Важнейшие достижения естествознания 19 века
Волновая концепция света О. Френеля. Концепции классической электродинамики. Электромагнитное поле Максвелла и эфир. Возникновение предпосылок ядерной физики. Эволюционная теория Дарвина. Концепции классической термодинамики. Достижения биологии XIX века.
Рубрика | Биология и естествознание |
Вид | реферат |
Язык | русский |
Дата добавления | 22.03.2011 |
Размер файла | 61,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2) Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).
3) Свойства веществ зависят от их химического строения.
4) По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.
5) Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.
Основой теории Бутлерова является идея о порядке химического взаимодействия атомов в молекуле. Этот порядок химического взаимодействия не включает представления о механизме химической связи и физическом расположении атомов. Эта важная особенность теории химического строения позволяет всегда опираться на нее при построении физической модели молекулы.
Установив понятие химического строения, А. М. Бутлеров дал новое определение природы вещества: «химическая натура сложной частицы определяется натурой элементарных составных частей, количеством их и химическим строением».
Таким образом, А. М. Бутлеров первый установил, что каждая молекула имеет определенное химическое строение, что строение определяет свойства вещества и что изучая химические превращения вещества, можно установить его строение.
Взгляды А. М. Бутлерова на значение химических структурных формул вытекают из основных положений его теории. Бутлеров считал, что эти формулы должны быть не «типическими», «реакционными», а конституционными. В этом смысле для каждого вещества возможна лишь одна рациональная формула, на основании которой можно судить о химических свойствах.
Бутлеров впервые объяснил явление изомерии тем, что изомеры -- это соединения, обладающие одинаковым элементарным составом, но различным химическим строением. В свою очередь, зависимость свойств изомеров и вообще органических соединений от их химического строения объясняется существованием в них передающегося вдоль связей «взаимного влияния атомов», в результате которого атомы в зависимости от их структурного окружения приобретают различное «химическое значение». Самим Бутлеровым и особенно его учениками В. В. Марковниковым и А. Н. Поповым это общее положение было конкретизировано в виде многочисленных «правил». Уже в XX в. эти правила, как и вся концепция взаимного влияния атомов, получили электронную интерпретацию.
Таким образом Бутлеров открыл путь к планомерному созданию органических соединений, следуя которому органическая химия начинает одерживать одну победу за другой в соревновании с природой за создание материальных ценностей для удовлетворения потребностей людей.
К важным достижениям в строении молекул можно отнести открытие оптических изомеров Пастером и принятие трехмерной модели молекулы.
Периодическая таблица
В истории развития органической и неорганической химии XIX столетия наблюдается любопытная параллель. В первые десятилетия число вновь открытых органических соединений, а также элементов увеличивалось ошеломляюще быстро. В третьей четверти столетия органические соединения были в определенной степени систематизированы благодаря введению структурных формул. До некоторой степени упорядочены были и элементы; однако в начале столетия царил беспорядок.
К 1830 году было открыто 55 различных элементов и такое резкое увеличение списка элементов, которые, вдобавок, сильно отличались по свойствам, озадачило химиков.
Заманчиво было попытаться как-то упорядочить список уже известных элементов.
Главная заслуга в упорядочении элементов принадлежит нашему соотечественнику Дмитрию Ивановичу Менделееву. Открытый им в 1869 году Периодический закон стал самым значительным событием XIX века. В основу Периодического закона Д.И. Менделеев положил атомные массы (ранее - атомные веса) и химические свойства элементов. Расположив 63 известных в то время элемента в порядке возрастания их атомных масс, Д.И. Менделеев получил естественный (природный) ряд химических элементов, в котором он обнаружил периодическую повторяемость химических свойств. Периодический закон в формулировке Д.И. Менделеева звучал так: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов». На его основе он составил таблицу, озаглавленную «Опыт системы элементов, основанной на их атомном весе и химическом сходстве». Основываясь на увеличении и уменьшении валентности, Менделеев разбил элементы на периоды. Для того, чтобы выполнялось требование, согласно которому в столбцах должны находится элементы с одинаковой валентностью, Менделеев в одном или двух случаях был вынужден поместить элемент с несколько большим весом перед элементом с несколько меньшим весом. Поскольку этого оказалось недостаточно, Менделеев счел также необходимым оставить в своей таблице пустые места, которые впоследствии должны были заполниться новыми элементами.
