Фундаментальные концепции описания природы

Квантово-полевая (неклассическая) картина мира, суть ее принципов. Особенности принципов соответствия и суперпозиции. Концепция детерминизма, динамические и статистические закономерности. Принципы эволюционно-синергетической (современной) картины мира.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 30.10.2012
Размер файла 38,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Фундаментальные концепции описания природы

Оглавление

  • Введение 3
  • 1. Квантово-полевая (неклассическая) картина мира и ее основные принципы 4
  • 2. Принципы соответствия и суперпозиции 9
  • 3. Концепция детерминизма. Динамические и статистические закономерности 10
  • 4. Принципы эволюционно-синергетической (современной) картины мира 12
  • Заключение 18
  • Список литературы 20

Введение

В процессе познания окружающего мира в сознании человека отражаются и закрепляются знания, умения, навыки, типы поведения и общения. Совокупность результатов познавательной деятельности человека образует определённую модель (картину мира). В истории человечества было создано и существовало довольно большое количество самых разнообразных картин мира, каждая из которых отличалась своим видением мира и специфическим его объяснением.

Создание естественнонаучной картины мира является важнейшей задачей естествознания. Естественнонаучная картина природы образует в целом упорядоченную систему, которая по мере развития науки уточняется и дополняется. Наука стремится выявить общее в предметах и явлениях, которые она изучает. Выделение общего ведет к абстракциям, т. е. отвлечению от единичного, конкретного, случайного. Наиболее общие и абстрактные понятия, идеи и концепции естествознания выражают, с одной стороны, глубокие, а с другой - общие свойства природы. Такими понятиями и концепциями оперирует в первую очередь физика как фундаментальная основа естествознания. К наиболее общим, важным, фундаментальным понятиям физического описания природы относятся материя, движение, пространство и время.

Таким образом, естественнонаучная картина мира представляет собой целостную систему представлений об общих свойствах, сферах, уровнях и закономерностях реальной действительности. Фундаментальные концепции описания природы непрерывно эволюционируют, пополняются новыми фактами и на определенных исторических этапах переходят на качественно новый уровень, что выражается в научных революциях.

1. Квантово-полевая (неклассическая) картина мира и ее основные принципы

В конце ХIХ - начале XX вв. последовал ряд открытий, которые не вписывались в существовавшую научную картину мира. Революционная ситуация, сложившаяся в естествознании в начале XX в., связана с появлением двух новых теоретических концепций - квантовой механики и специальной теории относительности.

Во второй половине 19 в. в результате исследования теплового излучения был открыт ряд законов: Кирхгофа, Стефана-Больцмана, Вина. Однако из теории, основанной на традиционных представлениях об электромагнитных излучениях, следовало, что энергия теплового излучения на всех частотах (во всем интервале длин волн) равнялась бесконечности, что противоречило закону сохранения энергии. Особенно ярко это противоречие проявлялось в области коротких длин волн, поэтому оно получило название «ультрафиолетовой катастрофы». В 1900 г. Макс Планк для выхода из этой ситуации предложил следующую гипотезу (впоследствии названную квантовой гипотезой Планка): электромагнитное излучение испускается отдельными порциями - квантами, величина которых пропорциональна частоте излучения. Гипотеза Планка фактически стала началом новой, квантовой, физики (старая при этом получила название классической).

Таким образом, если в классической физике считалось, что энергия может изменяться непрерывно и принимать любые, сколь угодно близкие значения, то согласно квантовым представлениям, она может принимать лишь дискретные значения, равному целому числу квантов энергии

В 1905 г. А. Эйнштейн, приняв гипотезу Планка, расширил ее, предположив, что свет не только излучается квантами, но и распространяется и поглощается тоже квантами (названными впоследствии фотонами). Таким образом, свет представляет собой поток световых частиц - фотонов.

В истории развития учения о свете сменяли друг друга корпускулярная теория света (Ньютон) и волновая (Р. Гук, Ч. Гюйгенс, Т. Юнг, Ж. Френель), представлявшая свет как механическую волну. В 70-х годах после утверждения теории Максвелла под светом стали понимать электромагнитную волну. В начале 20-го века на основе экспериментов было неопровержимо доказано, что свет обладает как волновыми, так и корпускулярными свойствами. Было также обнаружено, что в проявлении этих свойств существуют вполне определенные закономерности: чем меньше длина волны, тем сильнее проявляются корпускулярные свойства света.

