Нормальная физиология
Принцип саморегуляции организма. Понятие о гомеостазе и гомеокинезе. Энергетика и биомеханика мышечного сокращения. Ультраструктура скелетного мышечного волокна. Особенности строения периферических синапсов. Классификация, строение и функции нейронов.
Рубрика | Биология и естествознание |
Вид | курс лекций |
Язык | русский |
Дата добавления | 14.06.2011 |
Размер файла | 342,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Периферическим отделом вестибулярного анализатора является вестибулярный аппарат, находящийся в лабиринте пирамиды височной кости. Он состоит из преддверия и трех полукружных каналов. Кроме вестибулярного аппарата в лабиринт входит улитка, в которой располагаются слуховые рецепторы. Полукружные каналы располагаются в трех взаимно-перпендикулярных плоскостях: верхний - во фронтальной, задний - в сагиттальной и наружный - в горизонтальной. Один из концов каждого канала расширен (ампула). Вестибулярный аппарат включает в себя также два мешочка. Первый из них лежит ближе к улитке, а второй - к полукружным каналам. В мешочках преддверия находится отолитовый аппарат: скопление рецепторных клеток (вторичночувствующие механорецепторы) на возвышениях или пятнах. Выступающая в полость мешочка часть рецепторной клетки оканчивается одним более длинным подвижным волоском и 60-80 склеенными неподвижными волосками. Эти волоски пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция - отолиты. Возбуждение волосковых клеток преддверия происходит вследствие скольжения отолитовой мембраны по волоскам, т.е. их сгибания.
В перепончатых полукружных каналах, повторяющих форму костных каналов, заполненных, как и весь лабиринт, плотной эндолимфой (ее вязкость в 2-3 раза больше, чем у воды), рецепторные волосковые клетки сконцентрированы только в ампулах в виде крист. Они также снабжены волосками. При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении - тормозятся. В волосковых клетках и преддверия, и ампулы при их сгибании генерируется рецепторный потенциал, который через синапсы (посредством выделения ацетилхолина) передает сигналы о раздражении волосковых клеток окончаниями волокон вестибулярного нерва.
Волокна вестибулярного нерва (отростки биполярных нейронов) направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают на нейроны бульбарного вестибулярного комплекса (ядра: преддверное верхнее Бехтерева, преддверное латеральное Дейтерса, Швальба и др.). Отсюда сигналы направляются во многие отделы ЦНС: спинной мозг, мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и вегетативные ганглии.
Вестибулярный анализатор помогает организму ориентироваться в пространстве при активном движении животного и при пассивном переносе с места на место с завязанными глазами. При этом лабиринтный аппарат с помощью корковых отделов системы анализирует и запоминает направление движения, повороты и пройденной расстояние. Следует подчеркнуть, что в нормальных условиях пространственная ориентация обеспечивается совместной деятельностью зрительной и вестибулярной сенсорных систем.
Физиология соматосенсорного анализатора
В соматосенсорную анализаторную систему включают систему кожной чувствительности и чувствительную систему скелетно-мышечного аппарата, главная роль в которой принадлежит проприорецепторам.
Кожная рецепция
Кожные рецепторы. Рецепторная поверхность кожной чувствительной системы огромна - от 1,4 до 2,1 м2. В коже сосредоточено большое количество чувствительных к прикосновению, давлению, вибрации, теплу и холоду, а также к болевым раздражениям нервных окончаний. Они весьма различны по структуре, локализуются на разной глубине кожи и распределены неравномерно по ее поверхности. Больше всего их в коже пальцев рук, ладоней, подошв, губ и половых органов.
У человека в коже с волосяным покровом (90% всей кожной поверхности) основным типом рецепторов являются свободные нервные окончания ветвящихся нервных волокон, идущих вдоль мелких сосудов, а также более глубоко локализованные разветвления тонких нервных волокон, оплетающих волосяную сумку. Эти окончания обеспечивают высокую чувствительность волос к прикосновению. Рецепторами прикосновения считают также осязательные мениски (диски Меркеля), образованные в нижней части эпидермиса контактом свободных нервных окончаний с модифицированными эпителиальными структурами. Их особенно много в коже пальцев рук.
В коже, лишенной волосяного покрова, в сосочковом слое дермы пальцев рук и ног, ладонях, подошвах, губах, языке, половых органах и сосках груди находится много осязательных телец (телец Мейсснерова). Тельце это имеет конусовидную форму, сложное внутреннее строение и покрыто капсулой. Другими инкапсулированными нервными окончаниями, но более глубоко расположенными являются пластинчатые тельца, или тельца Пачини (рецепторы давления и вибрации). Их находят также в сухожилиях, связках, брыжейке.
Теории кожной чувствительности многочисленны и во многом противоречивы. Одной из наиболее распространенных является теория о наличии специфических рецепторов для 4 основных видов кожной чувствительности: тактильной, тепловой, холодовой и болевой.
Согласно этой теории, в основе разного характера кожных ощущений лежат различия в пространственном и временном распределении импульсов в афферентных волокнах, возбуждаемых при разных видах кожных раздражений. Исследования электрической активности одиночных нервных окончаний и волокон свидетельствуют о том, что многие из них воспринимают лишь механические или температурные стимулы.
Тактильная рецепция. Ощущение прикосновения и движения на кожу довольно точно локализуются, т.е. относится человеком к определенному участку кожной поверхности. Эта локализация вырабатывается и закрепляется в онтогенезе при участии зрения и проприорецепции. Абсолютная тактильная чувствительность существенно различается в разных частях кожи: от 50 мг до 10 г. Пространственное различие на кожной поверхности, т.е. способность человека раздельно воспринимать прикосновение к двум соседним точкам кожи, также сильно отличается в разных ее участках. На слизистой языка порог пространственного различия равен 0,5 мм, а на коже спины - более 50 мм. Эти отличия связаны главным образом с различными размерами кожных рецептивных полей (от 0,5 мм2 до 3 мм2) и со степенью их перекрытия.