Менделеев был настолько уверен в своей правоте, что пришел к заключению о существовании соответствующих этим клеткам элементов и подробно описал их свойства. Он назвал их экабор, экаалюминий, экакремний. Никто из предшественников Менделеева не рискнул предугадывать существование и свойства неоткрытых элементов. И все же часть химиков была настроена скептически и их недоверие не удалось бы преодолеть, если бы смелые идеи Менделеева не подтвердились столь блестяще.
Периодический закон Д.И.Менделеева и Периодическая система химических элементов стали основой современной химии, проложив путь к предсказаниям и планомерным поискам еще не открытых химических элементов и новых химических соединений.
Физическая химия
Открытия, происходившие в физике XIX столетия, в частности, в термодинамике, не могли не повлиять на развитие химии. Ведь в конечном итоге основными источниками теплоты в XIX веке (кроме Солнца) были химические реакции: горение дерева, угля, нефти. Химикам было также известно, что практически все химические реакции сопровождаются тем или иным тепловым(а иногда и световым) эффектом.
В 1840 году после опубликования работ русского химика Германа Ивановича Гесса граница между миром физики и химии была разрушена. Гесс показал, что количество теплоты, получаемой или поглощаемой при переходе от одного вещества к другому, всегда одинаково и не зависит от того, с помощью какой реакции или сколькими этапами осуществлялся переход. Благодаря этому обобщению (закон Гесса) Гесса считают основателем термохимии. Исходя из закона Гесса, закон сохранения энергии равно применим и к химическим, и к физическим процессам.
В 1850 году Уильямсон тщательно изучил обратимые химические реакции. Работа Уильямсона ознаменовала начало изучения химической кинетики - области химии, изучающей скорости химических реакций. Уильямсон ясно показал, что самопроизвольный характер химической реакции в ряде случаев определяет не просто выделение теплоты, а нечто большее.
В 1863 году Като Гульдберг и Петер Вааге нашли константу химического равновесия, а также закон действия масс. Они полагали, что направление реакции определяется не просто массой отдельных веществ, а скорее массой отдельных веществ, приходящейся на данный объем реагирующей смеси, другими словами - концентрацией веществ.
Тем временем американский физик Джозайя Гиббс Уиллард начал систематическое изучение термодинамики химических реакций. Он ввел понятие свободная энергия, и объяснил суть закона действия масс. Скорость, с которой меняется свободная энергия при изменении концентрации отдельного вещества, называется химическим потенциалом системы, и Гиббсу удалось показать, что именно химический потенциал является «движущей силой» химических реакций. Химическая реакция идет самопроизвольно от точки с высоким химическим потенциалом, подобно тому как теплота самопроизвольно передается от точки с высокой температурой к точке с низкой температурой. Работы Гиббса составили фундамент современной химической термодинамики. Причем Гиббс сделал так много, что его последователи по существу лишь развивали его идеи.
Катализ. Выдающийся немецкий ученый Фридрих Вильгельм Оствальд занимался изучением катализа. Катализатор, утверждал он, образует с исходным веществом промежуточное соединение, которое распадается на конечные продукты реакции. При распаде промежуточного соединения катализатор высвобождается. Таким образом, катализатор ускоряет реакцию, но сам при этом не расходуется. Кроме того, поскольку молекулы катализатора используются снова и снова, для ускорения реакции большого количества веществ достаточно небольшого количества катализатора.
Этот взгляд на катализ сохраняется и сегодня. Он помог объяснить механизм действия ферментов, управляющих химическими реакциями в живых тканях.
В 1888 году А. Ле Шателье открыл правило, получившее название принципа Ле Шателье. Согласно этому правилу, любое смещение системы в таком направлении, которое уменьшает первоначальное изменение. Как оказалось, химическая термодинамика Гиббса четко объясняла принцип Ле Шателье.
Новые исследования в области физической химии показали, что химические реакции связаны не только с теплом, как таковым, а скорее с энергией вообще.
В XIX веке начинает развиваться фотохимия - область химии, изучающая индуцируемые светом реакции. Среди ее достижений изобретение фотографии, использование света как катализатора и последующие фотохимические цепные реакции и т.д.