В 1924 г. французский физик Л. де Бройль выдвинул смелую гипотезу: корпускулярно-волновой дуализм имеет универсальный характер, т.е. все частицы, имеющие конечный импульс, обладают волновыми свойствами. При проявлении у микрообъекта корпускулярных свойств его волновые свойства существуют как потенциальная возможность, способная при определенных условиях перейти в действительность (диалектическое единство корпускулярных и волновых свойств материи).

Таким образом, корпускулярные и волновые свойства микрообъекта являются несовместимыми в отношении их одновременного проявления, однако они в равной мере характеризуют объект, т.е. дополняют друг друга. Эта идея была высказана Н. Бором (1927 г.) и положена им в основу важнейшего методологического принципа современной науки, охватывающего в настоящее время не только физические науки, но и все естествознание - принципа дополнительности. Для полного описания квантово-механических явлений необходимо применять два взаимоисключающих (дополнительных) набора классических понятий, совокупность которых дает наиболее полную информацию об этих явлениях как о целостных. С точки зрения этого принципа, состояния, в которых взаимно дополнительные величины имели бы одновременно точно определенное значение, принципиально невозможны, причем если одна из таких величин определена точно, то значение другой полностью неопределенно. В общем случае дополнительными друг к другу являются, например, направление и величина момента количества движения, кинетическая и потенциальная энергия, напряженность электрического поля в данной точке и число фотонов и т.д. Таким образом, принцип дополнительности фактически отражает объективные свойства квантовых систем, не связанных с существованием наблюдателя.

Двойственная природа микрочастиц поставила науку перед вопросом о границах применимости понятий классической физики в микромире. В классической механике всякая частица движется по определенной траектории и всегда имеет вполне определенные (точные) значения координаты, импульса, энергии. Микрочастица, напротив, обладая волновыми свойствами, не имеет траектории, а значит, не может иметь одновременно определенных (точных) значений координаты и импульса. Меру этой неопределенности (неточности) в значениях координаты и импульса, энергии и времени нашел в 1927 г. В Гейзенберг, дав общее описание эффекта воздействия инструментов измерения на измеряемые объекты микромира, В результате им был сформулирован принцип неопределенности, математическое выражение которого называется соотношением неопределенностей Гейзенберга:

Дx х Дv > h/m

где Дx - неопределенность (погрешность измерения) пространственной координаты микрочастицы, Дv - неопределенность скорости частицы, m - масса частицы, а h - постоянная Планка

Принцип соответствия, имеющий важное философское и методологическое значение, может быть сформулирован следующим образом: теории, справедливость которых была экспериментально установлена для определенной группы, с появлением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений, как предельная форма и частный случай новых теорий. Таким образом, классическая механика является предельным случаем квантовой механики и релятивистской механики.

Ранее считалось, что устройство мира можно познавать, не вмешиваясь в него, не влияя на протекающие в нем процессы, т.е. находясь вне абсолютной физической реальности. Эйнштейн не включал в понятие «физическая реальность» акт наблюдения, а Бор считал его важным элементом физической реальности. Картина реальности в квантовой механике становится как бы двуплановой: с одной стороны в нее входят характеристики исследуемого объекта, а с другой - условия наблюдения. Таким образом, в КПКМ появляется принцип относительности к средствам наблюдения. Принцип относительности Галилея гласит: "Никакими механическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое". Иными словами: все законы механики инвариантны (неизменны, т.е. имеют один и тот же вид) во всех инерциальных системах отсчета, ни одна не имеет преимущества перед другой. Эйнштейн обобщил принцип относительности Галилея на все явления природы. Принцип относительности Эйнштейна гласит: "Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое". Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Принцип относительности явился первым постулатом, который Эйнштейн положил в основу созданной им теории относительности. Второй постулат - принцип постоянства скорости света: скорость света в вакууме одинакова во всех инерциальных системах отсчета, по всем направлениям. Она не зависит от движения источника света и наблюдателя. При сложении любых скоростей результат не может превысить скорость света в вакууме, т.е. эта скорость - предельная. Теория, созданная А. Эйнштейном для описания явлений в инерциальных системах отсчета, основанная на приведенных выше двух постулатах, называется специальной теорией относительности (СТО). В СТО протяженность и длительность меняются в движущихся системах отсчета, одновременность событий не абсолютна и зависит от выбора системы отсчета. Механика больших скоростей, где скорость приближается к скорости света, называется релятивистской механикой. Она опирается на два постулата Эйнштейна и не отменяет классическую механику, а лишь устанавливает границы ее применимости СТО подтверждена обширной совокупностью фактов и лежит в основе всех современных теорий, рассматривающих явления при релятивистских, т.е. близких к скорости света, скоростях.

