытка исторического объяснения происхождения Солнечной системы. Гипотеза Канта утверждала, что Солнце, планеты и их спутники возникли из некоторой первоначальной, бесформенной туманной массы, некогда равномерно заполнявшей мировое пространство. Кант пытался объяснить процесс возникновения Солнечной системы действием сил притяжения, которые присуще частицам материи, составляющим эту огромную туманность. Идеи Канта о возникновении и развитии небесных тел были несомненным завоеванием науки середины XVIII века. Его космогоническая гипотеза поколебала прочность метафизического взгляда на мир. Через 40 с лишним лет французский математик и астроном Пьер Симон Лаплас (1749-1827) в своем труде «Изложение системы мира», опубликованном в 1796 г., совершенно независимо от Канта высказал идеи, развивавшие и дополнявшие кантовское космогоническое учение (гипотеза Канта-Лапласа). В XIX веке диалектическая идея развития распространилась на широкие области естествознания. В первую очередь, на геологию и биологию. Важную роль в утверждении этой идеи сыграл трехтомный труд «Основы геологии» английского естествоиспытателя Чарльза Лайеля (1797 - 1875). В этом труде подчеркивалась идея развития очень длительного существования Земли. Геологический эволюционизм оказал немалое влияние на дальнейшее совершенствование эволюционного учения в биологии. В 1859 году вышел главный труд Чарльза Дарвина (1809 - 1882) «Происхождение видов в результате естественного отбора». В нем Дарвин, опираясь на огромный естественнонаучный материал, изложил факты и причины биологической эволюции. Он показал, что вне саморазвития органический мир не существует и поэтому органическая эволюция не может прекратиться. Развитие - это условие существования вида, условие его приспособления к окружающей среде. Наряду с фундаментальными работами, раскрывающими процесс эволюции, развития природы, появились новые естественнонаучные открытия, подтверждавшие наличие всеобщих связей в природе. К числу этих открытий относится клеточная теория, созданная в 30-х годах XIX века. Ее авторами были ботаники Маттиас Якоб Шлейден (1804 - 1881), установивший, что все растения состоят из клеток, и профессор, биолог Теодор Шванн (1810 - 1882), распространивший это учение на животный мир. Еще важное открытие этого времени - закон сохранения и превращения энергии. Первооткрывателем этого закона считают немецкого врача Юлиуса Роберта Майера (1814 - 1878) и английского исследователя Джеймса Прескотт Джоуля (1818 - 1889). В отстаивании этого закона и его широком признании в научном мире большую роль сыграл один из наиболее знаменитых физиков XIX века Герман Людвиг Фердинанд Гельмгольц (1821 - 1894). Признавая приоритет Майера и Джоуля в открытии закона сохранения энергии, Гельмгольц установил, что в соответствии с этим принципом идея вечного двигателя невозможна. Доказательство сохранения и превращения энергии утверждало идею единства, взаимосвязанности материального мира. Вся природа рассматривалась как непрерывный процесс превращения универсального движения материи из одной формы в другую. Свой вклад в диалектизацию естествознания внесли и некоторые открытия в химии. К их числу относится открытие в 1828 году немецким химиком Фридрихом Велером (1800 - 1882) искусственного органического вещества - мочевины. Оно положило начало целому ряду синтезов органических соединений из исходных неорганических веществ. Эпохальным событием в химической науке, внесшим большой вклад в процесс диалектизации естествознания, стало открытие периодического закона химических элементов Дмитрием Ивановичем Менделеевым (1834 - 1907). Он обнаружил, что существует закономерная связь между химическими элементами, которая заключается в том, что свойства элементов изменяются в периодической зависимости от их атомных весов. Обнаружив эту закономерную связь, Менделеев расположил элементы в естественную систему в зависимости от их родства. Из вышесказанного следует, что основополагающие принципы диалектики - принцип развития и принцип всеобщей связи - получили во второй половине XVIII века и особенно в XIX веке мощное естественнонаучное обоснование.