Ионная диссоциация. Крупнейшим физико - химиком на рубеже XIX XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус. Еще будучи студентом, он заинтересовался электролитами, т.е. растворами, способными пропускать электрический ток. Аррениус пришел к мысли, что при растворении в растворителях, подобных воде, определенная часть молекул распадается на отдельные атомы. Более того, поскольку эти распавшиеся молекулы проводят электрический ток, Аррениус предположил, что молекулы распадаются не на обычные атомы, а на атомы, несущие электрический заряд. Это составило основу теории ионной диссоциации. С помощью этой теории ионной диссоциации Аррениус объяснил многие электро- химические явления. В 1889 году Аррениус выдвинул другую плодотворную идею. Он указал, что молекулы, сталкиваясь, не реагируют, если не обладают определенным минимумом энергии, иначе говоря, энергией активации. При малой энергии активации реакции проходят быстро и беспрепятственно, при высокой энергии активации реакция может протекать с бесконечно малой скоростью.
Синтетическая органическая химия
Первая половина XIX века ознаменовалась развитием новой области химии - синтетической органической химии. Химики начали соединять в цепи органические молекулы. Уильям Генри Перкин пытался получить хинин - ценное лекарственное средство против малярии. Однажды обработав анилин бихроматом калия, разочарованный результатом Перкин уже собрался выбросить полученную массу, как вдруг заметил, что она приобрела пурпурный оттенок. Перкин добавил спирт и извлек из реакционной смеси вещество, окрасившее спирт в великолепный пурпурный цвет.
Перкин понял, что у него в руках краситель. Впоследствии он первым организовал промышленное производство синтетического красителя и быстро разбогател.
Несколько лет спустя после поразительного успеха Перкина химики познакомились со структурными формулами органических соединений. Эти формулы могли помочь подобрать методы, позволяющие синтезировать новые органические соединения не случайно, а уже целенаправленно. Так в 1867г. Адольф Байер синтезировал индиго, в 1868г. Карл Гребе синтезировал важный природный краситель - ализарин.
Вслед за Перкином химики начали синтезировать соединения все возрастающей сложности. Синтез обычно позволял установить молекулярное строение, что всегда представляло огромный теоретический, а иногда и практический интерес.
Эти и подобные им достижения заложили основы теории и технологии прикладной химии, благодаря успехам которой наша жизнь преобразилась столь значительным образом и продолжает преображаться в еще более ускоренном темпе.
Шотландский химик Томас Грэхем изучал диффузию, в частности диффузию растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару проходят через разделяющую перегородку из пергаментной бумаги. Соединения, способные проходить через поры пергамента Грэхем назвал кристаллоидами. Соединения другой группы, не способные проходить через поры пергамента, он назвал коллоидами. Наука о гигантских молекулах стала впоследствии важным разделом коллоидной химии, которой Грэхем положил начало.
Взрывчатые вещества. Молекулы-гиганты не избежали преобразующей руки химика. В 1845 году Х.Ф.Шенбайн, случайно превратил целлюлозу в нитроцеллюлозу. Нитрогруппы послужили внутренним источником кислорода, и при нагревании целлюлоза сразу же полностью окислилась.
Шенбайн понял важность сделанного им открытия. На основе нитроцеллюлозы (нитроклетчатки) можно было получить «бездымный порох».
Однако наладить производство нитроклетчатки для военных целей долгое время не удавалось: фабрики, как правило, взрывались. Только в 1891г. Дьюару и английскому химику Фредерику Аугустусу Абелю удалось получить безопасную смесь, назвав ее кордитом.
В состав кордита кроме нитроклетчатки входит также нитроглицерин (мощное взрывчатое вещество), который был получен в 1847г. итальянским химиком Асканио Собреро.
Производством нитроглицерина занялось семейство шведского изобретателя Альфреда Бернарда Нобеля (1833--1896). Когда в результате взрыва погиб брат Нобеля, он сосредоточил свои усилия на «усмирении» этого взрывчатого вещества. В 1866 г. Нобель обнаружил, что кизельгур может впитывать значительные количества нитроглицерина. Пропитанный нитроглицерином кизельгур можно было формовать в брикеты. Такие брикеты были совершенно безопасны в обращении, хотя пропитывающий кизельгур нитроглицерин сохранял свою разрушительную силу. Нобель назвал полученную им смесь динамитом.