Резюмируя вышесказанное, можно выделить следующие характерные особенности квантово-полевой картины мира:

· сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм - наличие у каждого элемента материи свойств волны и частицы

· одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость

· ушли в прошлое и представления о неизменности материи. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме

Эти новые мировоззренческие подходы к исследованию естественнонаучной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы, научных революций в естествознании.

Квантово-полевая картина мира и в настоящее время находится в состоянии становления. С каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.

2. Принципы соответствия и суперпозиции

Принцип соответствия отражает форму преемственной взаимосвязи старых и новых теорий, главным образом в области физико-математических наук. В наиболее общем виде П. с. гласит: теории, справедливость которых установлена для той или иной предметной области, с появлением новых, более общих теорий не устраняются как нечто ложное, но сохраняют свое значение для прежней области как предельная форма и частный случай новых теорий.

Впервые идею соответствия сознательно использовал Н. И. Лобачевский при создании первой неэвклидовой геометрии. Но возвел эту идею до уровня методологического принципа и предложил название Н. Бор (1913) при разработке теории атома, связывающей внутреннюю структуру и свойства атома с открытым М. Рланком квантом действия. Позднее было обнаружено, что действие П. с. выходит далеко за рамки отношений двух теорий, рассматривавшихся Бором, и что он представляет собой закономерность развития научных теорий вообще.

Действие П. с. может быть прослежено на множестве самых различных физических и математических теорий. Так, геометрия Лобачевского переходит в геометрию Эвклида тогда, когда особая величина k, называемая радиусом кривизны, принимает бесконечно большое значение. Квантовая механика переходит в классическую в условиях, когда можно пренебречь величиной кванта действия h, полагая, что h>0. Общая теория относительности в случае очень слабых полей тяготения, при стремлении так называемых гравитационных потенциалов gik к нулю (gik>0 при i?k и gik>1 при i=k), переходит в специальную теорию относительности, а при малых скоростях и слабых полях тяготения - в классическую механику.

Принцип суперпозиции (принцип наложения) - это допущение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым эффектом в отдельности, при условии, что эффекты не влияют взаимно друг на друга.

Одним из простых примеров принципа суперпозиции является правило параллелограмма, по которому складываются две силы, воздействующие на тело. Встречный ветер тормозит движение - принцип суперпозиции проявляется здесь в полной мере.

Принцип суперпозиции играет большую роль в теории колебаний, теории цепей, теории полей и других разделах физики и техники. В микромире принцип суперпозиции - фундаментальный принцип, который вместе с принципом неопределенности составляет основу математического аппарата квантовой механики.

3. Концепция детерминизма. Динамические и статистические закономерности

Детерминизм - философская концепция; учение о всеобщей, закономерной связи, причинной обусловленности всех явлений. Последовательный Д. утверждает объективный характер причинности.