Температурная рецепция. Температура тела человека характеризуется значительным пространством и поэтому информация о температуре внешней среды, необходимая для деятельности механизмов терморегуляции, имеет особо важное значение. Терморецепторы располагаются в коже, на роговице глаза, в слизистых оболочках, а также в ЦНС - в гипоталамусе. Они делятся на два вида: тепловые (их намного меньше в коже и они лежат глубже) и холодовые. Больше всего терморецепторов в коже лица и шеи.
Терморецепторы можно разделить на специфические и неспецифические. Первые возбуждаются лишь температурным воздействием, вторые отвечают и на механическое раздражение. Большинство терморецепторов имеет локальные рецептивные поля и реагирует повышением частоты генерируемых импульсов, устойчиво длящимся все время действия стимула. Повышение частоты импульсации происходит пропорционально изменению температуры, причем постоянная частота у Тепловы рецепторов наблюдается в диапазоне от 20 до 500С, а у холодовых - от 10 до 410С. Дифференциальная чувствительность терморецепторов велика: достаточно изменить температуру на 0,20С, чтобы вызвать длительные изменения из импульсации.
В определенных условиях холодовые рецепторы могут быть возбуждены и теплом (выше 450С). Этим объясняется возникновение острого ощущения холода при быстром погружении в горячую ванну.
В настоящее время считают, что наиболее важным фактором, определяющим активность терморецепторов, связанных с ними центральных структур и ощущения человека, является абсолютное значение температуры, а не ее изменения. В то же время интенсивность в начале температурных ощущений зависит от разницы температуры кожи и температуры действующего на нее раздражителя, его площади и места приложения.
Физиология обонятельного анализатора
Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути. На поверхности каждой обонятельной клетки имеется сферическое утолщение - обонятельная булава, из которой выступает по 6-12 тончайших (0,3 мкм) волосков длиной до 10 мкм. Обонятельные волоски погружены в жидкую среду, вырабатываемую боуменовыми железами. Считается, что наличие волосков в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ. Не исключена и активная, двигательная функция волосков, увеличивающая надежность захвата молекул пахучего вещества и контакта с ними. Булава является важным цитохимическим центром обонятельной клетки; есть основания полагать, что в ней генерируется рецепторный потенциал.
Молекулы пахучего вещества вступают в контакт со слизистой оболочкой носовых ходов, взаимодействуют со специализированными белками, встроенными в мембрану рецепторов. В результате следующей за этим сложной и пока еще недостаточно изученной цепи реакций в рецепторе генерируется рецепторный потенциал, а затем и импульсное возбуждение, передающееся по волокнам обонятельного нерва в обонятельную луковицу - первичный нервный центр обонятельного анализатора. Адаптация в обонятельном анализаторе происходит сравнительно медленно (десятки секунд или минут) и зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая «предпочтение» некоторым из них. При разных запахах меняется и пространственная мозаика возбужденных и заторможенных участков луковицы.
Особенность обонятельного анализатора состоит, в частности, в том, что его афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону большого мозга.
Выходящий из луковицы обонятельный тракт состоит из нескольких пучков, которые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндалевидного комплекса. Большинство областей проекции обонятельного тракта можно рассматривать как ассоциативные центры, обеспечивающие связь обонятельной системы с другими сенсорными системами и организацию на этой основе ряда сложных форм поведения - пищевой, оборонительной, половой и т.д.
Чувствительность обонятельного анализатора человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. В то же время изменение интенсивности действия вещества (порог различения) оценивается людьми довольно грубо (наименьшее воспринимаемое различие в силе запаха составляет 30-60% от его исходной концентрации). У собак эти показатели в 3-6 раз меньше.
Для практических целей разработана классификация запахов. При этом обнаруживается, что вещества сходного химического строения оказываются в разных запаховых классах, а вещества одного и того же запахового класса значительно различаются по своей структуре. Выделяют следующие основные запахи: камфарный, цветочный, мускатный, мятный, эфирный, едкий, гнилостный. В естественных условиях, как правило, встречаются смешанные запахи, в которых преобладают те или иные составляющие. Разграничение их по качеству возможно только до некоторой степени, и лишь в условиях очень высоких концентраций некоторых веществ. Сходство и различие запахов связывают со структурой и (или) колебательными свойствами веществ, т.е. с их стереохимией - пространственным соответствием конфигурации пахучих веществ форма рецепторных участков на поверхности мембраны обонятельных ворсинок. Для восприятия едкого и гнилостного запахов считают важным не форму молекул, а плотность заряда на них.
Физиология вкусового анализатора
Вкус, так же как и обоняние, основан на хеморецепции. Вкусовые рецепторы несут информацию о характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или удалению вредных для организма веществ, попавших в рот с пищей.
Рецепторы вкуса - вкусовые почки - расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике языка, его краях и задней части. Каждая из примерно 10000 вкусовых почек человека состоит из нескольких (2-6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму, длина и ширина ее у человека около 70 мкм, она не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.
Вкусовые клетки - наиболее короткоживущие эпителиальные клетки организма, в среднем через каждые 250 ч каждая клетка сменяется молодой, движущейся к центру вкусовой почки от ее периферии. Каждая из рецепторных вкусовых клеток длинной 10-20 мкм, шириной 3-4 мкм имеет на конце, обращенном в просвет поры, 30-40 тончайших микроворсинок - 0,1-0,2 мкм, длинной 1-2 мкм.
Суммарный потенциал рецепторных клеток изменяется при раздражении языка разными веществами (сахаром, солью, кислотой). Этот потенциал развивается довольно медленно, максимум его достигается к 10-15 секунде после воздействия, хотя электрическая активность в волокнах вкусового нерва начинается значительно раньше. Проводниками всех видов вкусовой чувствительности служат барабанная струна и языкоглоточный нерв, ядра которых в продолговатом мозге содержат первые нейроны вкусового анализатора. Регистрация импульсации в отдельных волокнах данных нейронов показал, что многие из волокон отличается определенной специфичностью, так как отвечают лишь на соль, кислоту и хинин. Есть волокна, чувствительные к сахарам. Однако наиболее убедительной сейчас считается гипотеза, согласно которой информацию о четырех основных вкусовых ощущениях: горьком, сладком, кислом и саленном - кодируется не импульсацией в одиночных волокнах, а разным распределением частоты разрядов в большой группе волокон, одновременно, но по-разному возбуждаемых вкусовым веществом.
Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга. От ядра одиночного пучка аксоны вторых нейронов входят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, дающие аксоны до корковых центров вкуса.
Абсолютные пороги вкусовой чувствительности во многом зависят от состояния организма (они изменяются при голодании, беременности и т.д.). При измерении абсолютной вкусовой чувствительности возможны две ее оценки: возникновение неопределенного вкусового ощущения (отличающегося от вкуса дистиллированной воды) и возникновение определенного вкусового ощущения. Порог возникновения второго ощущения выше. Пороги различия минимальны в диапазоне средних концентраций веществ, но при переходе к большим концентрациям резко повышаются.
При действии вкусовых веществ наблюдается адаптация (снижение интенсивности вкусового ощущения). Продолжительность адаптации пропорциональна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена и перекрестная адаптация, т.е. изменение чувствительности к одному веществу при действии другого.
Классификация вкусовых ощущений. Выделяют четыре основных вкуса: сладкое, кислое, соленое и горькое. Кончик языка наиболее чувствителен к сладкому, средняя часть - к кислому, корень - к горькому, край - к соленому и кислому. Обычно вкусовые ощущения смешанные, потому что стимулы отличаются сложным составом и объединяют несколько вкусовых качеств. Сходным вкусом могут обладать резко различные по химической структуре вещества, разного вкуса могут быть и оптические изомеры одного химического вещества.
Физиология боли
Болевая, или ноцицептивная, чувствительность имеет особое значение для выживания организма, так как сигнализирует об опасности при действии любых чрезмерно сильных и вредных агентов. В симптомокомплексе многих заболеваний боль - одно из первых, а иногда и единственное проявление патологии, и важный индикатор в диагностике.
Сформулированы две гипотезы об организации болевого восприятия:
1. существуют специфические болевые рецепторы (свободные нервные окончания с высоким порогом реакции);
2. специфических болевых рецепторов не существует, и боль возникает при сверхсильном раздражении любых рецепторов.
Механизм возбуждения рецепторов при болевых воздействиях пока не выяснен. Предполагают, что особенно значимыми являются изменения рН ткани в области нервного окончания, так как этот фактор обладает болевым эффектом при концентрации Н+ ионов, встречающихся в реальных условиях. Таким образом, наиболее общей причиной возникновения боли можно считать изменение концентрации Н+ ионов при токсическом воздействии на дыхательные ферменты или при механическом или термическом повреждении клеточных мембран. Не исключено, что одной из причин длительной жгучей боли, может быть, выделение при повреждении клеток гистамина, протеолитических ферментов, воздействующих на глобулины межклеточной жидкости и приводящих к образованию ряда полипептидов (например, брадикинина), которые возбуждают окончания волокон группы С.
Адаптация болевых рецепторов возможна: ощущение укола от продолжающей оставаться в коже иглы, быстро проходит. Однако важной особенностью болевых рецепторов во многих случаях является отсутствие существенной адаптации, что делает страдания больного особенно мучительными и требует применения анальгетиков.
Болевые раздражения вызывают ряд рефлекторных соматических и вегетативных реакций, которые при умеренной их выраженности имеют приспособительное значение, но могут привести к вторичным грозным патологическим эффектам, например к шоку. Отмечают повышение мышечного тонуса, частоты сердечного сокращения и дыхания, повышение давления, сужение зрачков, увеличение содержания сахара в крови и ряд других эффектов.
При ноцицептивных воздействиях на кожу человек локализует их достаточно точно, но при заболеваниях внутренних органов часты так называемые отражения боли, проецирующиеся в определенные части кожной поверхности (зоны Захарьина-Геда). Так, при стенокардии кроме болей в области сердца ощущается боль в левой руке и лопатке.
Наблюдаются и обратные эффекты. Так, при локальных тактильных, температурных и болевых раздражениях определенных «активных» точек кожной поверхности включаются цепи рефлекторных реакций, опосредуемых центральной и вегетативной нервной системой. Они могут избирательно изменять кровоснабжение и трофику тех или иных органов и тканей.
Для уменьшения или устранения болевых ощущений в клинике используется множество специальных веществ - анальгетиков, анестетиков и наркотиков. По локализации действия они делятся на местные и общие. Первые (например, новокаин) блокируют возникновение и проведение болевых сигналов от рецепторов в спинной мозг или структуры ствола мозга. Общие анестетики (например, эфир) снимают ощущение боли, блокируя передачу импульсов между нейронами коры и ретикулярной формации мозга (погружают человека в наркотический сон).
Чувствительность к боли называется болевым порогом. Повышение его - гипоальгезия, снижение - гиперальгезия. Для интенсивности болевых ощущений значение имеет эмоциональное состояние человека. Отвлечение влияния от боли уменьшает ее выраженность, а акцентирование - усиливает. Так, в состоянии гипноза человек может вообще не чувствовать боли.
ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ
Врожденные формы поведения. Безусловные рефлексы
Безусловные рефлексы - это врожденные ответные реакции организма на раздражение. Свойства безусловных рефлексов:
1. Они являются врожденными, т.е. наследуются.
2. Наследуются всеми представителями данного вида животных.
3. Для возникновения безусловно-рефлекторной реакции необходимо действие специфического раздражителя (механическое раздражение губ - сосательный рефлекс у новорожденного).
4. У них имеется постоянное рецептивное поле (зона восприятия специфического раздражителя).
5. Они имеют постоянную рефлекторную дугу. И. П. Павлов все безусловные рефлексы разделял на простые (сосательный), сложные (потоотделение) и сложнейшие (пищевой, оборонительный, половой и т.д.). В настоящее время все безусловные рефлексы, в зависимости от их значения, делят на 3 группы:
o Витальные - жизненно важные. Они обеспечивают сохранение индивида. К ним относят пищевой, оборонительный, ориентировочный и др.
o Ролевые. Обеспечивают соответствующее положение в среде себе подобных. Эти безусловные рефлексы лежат в основе полового, группового или родительского поведения (социальные потребности человека).
o Безусловные рефлексы саморазвития. Они не нужны для ребенка в данный момент, они обеспечивают его будущие потребности.