Получение новых и более мощных по сравнению с черным порохом взрывчатых веществ в конце XIX в. положило начало гонке вооружений. Его применение для военных целей, как и разработка отравляющих газов во время первой мировой войны, отчетливо продемонстрировало, что задачи науки можно извратить и заставить ее служить целям разрушения. Наука, которая до конца XIX в. казалась средством создания на земле утопии, стала служить уничтожению.
Однако существует много направлений, позволяющих использовать молекулы-гиганты в мирных целях. Так, если полностью нитрованная целлюлоза - это взрывчатое вещество и может применяться только как таковое, то частично нитрованная целлюлоза (пироксилин) более безопасна в обращении, и ее можно применять не только в военных целях (производство пластмасс, различных волокон).
Одним из главных источников основных органических соединений, необходимых для производства новых синтетических продуктов, является нефть. Эта жидкость известна с античных времен, но чтобы использовать ее в больших количествах, необходимо было открыть способ выкачивания нефти из обширных подземных месторождений. Американский изобретатель Эдвин Лаурентин Дрейк первым в 1859 году начал бурить нефтяные скважины.
Неорганическая химия
Новая металлургия. Хотя может показаться, что XIX век, особенно его вторая половина, был веком органической химии, неорганическая химия продолжала развиваться. Самые большие успехи в области прикладной неорганической химии связаны с получением металлов и прежде всего стали, производство которой было и остается наиболее важной статьей экономики любой промышленно развитой страны.
Сталь начали получать и широко использовать еще три тысячелетия назад, но только в середине XIX века был разработан способ, который обеспечивал массовое производство литой стали. Большая заслуга в этом принадлежит Генри Бессемеру.
Бессемер нашел способ удалить избыточный углерод из чугуна - пропустить через расплавленный металл струю воздуха. Металл при этом не охлаждался и не затвердевал; наоборот, в результате реакции углерода с кислородом выделялось тепло, и температура расплава повышалась. Прекращая в соответствующий момент подачу воздуха, Бессемер смог получить сталь.
В 1856 г. Бессемер опубликовал сообщение об изобретенном им конвертере. В результате сталь стала дешевой, и железный век уступил дорогу веку стальному. Значение стали трудно переоценить. Сталь -- это современные небоскребы и подвесные мосты, сталь -- это рельсы для поездов, сталь -- это мощные боевые корабли и всесокрушающая артиллерия.
Впоследствии металлурги пытались улучшить свойства стали, добавляя в нее различные компоненты. Английский металлург Роберт Эббот Хэдфилд ввел в сталь марганец(12%) и она стала намного тверже, чем исходный металл. Хэдфилд запатентовал марганцевую сталь в 1882 году и с этого момента началось победное шествие легированных сталей.
Добавляя в сталь хром, молибден, ванадий, вольфрам и ниобий, металлурги получили богатый спектр легированных сталей, обладающих самыми различными свойствами.
В это же время начали находить применение и новые металлы, в частности алюминий -- самый распространенный металл. Однако в природных соединениях он прочно связан с другими элементами. Лишь в 1855г. французский химик Анри Этьен Сен-Клер Де-вилль разработал приемлемый способ получения достаточных количеств довольно чистого алюминия. Однако и после этого стоимость его намного превышала стоимость стали; так, достаточно сказать, что из алюминия были сделаны такие «престижные» предметы, как погремушка сыну Наполеона III и головной убор статуи Вашингтона.
В 1886г. молодой американский студент-химик Чарльз Мартин Холл открыл, что оксид алюминия (глинозем) можно растворить в расплавленном минерале криолите. А получив раствор оксида, можно путем электролиза выделить и сам алюминий. В том же году французский металлург Поль Луи Туссен Эру (1863--1914) разработал по сути тот же метод получения алюминия. Метод Холла --Эру сделал алюминий настолько дешевым, что из него стали изготавливать даже кухонную посуду.
Наиболее ценное свойство алюминия -- его легкость (алюминий в 3 раза легче стали). Именно по этой причине он так широко используется в авиационной промышленности. В этих же целях потребляются и большие количества магния, циркония и титана, так как перспективы их использования весьма велики.
Достижения биологии XIX века
Наиболее значимыми событиями первой половины XIX века стали становление палеонтологии и биологических основ стратиграфии, возникновение клеточной теории, формирование сравнительной анатомии и сравнительной эмбриологии. Центральными событиями второй половины XIX века стали публикация «Происхождения видов» Чарлза Дарвина и распространение эволюционного подхода во многих биологических дисциплинах.