Идеи Д. появляются уже в древней философии, получая наиболее яркое выражение в античной атомистике. Дальнейшее развитие и обоснование Д. происходит в естествознании и материалистической философии нового времени (Бэкон, Галилей, Декарт, Ньютон, Ломоносов, Лаплас, Спиноза, французские материалисты 18 в.). В соответствии с уровнем развития естествознания Д. этого периода носит механистический, абстрактный характер. Это находит свое выражение в абсолютизации формы причинности, описываемой строго динамическими законами механики, что ведет к отождествлению причинности с необходимостью и отрицанию объективного характера случайности. Наиболее удачно такая точка зрения была сформулирована Лапласом (отсюда другое наименование механистического Д. - лапласовский детерминизм), считавшим, что значение координат и импульсов всех частиц во вселенной в данный момент времени однозначно определяет ее состояние в любой прошедший или будущий момент. Понятый таким образом Д. ведет к фатализму, принимает мистический характер и фактически смыкается с верой в божественное предопределение.

Развитие науки отвергло лапласовский Д.: не только в органической природе и общественной жизни, но и в сфере физики. Установление соотношения неопределенностей в квантовой механике показало его несостоятельность (выводы о «свободе воли» электрона, об отсутствии причинности в микропроцессах и т. д.). Диалектический материализм преодолевает ограниченность механистического Д. и, признавая объективный и всеобщий характер причинности, не отождествляет ее с необходимостью и не сводит ее проявление только к динамическому типу законов (статистическая и динамическая закономерность).

Борьба Д. и индетерминизма, никогда не затихавшая и раньше, сейчас резко обострилась как в естествознании, так и особенно в сфере изучения общественных явлений. Современная буржуазная философия широко пропагандирует И. в социологии в форме волюнтаризма, эмпиризма. В тех же случаях, когда буржуазные социологи не отвергают Д. как таковой, он принимает у них грубо-вульгарные формы (биологические теории общественного развития, вульгарный техницизм и др.). Лишь исторический материализм впервые утвердил подлинный Д. в социальных исследованиях.

Статистические и динамические закономерности - две основные формы закономерной связи явлений, которые отличаются по характеру вытекающих из них предсказаний.

В законах динамического типа предсказания имеют точно определённый, однозначный характер. Так, в механике, если известен закон движения тела и заданы его координаты и скорость, то по ним можно точно определить положение и скорость движения тела в любой другой момент времени. Динамические законы характеризуют поведение относительно изолированных систем, состоящих из небольшого числа элементов и в которых можно абстрагироваться от целого ряда случайных факторов.

В статистических законах предсказания носят не достоверный, а лишь вероятностный характер. Подобный характер предсказаний обусловлен действием множества случайных факторов, которые имеют место в статистических коллективах или массовых событиях (например, большого числа молекул в газе, особей в биологических популяциях, людей в социальных коллективах). Статистическая закономерность возникает как результат взаимодействия большого числа элементов, составляющих коллектив, и поэтому характеризует не столько поведение отдельного элемента, сколько коллектива в целом. Необходимость, проявляющаяся в статистических законах, возникает вследствие взаимной компенсации и уравновешивания множества случайных факторов.

Абсолютизация динамических законов тесно связана с концепцией механистического детерминизма, сторонники которой (П. Лаплас и др.) рассматривали Вселенную как огромную механическую систему и экстраполировали законы динамики Ньютона на все процессы и явления мира.

Статистические законы хотя и не дают однозначных и достоверных предсказаний, тем не менее являются единственно возможными при исследовании массовых явлений случайного характера.

4. Принципы эволюционно-синергетической (современной) картины мира

Господствующей в современной науке является эволюционно-синергетическая концепция, т.е. основополагающий принцип, в соответствии с которым, основным механизмом происхождения и развития Вселенной является универсальный эволюционизм и самоорганизация.

В рамках такого подхода в последней четверти XX века в науке начала формироваться новая картина мира - эволюционно-синергетическая (ЭСКМ), а новый этап развития самой науки был назван постнеклассическим.

Теоретический каркас этой картины мира определяют теории самоорганизации (синергетика) и систем (системология), а также информационный подход, в рамках которого информация понимается как атрибут материи наряду с движением, пространством и временем.