Механистические взгляды на мир господствовали в естествознании не только в XVII, XVIII , но и почти весь XIX век. В целом природа понималась как гигантская механическая система, функционирующая по законам классической механики. Считалось, что в силу необходимости, действующей в природе, судьба даже отдельной материальной частицы заранее предрешена на все времена. Ученые-естествоиспытатели видели в классической механике прочную и окончательную основу естествознания. Многие естествоиспытатели вслед за Ньютоном старались объяснить, исходя из начал механики самые различные природные явления. При этом они неправомерно экстраполировали законы, установленные лишь для механической сферы явлений, на все процессы окружающего мира. Длительное время теории, объяснявшие закономерности соединения химических элементов, опирались на идею тяготения между атомами. Лаплас был убежден, что к закону всемирного тяготения сводятся все явления, известные ученым. Исходя из этого, он работал над созданием новой, молекулярной механики, которая, по его мнению, была призвана дополнить механику Ньютона и объяснить химические реакции, капиллярные явления, феномен кристаллизации, а также то, почему вещество может быть твердым, жидким или газообразным. Лаплас видел причины всего этого во взаимном притяжении между молекулами, которое, считал он, есть только «видоизменение всемирного тяготения». Как очередное подтверждение ньютоновского подхода к вопросу об устройстве мира было первоначально воспринято физиками открытие, сделанное французским военным инженером, членом парижской Академии наук Шарлем Огюстом Кулоном (1736 - 1806). Оказалось, что положительный и отрицательный электрические заряды притягиваются друг к другу прямо пропорционально величине зарядов и обратно пропорционально квадрату расстояния между ними. Это означало, что в науке впервые появился один из законов электромагнетизма. После Кулона открылась возможность построения математической теории электрических и магнитных явлений. Механическая картина мира знала только один вид материи - вещество, состоящее из частиц, имеющих массу. В XIX веке к числу свойств частиц стали прибавлять электрический заряд. Английский химик и физик Майкл Фарадей (1791 - 1867) ввел в науку понятие электромагнитного поля. Ему удалось показать опытным путем, что между магнетизмом и электричеством существует прямая динамическая связь. Таким образом, он впервые объединил электричество и магнетизм, признал их одной и той же силой природы. В результате в естествознании начало утверждаться понимание того, что, кроме вещества, в природе существует еще и поле. Математическую разработку идей Фарадея предпринял выдающийся английский ученый Джеймс Клерк Максвелл (1831 - 1879). Его основной работой, заключавшей в себе математическую теорию электромагнитного поля, явился «Трактат об электричестве и магнетизме», изданный в 1873 г. Введение Фарадеем понятия электромагнитного поля и математическое определение его законов, данное в уравнениях Максвелла, явились самыми крупными событиями в физике со времен Галилея и Ньютона. Но потребовались новые результаты, чтобы теория Максвелла стала достоянием физики. Решающую роль в победе этой теории сыграл немецкий физик Генрих Рудольф Герц (1857 - 1894). В 1886 году Герц продемонстрировал «беспроволочное распространение» электромагнитных волн и тем самым экспериментально проверил теоретические выводы Максвелла. Он также смог доказать принципиальную тождественность полученных им электромагнитных переменных полей и световых волн. Работы в области электромагнетизма положили начало крушению механистической картины мира и открыли путь к новому миропониманию, отличающемуся от механистического. Результаты работ Фарадея, Максвелла и Герца привели к развитию современной физики, к созданию новых понятий, образующих новую картину действительности.

9. Физика на рубеже XIX-XX веков, ее открытия и достижения

Классическая механика господствовала в науке два столетия, идя от одного достижения к другому. Казалось, что ничто не предвещало заминок и неудач. Была создана кинетическая теория газов на основе статистического описания поведения большого числа движущихся частиц атомов или молекул. Были открыты законы термодинамики, создана теория электричества и магнетизма, получены знаменитые уравнения электродинамики Максвелла, объединившие эти теории. Однако оказалось, что, прекрасно описывая явления электромагнетизма, эти уравнения не подчиняются принципам относительности Галилея. Покоящийся и движущийся наблюдатель будут получать разные результаты при рассмотрении процессов взаимодействия движущихся и неподвижных зарядов. Принцип относительности Галилея стал несовместимым с уравнениями Максвелла. К концу XIX века это противоречие затронуло основания физики. Его необходимо было разрешить. В конце концов естествознание вынуждено было отказаться от признания особой, универсальной роли механики. На смену ей постепенно приходило новое понимание физической реальности.