Клеточная теория
Клеточная теория была сформулирована в 1839г. немецким зоологом и физиологом Т. Шванном. Согласно этой теории, всем организмам присуще клеточное строение. Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма -- клетки. Как и всякое крупное научное обобщение, клеточная теория не возникла внезапно: ей предшествовали отдельные открытия различных исследователей.
В начале XIX в. предпринимались попытки изучения внутреннего содержимого клетки. В 1825г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клетки: главным в ее организации стали считать не клеточную стенку, а содержимое.
Наиболее близко к формулировке клеточной теории подошел немецкий ботаник М. Шлейден, который установил, что тело растений состоит из клеток.
Многочисленные наблюдения относительно строения клетки, обобщение накопленных данных позволили Т. Шванну в 1839 г. сделать ряд выводов, которые впоследствии назвали клеточной теорией. Ученый показал, что все живые организмы состоят из клеток, что клетки растений и животных принципиально схожи между собой.
Клеточная теория включает следующие основные положения:
1) Клетка -- элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению и являющаяся единицей строения, функционирования и развития всех живых организмов.
2) Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.
3) Размножение клеток происходит путем деления исходной материнской клетки.
4) В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными формами регуляции.
Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии как науки, послужила фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она позволила создать основы для понимания жизни, индивидуального развития организмов, для объяснения эволюционной связи между ними. Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки.
Эволюционная теория Ч. Дарвина
Переворот в науке произвела книга великого английского ученого-натуралиста Чарльза Дарвина «Происхождения видов», написанная в 1859 году. Обобщив эмпирический материал современной ему биологии и селекционной практики, использовав результаты собственных наблюдений во время путешествий, он раскрыл основные факторы эволюции органического мира. В книге «Изменение домашних животных и культурных растений» (1868) он изложил дополнительный фактический материал к основному труду. В книге «Происхождение человека и половой отбор» (1871) выдвинул гипотезу происхождения человека от обезьяноподобного предка.
Сущность дарвиновской концепции эволюции сводится к ряду логичных, проверяемых в эксперименте и подтвержденных огромным количеством фактических данных положений:
1) В пределах каждого вида живых организмов существует огромный размах индивидуальной наследственной изменчивости по морфологическим, физиологическим, поведенческим и любым другим признакам. Эта изменчивость может иметь непрерывный, количественный, или прерывистый качественный характер, но она существует всегда.
2) Все живые организмы размножаются в геометрической прогрессии.
3) Жизненные ресурсы для любого вида живых организмов ограничены, и поэтому должна возникать борьба за существование либо между особями одного вида, либо между особями разных видов, либо с природными условиями. В понятие «борьба за существование» Дарвин включил не только собственно борьбу особи за жизнь, но и борьбу за успех в размножении.
4) В условиях борьбы за существование выживают и дают потомство наиболее приспособленные особи, имеющие те отклонения, которые случайно оказались адаптивными к данным условиям среды. Это принципиально важный момент в аргументации Дарвина. Отклонения возникают не направленно -- в ответ на действие среды, а случайно. Немногие из них оказываются полезными в конкретных условиях. Потомки выжившей особи, которые наследуют полезное отклонение, позволившее выжить их предку, оказываются более приспособленными к данной среде, чем другие представители популяции.
5) Выживание и преимущественное размножение приспособленных особей Дарвин назвал естественным отбором.
6) Естественный отбор отдельных изолированных разновидностей в разных условиях существования постепенно ведет к дивергенции (расхождению) признаков этих разновидностей и, в конечном счете, к видообразованию.
В основе теории Дарвина - свойство организмов повторять в ряду поколений сходные типы обмена веществ и индивидуального развития в целом - свойство наследственности. Наследственность вместе с изменчивостью обеспечивает постоянство и многообразие форм жизни и лежит в основе эволюции живой природы. Одно из основных понятий своей теории эволюции - понятие "борьба за существование" - Дарвин употреблял для обозначения отношений между организмами, а также отношений между организмами и абиотическими условиями, приводящих к гибели менее приспособленных и выживанию более приспособленных особей.
Дарвин выделил две основные формы изменчивости:
? определенную изменчивость - способность всех особей одного и того же вида в определенных условиях внешней среды одинаковым образом реагировать на эти условия (климат, почву);
? неопределенную изменчивость, характер которой не соответствует изменениям внешних условий.