Осмысление различных процессов самоорганизации привело к становлению нового междисциплинарного направления в науке - синергетике. Это наука, занимающаяся изучением возникновения, поддержания, устойчивости и распада самоорганизующихся структур, кооперативных эффектов в них. Создателем синергетического направления и изобретателем термина "синергетика" является профессор Штутгартского университета и директор Института теоретической физики и синергетики Герман Хакен. Сам термин “синергетика” происходит от греческого “синергена” - содействие, сотрудничество, “вместедействие”. Синергетика -- одна из новейших дисциплинарных концепций естествознания, которая пришла к выводу, противоположному классической физике. Вывод заключается в том, что конечное состояние, к которому стремятся все системы, - это не хаос, как утверждалось ранее, а порядок.

Синергетика прогрессирует вместе с математическим аппаратом описания нелинейных и неустойчивых систем и соответствующими вычислительными методами. Эти методы опираются на использование компьютерного моделирования, поэтому синергетика могла возникнуть и развиваться только в эпоху мощной компьютерной техники. Можно сказать, что синергетика на современном этапе ее развития - это совокупность общих идей о принципах самоорганизации и вместе с тем сумма общих математических методов для ее описания. Предпринимаются все более активные попытки использования этих идей и методов в экологии, медицине, социологии, экономике и вообще в области социально-гуманитарного знания.

Важнейшей составляющей новой парадигмы стал принцип глобального эволюционизма, то есть признание невозможности существования всех рождаемых во Вселенной структур вне развития, вне общей эволюции. Эта мысль органически связана с концепцией фундаментального единства материального мира.

Другой составляющей эволюционно-синергетической парадигмы является представление об универсальности алгоритма развития как проявления самоорганизации в самых разнообразных природных и социальных системах, то есть синергетический подход. Синергетика как наука о самоорганизующихся системах создавалась усилиями естествознания. Но постепенно идеи синергетики становятся одной из методологических основ общественных и гуманитарных наук.

Основными атрибутами материи в постнеклассической науке признаются структурность и системность. Структурность материи проявляется в существовании бесконечно многообразных материальных образований, каждое из которых представляет собой специфические единичные вещь, процесс, которые локализованы в пространстве и времени: Вселенная, галактика, звезда, планета, молекула, атом, элементарная частица и др. Вместе с тем они тесно взаимосвязаны между собой, так как одни материальные образования являются составными частями других, то есть входят в их структуру в качестве элементов. Системность материи появляется во взаимосвязи вещей и процессов, в регулярном пересечении структурных уровней организации материального мира, в постоянном нарушении автономии, «параллелизма» микро-,макро- и мегамиров, живого и неживого. Основная проблема здесь заключается в нерешенности вопроса перехода от неживой природы к живой в едином эволюционном процессе.

В современном естествознании различают 3 вида материи:

Вещество -- основной вид материи, обладающий массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы, многочисленные образовавшиеся из них материальные объекты. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные (химические соединения). свойства вещества зависят от внешних условий и интенсивности взаимодействия атомов и молекул. Это и обуславливает различные агрегатные состояния вещества (твердое, жидкое, газообразное + плазма при сравнительно высокой температуре) переход вещества из одного состояния в другое можно рассмотреть как один из видов движения материи.

Физическое поле -- особый вид материи, который обеспечивает физическое взаимодействие материальных объектов и систем. В настоящее время научно доказано и обосновано существование следующих разновидностей физического поля: электромагнитное и гравитационное; поле ядерных сил; волновые (квантовые) поля

Физический вакуум -- низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов.

Принято считать, что не только вещество, но и поле и вакуум имеют дискретную структуру. Согласно квантовой теории поле, пространство и время в очень малых масштабах образуют пространственно-временную среду с ячейками. Квантовые ячейки настолько малы (10-35--10-33 ), что их можно не учитывать при описании свойств электромагнитных частиц, считая пространство и время непрерывными. Для классического описания природных явлений достаточно учитывать непрерывные свойства материи, а для характеристики различных микропроцессов -- дискретные.

Таким образом, в современном естествознании непрерывность и дискретность постулируются как неотъемлемые свойства материи.

В рамках эволюционно-синергетической картины мира все материальные объекты разделены на три сферы:

Макромир - как структурный уровень организации материи простирается от планетной системы до атома. Макромир характеризуется взаимодействиями, протекающими со скоростями, далекими от скорости света, сравнительно небольшими массами и расстояниями, и пространством-временем с нулевой кривизной.