В 1895 году началась научная революция, ознаменовавшая переход к новому способу познания, отражающему глубинные связи и отношения в природе. Она включала в себя как неожиданные открытия (открытия рентгеновских лучей, радиоактивности, и т.д.), так и великие теоретические достижения: квантовая теория М. Планка (1900 г.), специальная и общая теория относительности А. Эйнштейна (1905 - 1906 гг.), атомная теория Резерфорда - Бора в 1913 г. Английский физик и общественный деятель Дж. Бернал назвал этот период в развитии физики героическим. В это время исследуются новые миры главным образом с помощью технических и теоретических средств старой науки XIX века. Это был период в основном индивидуальных достижений: супругов Кюри, Резерфорда, Планка, Бора, Эйнштейна.

Эволюция в науке на рубеже XIX - XX веков принесла немало сенсационных открытий, разрушивших прежние представления о неделимости атома, о постоянстве массы, о неизменности химических элементов и т.д. В 1895 году В. Рентген открыл невидимые глазом электромагнитные излучения, проникающие через некоторые непрозрачные для видимого света материалы. Эти лучи были названы рентгеновскими. В 1896 году французский физик А. Беккерель открыл явление естественной радиоактивности. Радиоактивное излучение свидетельствовало о наличии внутри атома колоссальных источников энергии и о превращаемости элементов. В 1897 году английский физик Дж. Томсон открыл первую элементарную частицу - электрон. Открытия радиоактивности и электрона выдвинули проблему внутреннего строения атома. Уяснив, что электрон является составной частью атомов, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом внутри положительно заряженной сферы. При устойчивом состоянии атома электроны располагаются концентрическими слоями. Несмотря на наивность этой модели, представление о слоистом расположении электронов оказалось перспективным.

В 1904 году японский физик Нагаоке пришел к выводу, что атом по своему строению напоминает Солнечную систему, где вокруг положительного ядра вращается кольцо, состоящее из большого числа электронов. Эта модель сначала не привлекла внимания физиков, так как противоречила очевидным фактам. Однако в 1909 - 1910 гг. английский физик Э. Резерфорд обнаружил, что в атомах существуют ядра - положительно заряженные микрочастицы, размер которых чрезвычайно мал по сравнению с размерами атомов. Но масса атома почти полностью сосредоточена в его ядре. Резерфорд разработал новый вариант планетарной модели. В центре атома расположено ядро с размером порядка 10-13 см. Вокруг него вращаются электроны, число которых таково, что общий заряд атома равен нулю. Однако эта модель атома оказалась несовместимой с электродинамикой Максвелла, согласно которой вращающиеся электроны должны непрерывно излучать электромагнитные волны, терять энергию и падать на ядро, что ведет к неустойчивости атома. Однако это в природе не наблюдается. Электроны, двигающиеся по круговым орбитам вокруг ядра, не только не падали на ядро, но и излучали не непрерывную энергию, а лишь определенными порциями - квантами. Это явление объяснил немецкий физик М. Планк в своей теории, получившей название квантовой.


Подобные документы

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Объект и предмет изучения естествознания как научного направления. Три основных уровня организации материи, подходы в познании. Естественнонаучная и гуманитарная культуры, их соотношение. Роль субъективного фактора в социально-гуманитарном познании.

    контрольная работа [35,4 K], добавлен 09.04.2015

  • Естественнонаучная и гуманитарная культуры и история естествознания. Корпускулярная и континуальная концепции описания природы. Порядок и беспорядок в природе, хаос. Пространство и время, принципы относительности, симметрии, универсального эволюционизма.

    курс лекций [545,5 K], добавлен 05.10.2009

  • Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

    курс лекций [279,5 K], добавлен 15.11.2014

  • Рассмотрение стадий исторического развития естествознания. Отказ от созерцательности и наивной реалистичности установок классического естествознания. Усиление математизации современного естествознания, сращивание фундаментальных и прикладных исследований.

    реферат [30,2 K], добавлен 11.02.2011

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.

    реферат [54,1 K], добавлен 29.12.2009

  • Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.

    реферат [21,3 K], добавлен 29.11.2009

  • Эволюция научного метода и естественнонаучной картины мира. Развитие научных исследовательских программ. Пространство, время и симметрия. Системные уровни организации материи. Порядок и беспорядок в природе. Панорама современного естествознания.

    курс лекций [47,6 K], добавлен 15.01.2011

  • Закономерный характер систематического развития естествознания. Естественнонаучные революции и их закономерный характер. Периодичность в развитии естествознания: корреляция всплесков творческой и солнечной активности. Естественнонаучная картина мира.

    контрольная работа [78,1 K], добавлен 10.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.