В современной терминологии неопределенная изменчивость называется мутацией. Мутация - неопределенная изменчивость в отличие от определенной носит наследственный характер. По Дарвину, незначительные изменения в первом поколении усиливаются в последующих. Дарвин подчеркивал, что решающую роль в эволюции играет именно неопределенная изменчивость. Она связана обычно с вредными и нейтральными мутациями, но возможны и такие мутации, которые оказываются перспективными. Неизбежным результатом борьбы за существование и наследственной изменчивости организмов, по Дарвину, является процесс выживания и воспроизведения организмов, наиболее приспособленных к условиям среды, и гибели в ходе эволюции неприспособленных - естественный отбор.
Механизм естественного отбора в природе действует аналогично селекционерам, т.е. складывает незначительные и неопределенные индивидуальные различия и формирует из них у организмов необходимые приспособления, а также межвидовые различия. Этот механизм выбраковывает ненужные формы и образовывает новые виды. Дарвинизм: история и современность. М.,Наука,1985
Тезис о естественном отборе наряду с принципами борьбы за существование, наследственности и изменчивости - основа дарвиновской теории эволюции.
Клеточная теория и учение Дарвина об эволюции - это самые значительные достижения биологии XIX века. Но я думаю, что следует упомянуть и о других достаточно важных открытиях.
С развитием физики и химии происходят и изменения в медицине. С течением времени областей применения электричества становится все больше. Его использование в медицине положило начало электро- и ионофорезу. Открытие Х-лучей Рентгеном вызвало особый интерес у врачей. Физические лаборатории, где создавалась аппаратура, используемая Рентгеном для получения Х-лучей, атаковались врачами и их пациентами, подозревавшими, что в них находятся когда-то проглоченные иголки, пуговицы и т.д. История медицины до этого не знала столь быстрой реализации открытий в области электричества, как это случилось с новым диагностическим средством - рентгеновскими лучами.
С конца XIX века начинаются опыты на животных для определения пороговых - опасных - значений тока и напряжения. Определение этих значений вызвалось необходимостью создания защитных мероприятий.
Немало важным открытием в области медицины и биологии стало открытие витаминов. Еще в 1820 году наш соотечественник П. Вишневский впервые высказал предположение о существовании в противоцинготных продуктах некоего вещества, которое способствует правильной жизнедеятельности организма. Собственно открытие витаминов принадлежит Н. Лунину, доказавшему в 1880 году, что в состав пищи входят некие жизненно важные элементы. Термин "витамины" образован от латинских корней: "вита" - жизнь и "амин" - соединение азота.
В XIX веке начинается борьба с инфекционными заболеваниями. Английский врач Дженнер изобрел вакцину, Роберт Кох открыл возбудитель туберкулеза - палочку Коха, а также разработал профилактические меры против эпидемий и создал лекарства.
Микробиология
Луи Пастер подарил миру новую науку - микробиологию.
Этот человек, сделавший ряд ярчайших открытий, должен был всю жизнь отстаивать свои истины в бесполезных спорах. Естествоиспытатели всего мира вели споры о том, существует или нет «самозарождение» живых организмов. Пастер не спорил, Пастер работал. Почему бродит вино? Почему скисает молоко? Пастер установил, что процесс брожения - процесс биологический, вызываемый микробами.
В лаборатории Пастера до сих пор стоит колба удивительной формы - хрупкое сооружение с причудливо выгнутым носиком. Более 100 лет назад в неё влили молодое вино. Оно не скисло и по сей день - секрет формы бережет его от микробов брожения.
Опыты Пастера имели большое значение для создания методов стерилизации и пастеризации (нагревание жидкости до 80оС, чтобы убить микроорганизмы, и последующее быстрое ее охлаждение) различных продуктов. Он разработал методы предохранительных прививок против заразных болезней. Его исследования послужили основой для учений об иммунитете.
Генетика
В 1865 году были опубликованы результаты работ по гибридизации сортов гороха, где были открыты важнейшие законы наследственности. Автор этих работ - чешский исследователь Грегор Мендель показал, что признаки организмов определяются дискретными наследственными факторами. Однако эти работы оставались практически неизвестными почти 35 лет - с 1865 по 1900.