Все эти виды безусловных рефлексов имеются у человека, и являются движущей силой различных форм человеческого поведения. Одной из сложных форм врожденного поведения являются инстинкты. Это комплекс безусловно-рефлекторных реакций, которые обеспечивают такую последовательность действий, которая характерна всем представителям данного вида в конкретной ситуации Пример - инстинкт самосохранения. Большинство безусловных рефлексов осуществляется без участия коры, однако они находятся под контролем коры и входят в состав приобретаемых условных рефлексов. Сложнейшие безусловные рефлексы и инстинкты осуществляются врожденными рефлекторными связями и в подкорке и коре.
Условные рефлексы, механизм образования, значение
Условные рефлексы - это индивидуально приобретенные в процессе жизнедеятельности реакции организма на раздражение. Создатель учения об условных рефлексах И. П. Павлов называл их временной связью раздражителя с ответной реакцией, которая образуется в организме при определенных условиях. Свойства условных рефлексов:
1. Формируются в течение всей жизни в результате взаимодействия индивида с внешней средой.
2. Не отличаются постоянством и без подкрепления могут исчезать.
3. Не имеют постоянного рецептивного поля.
4. Не имеют постоянной рефлекторной дуги.
5. Для возникновения условно рефлекторной реакции не требуется действие специфического раздражителя.
Пример условного рефлекса - выработка слюноотделения у собаки на звонок.
Условные рефлексы образуются только при определенном сочетании свойств раздражителя и внешних условий. Для выработки условного рефлекса используется сочетание индифферентного или условного раздражителя и подкрепляющего безусловного. Индифферентным называется такой раздражитель, который в естественных условиях не может вызвать данную рефлекторную реакцию, а безусловным - специфический раздражитель, который всегда вызывает возникновение этого рефлекса. Для выработки условных рефлексов необходимы следующие условия:
1. Действие условного раздражителя должно предшествовать воздействию безусловного.
2. Необходимо многократное сочетание условного и безусловного раздражителя.
3. Индифферентный и безусловный раздражители должны иметь сверхпороговую силу.
4. В момент выработки условного рефлекса должны отсутствовать посторонние внешние раздражения.
5. Центральная нервная система должна быть в нормальном функциональном состоянии.
Все условные рефлексы в зависимости от возникающего поведения делятся на классические и инструментальные.
1. Классические - это такие, которые вырабатываются в соответствии с вышеприведенными условиями. Пример - слюноотделение, выработанное на звонок.
2. Инструментальные - это рефлексы, способствующие достижению или избеганию раздражителя. Например, при включении звонка, предшествующего безусловно-рефлекторному болевому раздражению, собака совершает комплекс движений, чтобы освободиться от электродов. При звонке, предшествующем пище виляет хвостом, облизывается, тянется к чашке и т.д.
По афферентному звену условно-рефлекторной дуги, т.е. рецепторам выделяют экстерорецептивные и интерорецептивные условные рефлексы. Экстерорецептивные возникают в ответ на раздражение внешних рецепторов и служит для связи организма с внешней средой. Интерорецептивные - на раздражение рецепторов внутренней среды. Они необходимы для поддержания постоянства внутренней среды.
По эфферентному звену условно-рефлекторной дуги выделяют двигательные и вегетативные условные рефлексы. Пример двигательного - отдергивание лапы собакой на звук метронома, если последний предшествует болевому раздражению лапы. Пример вегетативного - слюноотделение на звонок у собаки. Отдельно выделяются условные рефлексы высших порядков. Это условные рефлексы, которые вырабатываются не путем подкрепления условного раздражителя безусловным, а при подкреплении одного условного раздражителя другим. В частности, на сочетание зажигания лампы с дачей пищи вырабатывается условный слюноотделительный рефлекс 1-го порядка. Если после этого подкреплять звонок зажиганием лампы, то вырабатывается условно-рефлекторное слюноотделение на звонок. Это будет рефлекс II-го порядка. У собаки можно выработать условные рефлексы лишь IV-го порядка, а у человека до XX-го порядка. Условные рефлексы высших порядков нестойкие и быстро угасают.
У млекопитающих и человека основная роль в формировании условных рефлексов принадлежит коре. При их выработке от периферических рецепторов, воспринимающих условный и безусловный раздражители, нервные импульсы по восходящим путям поступают в подкорковые центры, а затем те зоны коры, где находится представительство данных рецепторов. В нейронах этих 2-х участков коры возникают биопотенциалы. Они совпадают по времени, частоте и фазе. По межкортикальным путям происходит циркуляция, т.е. реверберация нервных импульсов. В результате синоптической потенциации активизируются синоптические связи, расположенные между нейронами той и другой зоны коры. Улучшение проведения закрепляется, возникает временная или условно-рефлекторная связь.
Безусловное и условное торможение
Изучая закономерности высшей нервной деятельности И. П. Павлов установил, что существуют 2 вида торможения условных рефлексов: внешнее или безусловное и внутреннее или условное. Внешнее торможение - это процесс экстренного ослабления или прекращения условно-рефлекторных реакций в результате действия посторонних раздражителей, т.е. стимулов или сигналов, поступающих из внешней или внутренней среды (термин используемый в физиологии высшей нервной деятельности). Безусловным это раздражение называется потому, что является врожденным и не требует выработки. Существуют 2 разновидности безусловного торможения:
1. Внешний тормоз. Он делится в свою очередь на постоянный тормоз и гаснущий тормоз. Постоянным тормозом называются такие посторонние стимулы, которые всегда вызывают торможение условных рефлексов. Например, болевые раздражители. Гаснущим тормозом называются стимулы, тормозящий эффект которых с течением времени начинает уменьшаться. Например, если во время условно-рефлекторного слюноотделения на звонок появляется другой звук, то у собаки возникает ориентировочный рефлекс, поэтому слюноотделение тормозится. Однако спустя некоторое время ориентировочная реакция исчезает, а слюноотделение продолжается.