Заключение
XIX век стал переломным для всего человечества. Ни одна нация, ни одно государство не могли игнорировать всё ускоряющийся процесс, который назовут впоследствии "научно-техническим прогрессом". Открытия в области физики, химии, биологии, медицины перевернули представления человека о мире. Понятно, что столь значительные открытия и нововведения повлияли не только на изменение мировоззрения нескольких поколений, но и на весь уклад их жизни.
XIX век по праву можно назвать веком выдающихся научных открытий. Создание эволюционной теории Дарвина привнесло и в биологию, также как в механику и физику, идеи движения и развития.
XIX век - это век вероятностного видения Природы, эволюционирующего мира, замеченного Больцманом и Дарвином. Революционные перемены в естествознании не ограничились этими открытиями. Вселенная Ньютона - Вселенная твердой материи, состоящей из атомов, неделимых частиц. Знаменитые эксперименты Фарадея, теоретические работы Максвелла по электромагнетизму привели к обоснованию полевой формы материального мира, где материя не имеет четких границ, очертаний.
Именно в это время, безусловно, увеличивается роль науки, без неё стало невозможно развитие производства. Научные открытия внедряются в промышленность и сельское хозяйство. Железные дороги, электрическое освещение, телефон, телеграф и многое другое коренным образом меняют жизнь человека. Человек встает на принципиально новый уровень жизни.
Список литературы
1) Кудрявцев П.С. «Курс истории физики». М.:Просвещение,1971г.
2) Дорфман Я.Г. «Всемирная история физики с начала XIX до середины XX вв.». М.:Наука,1979г.
3) Лауэ М. «История физики». М.:1956г.
4) Бернал Дж. «Наука в истории общества». М.:1956г.
5) Азимов А. «Краткая история химии». М.:Мир,1983г.
6) Больцман Л. «Лекции по теории газов». М.:Гостехиздат,1953г.
7) «Дарвинизм: история и современность». М.:Наука,1985г.
8) Азимов А. «Краткая история биологии». М.:1967г.
9) Карпенков С.Х. «Основные концепции естествознания». М.: Академический проект,2002г.
10) Леонов В.Е. «Концепции современного естествознания». М.: Вектор,2007г.
Размещено на Allbest.ru
Подобные документы
Аристотель и философские основания античной космологии. Гелиоцентрическая картина мира и её доказательства. Волновая и электромагнитная теории света. Теория относительности. Концепция большого взрыва. Теория радиоактивности Резерфорда. Кварковая теория.
шпаргалка [128,2 K], добавлен 17.01.2011Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.
контрольная работа [99,8 K], добавлен 10.06.2007Исаак Ньютон как основатель классической физики. Открытия в области естествознания, которые широко используются в разнообразных областях нашей жизни. Свойства кварков, короткодействующие типы взаимодействия, суть идеи корпускулярно-волнового дуализма.
контрольная работа [38,8 K], добавлен 04.01.2011Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.
шпаргалка [136,9 K], добавлен 12.02.2011Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.
лекция [26,7 K], добавлен 24.11.2017Изучение этапов становления эволюционного учения. Телеогенез, сальтационизм, генетический антидарвинизм – основные концепции развития человечества конца XIX-начала XX вв. Эволюционная теория Дарвина-Уоллеса. Спор между креационизмом и эволюционизмом.
реферат [34,8 K], добавлен 02.12.2011Исследование биографии и научной деятельности Чарльза Дарвина, основоположника эволюционной биологии. Обоснование гипотезы происхождения человека от обезьяноподобного предка. Основные положения эволюционного учения. Сфера действия естественного отбора.
презентация [2,2 M], добавлен 26.11.2016Пути развития естествознания в XVIII-XIX вв. Особенности космогонической теории Канта – Лапласа. Закон сохранения и превращения энергии. Клеточное строение растений и животных. Эволюционная теория Дарвина. Периодическая система элементов Менделеева.
контрольная работа [40,4 K], добавлен 15.11.2010Зарождение неклассического естествознания. Пространство и время в истории философии: гносеологический статус понятий, их отношение к материи. Субстанциальная и реляционная концепции. Пространство и время в классической и не классической картине мира.
реферат [24,5 K], добавлен 13.12.2010Роль научных работ Гагилея и Ньютона в создании классической механики и экспериментального естествознания. Объяснение Пригожиным и Стенгерсов процесса возникновения диссипативных структур в открытых неравновесных системах. Этапы развития жизни на Земле.
контрольная работа [27,5 K], добавлен 07.12.2010