2. Запредельное торможение. Оно развивается при действии очень сильных раздражителей или длительном воздействии умеренных стимулов. В этом случае возникающее возбуждение нейронов коры превышает предел их работоспособности. В результате запредельного торможения нейроны временно выключаются для восстановления возбудимости и работоспособности. Поэтому данный вид торможения еще называют охранительным. Например, у некоторых людей сильные эмоции вызывают состояние заторможенности. Этот вид торможения является одной из основ закона сильных отношений. Согласно этому закону, чем сильнее раздражитель, тем более выражена рефлекторная реакция. Однако при сверхсильных стимулах из-за запредельного торможения она прекращается. Таким образом, безусловное торможение выполняет две основные функции:
· Координационную, т.е. способствует выключению биологически несущественных для данной ситуации процессов возбуждения в коре.
· Охранительную, предупреждая истощение и гибель клеток коры.
Условное торможение - это торможение условных рефлексов, возникающее в результате выработки. Его называют также внутренним. Существуют следующие виды условного торможения:
1. Угасательное торможение. Оно возникает в том случае, если после выработки устойчивого условного рефлекса прекратить дальнейшее подкрепление условного раздражителя безусловным. Через некоторое время реакция на условный раздражитель исчезнет. Значение угасательного торможения заключается в выключении условных рефлексов, потерявших свое значение. Условно-рефлекторная связь не разрывается, а только тормозится. Поэтому если во время действия условно-рефлекторного стимула, на который реакция исчезла, подействовать сильным посторенним раздражителем, то может произойти расторможение угашенного рефлекса. Это используется в клинике, для восстановления памяти, речи.
2. Дифференцированное торможение. Оно возникает, когда на сенсорные системы действует группа близких по характеру условных раздражителей. Например, звуки близкие по частоте. При этом один из них подкрепляется безусловно-рефлекторным стимулом, а остальные нет. Первоначально условно-рефлекторная реакция будет возникать на все похожие раздражения, а спустя некоторое время только на тот, который подкрепляется. Дифференцировка, т.е. различение раздражителей развивается тем быстрее, чем меньше сходство между ними и наоборот. Дифференцировачное торможение обеспечивает выделение нужных сигналов. Ниаболее высока способность к дифференцировке у человека. Однако она ухудшается при наличии сильных или множественных внешних сигналов. Например, умственная работа в условиях шума.
3. Запаздывательное торможение. Оно наблюдается в том случае, если постепенно время действия безусловного подкрепляющего раздражителя отодвигать от момента включения условного. Постепенно условно-рефлекторная реакция также сдвигается к времени действия подкрепляющего раздражителя. С помощью этого вида торможения рефлекторная реакция сдвигается ближе к моменту подкрепления. Это способствует экономной работе нейронов мозга. У человека многие рефлексы являются запаздывающими, причем у возбудимых людей запаздывательное торможение вырабатывается труднее (необдуманные поступки).
4. Условный тормоз. Он возникает тогда, когда условно-рефлекторный раздражитель подкрепляется, а его комбинации с другим раздражителем нет. Первоначально реакция возникает и на комбинацию двух раздражителей. Но затем только на один условно-рефлекторный. Значение условного тормоза, как и дифференцировки состоит в различении сигналов.
Активация механизмов внутреннего торможения используется для гипноза. При монотонном многократном воздействии слабых раздражителей развивается внутреннее торможение (метроном, блестящий шар, монотонная речь).
Аналитико-синтетическая функция коры больших полушарий. Динамический стереотип
Все сигналы, поступающие из внешней среды, подвергаются анализу и синтезу. Анализ - это дифференцировка, т.е. различие сигналов. Безусловно-рефлекторный анализ начинается в самих рецепторах и заканчивается в подкорковых отделах центральной нервной системы. Высший анализ осуществляется корой больших полушарий. Он происходит за счет дифференцировочного торможения и условного тормоза. Способствует анализу процесс концентрации возбуждения в коре. Синтез - это объединение сигналов и формирование целостного восприятия их группы. ПАримером простейшего синтеза является выработка условного рефлекса. В результате нее 2 разнородных стимула вызывают одинаковую рефлекторную реакцию. Анализ и синтез - взаимосвязанные и одновременно протекающие процессы. В результате синтеза формируется динамический стереотип. Динамический стереотип - это цепь условно-рефлекторных реакций на последовательное воздействие ряда условных и безусловных раздражителей, повторяемых в строго определенной последовательности. После его закрепления, окончание одного рефлекса запускает следующий и т.д. Более того, первый стимул в этом ряду, приобретает свойство запускать всю цепь условных рефлексов. Пример: экспериментальный и естественный динамический стереотип.
Динамический стереотип способствует экономичности в деятельности коры и большей скорости протекания комплексных условных рефлексов. Так как анализ и синтез наиболее высокоорганизованны у человека, его мозгу свойственно образование множества стереотипических реакций. В частности формированием соответствующего динамического стереотипа объясняется возникновение привычек, привязанностей, навыков в выполнении первичной работы, обучении. В этом заключается положительная роль динамического стереотипа. Отрицательная, состоит в том, что его перестройка это длительный и рудный процесс. Поэтому он препятствует переобучению. Кроме того, у людей со слабым типом нервной деятельности перестройка динамического стереотипа сопровождается нарушением нервно-психической деятельности, в виде нервозов и психозов (резкая смена обстановки, привычной деятельности и т.д.). Одновременно явлениям динамического стереотипа во многом объясняются вредные привычки, например, курение и бытовое пьянство.
Структура поведенческого акта
Поведением называется комплекс внешних взаимосвязанных реакций, которые осуществляются организмом для приспособления к изменяющимся условиям среды. Наиболее просто структура поведения была описана через функциональную управляющую систему по П. К. Анохину. По Анохину во всех функциональных управляющих системах, обеспечивающих постоянство внутренней среды организма, имеются внутренние системы саморегуляции и внешнее звено саморегуляции или поведенческая регуляция. Это звено способствует поддержанию постоянства внутренней среды за счет целенаправленного поведения. По теории функциональной управляющей системы поведенческий акт включает следующие стадии:
1. Афферентный синтез. Он состоит в синтезе сигналов от периферических рецепторов, сигналов извлеченных из памяти и сигналов из очага мотивационного возбуждения. Готовность к любому поведению обеспечивает мотивационное возбуждение, возникающее в центральной нервной системе при появлении биологической, социальной или идеальной потребности. При этом мотивационное возбуждение становится доминирующим. Для запуска поведения необходимы пусковая и обстановочная афферентация. К пусковой афферентации относятся те внешние безусловные и условные раздражители, которые являются толчком для формирования поведения, т.е. запускают его (пример, убегание слабых животных при появлении хищника). Условия, которые способствуют запуску поведения, называют обстановочной афферентацией. В то же время, из памяти извлекается врожденная и приобретенная информация, которая полезна для будущего поведения. После завершения афферентного синтеза включается вторая стадия поведения.
2. Принятие решения. Во время этой стадии планируется будущее поведение, т.е. каким оно будет.
3. Стадия формирования акцептора (т.е. приемника) результатов действия. На этой стадии оцениваются результаты будущего поведения при выполнении принятого решения.
4. Стадия эфферентного синтеза. Во время нее определяется конкретная последовательность действий, но пока внешних проявлений поведения еще нет.
5. Стадия выполнения программы поведения. Программа выполняется. Сигналы о результатах поведения, с помощью обратной афферентации поступают в акцептор результатов действия и оценивается в нем. Если результаты выполнения программы совпадают с прогнозом, заложенным в акцепторе результатов действия, поведение завершается. Если нет, то происходит полная перестройка поведения.
Мотивации. Классификация. Механизмы возникновения.
Потребность - это нужда, которую использует организм и которую стремится удовлетворить посредством целенаправленного поведения. Все потребности человека можно разделить на следующие группы:
1. Биологические (пищевые, половые и др.). В чистом виде у человека не встречаются (исключение - дебилы, имбецилы).
2. Социальные. Желание принадлежать к определенной социальной группе, исполнять нравственные, эстетические и юридические нормы.
3. Идеальные. Потребности познания и т.д.
Мотивацией называется эмоционально окрашенное состояние, возникающее в результате определенной потребности, которое формирует поведение, направленное на удовлетворение этой потребности (К. В. Судаков).
В зависимости от потребности, которая вызвала возникновение мотивации, все они разделяются на биологические, социальные и идеальные. Биологические мотивации делятся на пищевую, питьевую, половую, оборонительную и т.д.
Мотивационное возбуждение обладает свойствами доминанты:
1. Оно инертно, т.е. длительно сохраняется, пока не будет удовлетворена вызвавшая его потребность.
2. Все посторонние раздражители благодаря суммации только усиливают мотивационное возбуждение.
3. Очаг мотивационного возбуждения подавляет все другие очаги и подчиняет себе все отделы ЦНС.
4. При мотивационном возбуждении возрастает возбудимость тех отделов мозга, которые ответственны за возникновение мотивации.
5. Благодаря принципу доминатны А. А. Ухтомского в каждой конкретный момент времени поведение организма определяется той мотивацией, которая обеспечивает наилучшую адаптацию организма к условиям среды. После завершения одного мотивированного поведения, в организме возникает следующая по биологической и социальной значимости мотивация. Пример: биологическая (пищевая) - социальная - идеальная.
Все мотивации, независимо от вызвавшей их потребности, вызывают одинаковые изменения функций организма:
1. Усиливается двигательная активность. Пример: страх, голод, жажда, любопытство, половое влечение. Исключение - пассивный страх (замирание).
2. Возрастает тонус симпатической нервной системы. В результате этого учащается сердцебиение, повышается артериальное давление, усиливается дыхание и т.д.
3. Повышается чувствительность анализаторов, т.е. снижаются пороги раздражения рецепторов, улучшается проведение сигналов по нервным путям, анализ и синтез в коре. Это объясняется активацией ретикулярной формации и симпатической нервной системы.
4. Происходит избирательная активация памяти, что необходимо для успешного выполнения соответствующего поведения. Например, при голоде активизируются одни следы памяти, при страхе - другие.
5. Возникают эмоциональные переживания. Например отрицательных при страхе, голоде, жажде. Положительных при удовлетворении потребности.
В экспериментах на животных установлено, что пищевая, питьевая, оборонительная мотивации осуществляются задней областью гипоталамуса, где находятся центры голода и насыщения, жажды и т.д. В центрах голода и насыщения имеются нейроны, которые возбуждаются при недостатке или избытке глюкозы и жирных кислот в крови. Кроме гипоталамуса, где находятся низшие центры мотивации, в их формировании важная роль принадлежит структурам лимбической системы. В частности миндалевидное ядро координирует активность центров голода и насыщения и формирует поведение на вкусную и невкусную пищу. Предполагают, что это же ядро обеспечивает выделение доминирующей мотивации.
Важная роль в формировании мотиваций принадлежит некоторым гормонам. Они, выделяются в кровь, поступают в спинномозговую жидкость и регулируют чувствительность нейронов мотивационных центров к нейромедиаторам. Особое значение имеют такие гормоны, как гастрин, холецистокинин, вещество Р. Гастрин стимулирует нейроны центра голода, а холецистокенин-понкреазимин тормозит их. В результате нарушения межнейронных связей или нейрохимических процессов возникают патологические изменения мотиваций. В частности известны нарушения пищевой мотивации (абулия и булимия), половой мотивации (сексуальные переверзии) и т.д. В связи с тесными взаимосвязями мотивационных и эмотвных механизмов, нарушение мотиваций сопровождается эмоциональными перестройками. Таким образом, эмоции и мотивации являются базисными нервно-психическими процессами человека, которые определяют его целенаправленное поведение. При этом их нарушения ведут не только к изменениям поведения, но и к расстройствам сомато-висцеральных функций.
Память и ее значение в формировании приспособительных реакций.
Огромное значение для индивидуального поведения имеют обучение и память. Выделяют генотипическую или врожденную память и фенотипическую, т.е. приобретенную память. Генотипическая память является основной безусловных рефлексов и инстинктов. Фенотипическая память хранит информацию, поступающую в процессе индивидуальной жизни. Приобретенная память имеет 2 формы: чувственную - образную и логическую - смысловую. Первая формируется в результате действия на анализаторы натуральных раздражителей (запах, вкус, цвет и т.д.), вторая - на основе абстрактных понятий (слово, формулы и т.д.). Чувственно-образную память делят по характеру раздражителей на зрительную, слуховую, вкусовую и т.д. Обе формы памяти постоянно взаимодействуют образуя сложные ассоциации (например, название цветка ассоциируется с его внешним видом, запахом). Процесс запоминания происходит в четыре этапа:
1. Сенсорная память. В ней происходит кратковременное удержание сенсорной, т.е. поступающей в органы чувств информации. На этом этапе информация хранится доли секунд. В это время происходит анализ сигналов и большая часть информации переходит в кратковременную память, меньшую - сразу в промежуточную или долговременную.
2. Кратковременная память. Здесь информация находится до нескольких минут. Не нужная информация отсюда удаляется, а имеющая значение, переходит в промежуточную память.
3. Промежуточная память. В ней информация может храниться от нескольких десятков минут до нескольких лет. Неречевая информация из сенсорной памяти может сразу переходить в промежуточную память (инпритинг - запечатлевание). Речевая же обязательно поступает через кратковременную память в промежуточную. Причем словесная информация закрепляется в ней лишь после нескольких повторений.
4. долговременная память. В нее информация переходит из промежуточной. Причем этот переход происходит во время быстрого сна.
Первый этап запоминания, т.е. сенсорная память, является результатом возникновения нервных импульсов в периферических рецепторах, их распространения по проводящим путям в корковый отдел анализатора и процессов высшего синтеза в коре. Кратковременная память обусловлена поступлением нервных импульсов в гипокамп, где выделяется главная и отбрасывается ненужная информация. После этого информация поступает в замкнутые нейронные сети, где происходит циркуляция или ревербация нервных импульсов. Переход информации в промежуточную и долговременную память происходит в коре полушарий на основе более тонких механизмов. Следы памяти в нейронных цепях коры формируются в результате двух процессов:
1. За счет усиления или потенции нервных импульсов в межнейронных синапсах. Потенциация происходит в результате увеличения количества выделяемого нейромедиатора и числа постсинаптических рецепторов.
2. Благодаря структурным изменениям мембран и органелл нейронов. Эти изменения синоптической передачи и мембран являются следствием предшествующей ревербации.
Данными процессами обеспечивается промежуточная и долговременная память. Кроме того предложены другие теории долговременной памяти.
1. Химическая теория. В ее основе лежат опыты с «транспортом памяти» (обучение животных - введение экстракта их мозга необученным животным, опыты со скотофобином). Согласно этой теории информация хранится в специальных белках синтезируемых нейронами.
2. Теория хранения энграммы в ДНК. Предполагают, что ДНК программирует необходимые изменения структуры и свойств синапсов и таким образом обеспечивает перестройку нейронных цепей в процессе запоминания.
Нарушения памяти
1. Ретроградная амнезия - утрата способности мозга к извлечению информации, поступившей в мозг до момента экстремального воздействия на него, потеря информации, накопленной до травмы головного мозга или сильного опьянения. Под гипнозом эту информацию можно извлечь.
2. Антеретроградная амнезия - неспособность к запоминанию новой информации. В клинике синдром Корсакова. Память на отдельные события сохраняется, а недавние быстро забываются (хронический алкоголизм, поражения гипокампа).
Физиология эмоций.
Эмоции - это психические реакции, отражающие субъективное отношение индивида к объективным явлениям. Эмоции возникают в составе мотивации и играют важную роль в формировании поведения. Выделяют 3 вида эмоциональных состояний (А. Н. Леонтьев):
1. Аффекты - сильные, кратковременные эмоции, возникающие на уже имеющуюся ситуацию. Страх, ужас при непосредственной угрозе жизни.
2. Собственно эмоции - длительное состояние, отражающее отношение индивида к изменившейся или ожидаемой ситуации. Печаль, тревога, радость.
3. Предметные чувства - постоянные эмоции, связанные с каким-либо объектом (чувство любви к конкретному человеку и т.д.).
Функции эмоций:
1. Оценочная. Она позволяет быстро оценить возникающую потребность и возможность ее удовлетворения. Например, при чувстве голода человек не подсчитывает калорийность имеющейся пищи, содержание в ней белков, жиров, углеводов, а просто ест в соответствии с интенсивностью чувства голода, т.е. интенсивностью соответствующей эмоции.
2. Побуждающая. Эмоции стимулируют целенаправленное поведение. Например, отрицательные эмоции при голоде стимулируют пищедобывающее поведение.
3. Подкрепляющая. Эмоции стимулируют запоминание и обучение. Например, положительные эмоции при материальном подкреплении обучения.
4. Коммуникативная. Состоит в передаче своих переживаний другим индивидам. Эмоции передаются с помощью мимики, а не мысли.
Эмоции выражаются определенными двигательными и вегетативными реакциями. Например, при определенных эмоциях возникает соответствующая мимика, жестикуляция. Возрастает тонус скелетных мышц. Изменяется голос. Учащается сердцебиение, повышается артериальное давление. Это объясняется возбуждением двигательных центров, центров симпатической нервной системы и выбросом адреналина из надпочечников (полиграфия).
Основное значение в формировании эмоций принадлежит гипоталамусу и лимбической системе. Особенно миндалевидному ядру. При его удалении у животных механизмы эмоций нарушаются. При раздражении миндалевидного ядра у человека страх, ярость, гнев. У человека важное значение в формировании эмоций принадлежит лобной и височной областям коры. Например, при повреждении лобных областей возникает эмоциональная тупость. Неодинаково и значение полушарий. При временном выключении левого полушария возникают отрицательные эмоции - настроение становится пессимистичным. При выключении правого - возникает противоположное настроение. Установлено, что первоначально чувство благодушия, беспечности, легкости при употреблении алкоголя объясняется его воздействием на правое полушарие. Последующее ухудшение настроения, агрессивность, раздражительность обусловлено действием алкоголя на левое полушарие. Поэтому у людей с недостаточно развитым левым полушарием алкоголь практически сразу вызывает агрессивное поведение. У здоровых людей эмоциональное преобладание правого полушария проявляется мнительностью, повышенной тревожностью. При доминантности левого - этих явлений нет (тест эмоциональной асимметрии мозга - юмор).
Важное значение в возникновении эмоций принадлежит балансу нейромедиаторов. Например, если в мозге возрастает содержание серотонина, настроение улучшается, при его недостатке наблюдаются депрессии. Такая же картина наблюдается при недостатке или избытке норадреналина. Обнаружено, что у самоубийц значительно снижено содержание этих нейромедиаторов в мозге.
Функциональные состояния организма. Стресс, его физиологическое значение
Функциональным состоянием называется тот уровень активности организма, при котором выполняется та или иная его деятельность. Низшими уровнями функционального состояния являются кома, затем сон. Высшим - агрессивно-оборонительное поведение.
Одной из разновидностей функциональных состояний является стресс. Учение о стрессе создал канадский физиолог Ганс Селье. Стресс - это функциональное состояние, с помощью которого организм реагирует на экстремальные воздействия, угрожающие его существованию, его физическому или психическому здоровью. Поэтому основной биологической функцией стресса является адаптация организма к действию стрессового фактора или стрессора. Различают следующие виды стрессоров:
1. Физиологические. Они оказывают непосредственное воздействие на организм. Это болевой, тепловой, холодовой и другие раздражители.
2. Психологические. Словесные стимулы, сигнализирующие об имеющихся или будущих вредных воздействиях.
В соответствии с видом стрессоров выделяют следующие разновидности стресса.
1. Физиологический. Например, гипертермия.
2. Психологический. Выделяют две его формы:
a) Информационный стресс - возникает при информационных перегрузках, когда человек не успевает принимать правильные решения.
b) Эмоциональный стресс. Возникает в ситуациях обиды, угрозы, неудовлетворительность.
Селье называл стресс общим адаптационным синдромом, так как считал, что любой стрессор запускает неспецифические адаптационные механизмы организма. Эти адаптационные процессы проявляются триадой стресса:
1. Повышается активность коркового слоя надпочечников.
2. Уменьшается вилочковая железа.
3. Появляются язвы на слизистой оболочке желудка и кишечника.
Выделяют 3 стадии стресса:
1. Стадия тревоги. Она заключается в мобилизации адаптационных возможностей организма, но затем сопротивляемость стрессора падает и возникает триада стресса. Если адаптационные возможности организма истощаются, наступает смерть.
2. Стадия сопротивления. Эта стадия начинается, если сила стрессора соответствует адаптационным возможностям организма. Уровень его сопротивляемости растет и становится значительно больше нормы.
Подобные документы
Основные физиологические свойства мышц: возбудимость, проводимость и сократимость. Потенциал покоя и потенциал действия скелетного мышечного волокна. Механизм сокращения мышц, их работа, сила и утомление. Возбудимость и сокращение гладкой мышцы.
курсовая работа [1,1 M], добавлен 24.06.2011Виды мышечных волокон: скелетные, сердечные и гладкие. Функции скелетных и гладких мышц, изометрический и изотонический режимы их сокращения. Одиночное и суммированное сокращения, строение мышечного волокна. Функциональные особенности гладких мышц.
контрольная работа [1,4 M], добавлен 12.09.2009Проблемы объяснения механизмов йоги с точки зрения физиологии. Процессы сокращения и расслабления мышечного волокна. Энергетическая валюта организма - аденозинтрифосфорная кислота (АТФ). Взаимосвязь скелетной мускулатуры с центральной нервной системой.
реферат [15,4 K], добавлен 14.11.2010Преобразование химической энергии в механическую работу или силу как основная функции мышц, их механические свойства. Применение закона Гука в отношении малых напряжений и деформаций. Механизм мышечного сокращения. Ферментативные свойства актомиозина.
презентация [3,0 M], добавлен 23.02.2013Иерархический принцип управления функциями организма. Характеристика общего строения головного мозга человека. Особенности функций среднего мозга, его структура, роль в регуляции мышечного тонуса, осуществлении установочных и выпрямительных рефлексов.
контрольная работа [16,8 K], добавлен 13.03.2009Механизм преобразования химической энергии АТФ непосредственно в механическую энергию сокращения и движения. Типы мыщц, их химическое строение. Роль миоцита, цитоплазмы, миофибриллов, рибосомов, лизосомов. Гликоген как основной углевод мышечной ткани.
реферат [255,1 K], добавлен 06.09.2009Строение и типы мышц. Изменение макро- и микроструктуры, массы и силы мышц в разные возрастные периоды. Основные группы мышц, их функции. Механизм мышечного сокращения. Формирование двигательных навыков. Совершенствование координации движений с возрастом.
реферат [15,6 K], добавлен 15.07.2011Понятие и функциональные особенности в человеческом организме мозжечка как отдела головного мозга позвоночных, отвечающего за координацию движений, регуляцию равновесия и мышечного тонуса. Нейронная организация данного органа, афферентные волокна.
презентация [790,8 K], добавлен 02.12.2014В основу современных теорий кабельного проведения возбуждения положена гипотеза Германна о существовании круговых токов. Каждая возбудимая клетка ограничена плазматической мембраной, к которой примыкают окружающие клетку оболочки. Физиология синапсов.
реферат [30,0 K], добавлен 19.11.2008Изучение взаимодействия нейронов между собой и нервными клетками. Электрические процессы на постсинаптической мембране. Строение химических синапсов. Особенности формирования и распространения быстрых и медленных электрических потенциалов медиаторов.
контрольная работа [374,5 K], добавлен 19.08.2015