Микромир - познание материи «вглубь» означает проникновение в микромир, который начинается с атома. Это мир так называемых элементарных частиц -- электронов, протонов, нейтронов, кварков и т.д. Всего известно более 400 видов частиц.

Мегамир - познание материи «вширь» ознаменовалось открытием мегамира, мира гигантских объектов и расстояний: звездных скоплений (галактик), скоплений галактик, квазаров и т.д. Самым большим известным науке объектом является Вселенная. Мегаобъекты обладают огромными массами, взаимодействия между ними искривляют пространство, для их распространения требуются огромные временные интервалы.

Принципиальная фрагментарность естественнонаучного знания регулярно генерирует проблему единства мира. Средствами самого естествознания эта проблема не может быть решена. Поэтому источником способов ее решения в естествознании выступает философское знание. На современном этапе развития философии и науки проблема единства мира решается в трех основных аспектах:

Субстанциональное единство мира - предполагает рассмотрение всего многообразия известных науке объектов с позиции их общей единой субстанциональной основы -- материи. До середины 19 века вещество и энергия рассматривались как 2 основные формы объективной реальности, на основе которых существуют все остальные виды включая такие сложные, как биологическая и социальная. С возникновением электромагнитной теории Максвелла, квантовой физики, кибернетики и теории информации выяснилось, что материя имеет более сложную природу. Но углубление понимания видов материи не позволяет удовлетворительно объяснить бесконечное многообразие и сложнейшую организацию мироздания, наиболее полно реализующиеся в биологической и социальной материи. По этой причине в современном научном познании в понятие материи, которая понимается как единство вещества, поля и энергии, включается информационный аспект существования всех материальных систем, который выражает меру порядка в явлениях и процессах универсума.

Номологическое единство мира - заключается в общности законов, действующих в многообразных формах материи. Этот аспект единства мира выражает его синхронность, т.е. пространственную распределенность системы законов природы во всем пространственно-временном континууме. Несмотря на существенные различия мега, макро и микромиров закон сохранения и превращения энергии, частные законы сохранения (массы, заряда, импульса, и т.д.), закон всемирного тяготения и др. действуют во всех этих мирах, образуя единую сеть Вселенной.

Номологическое единство мира было осознано еще древнегреческими натурфилософами в виде принципа детерминизма, сущность которого заключается в утверждении всеобщей закономерной взаимосвязи явлений, процессов действительности.

Синергетический подход позволяет рассмотреть с новой точки зрения единство системы законов движения многообразных форм материального бытия, для чего необходимо ввести третий аспект единства мира.

Эволюционное единство мира - определяется генетической взаимосвязью всех форм движения материи.

Осознание системной взаимосвязи трех аспектов проблемы единства мира позволяет построить научную картину мира, в которой будет показано, как исходные физические формы движения материи, развиваясь по своим собственным законам, обуславливают последовательность других основных форм движения материи включая социальную, неотъемлемым свойством которой является сознание.

Заключение

Переход от классической науки к неклассической сопровождался изменением понимания ее предмета: им стала теперь не реальность «в чистом виде», а некоторый её срез, заданный через призму принятых теоретических и операционных средств и способов её освоения субъектом. Поскольку о многих характеристиках объекта стало невозможно говорить без учёта средств их обнаружения, постольку возник специфический объект науки, за пределами которого бессмысленно искать подлинный его прототип. Таким образом, субъект познания признается в качестве необходимого компонент «тела» знания. Установление относительности объекта к научно-исследовательской деятельности привело тому, что наука стала изучать не неизменные вещи, а те условия, попадая в которые они ведут себя так или иначе.

В квантово-полевой картине мира нашли свое разрешение противоречия и парадоксы первых двух научных картин мира, что стало возможным на основе открытия нового уровня организации материального мира -- микромира. Квантово-полевые представления о материи позволили свести воедино противоположные свойства материальных объектов -- непрерывность (волна) и прерывность (дискретность). Установление единства противоположностей в строении материи позволило отказаться от постулата о неизменности материи (переход квантового поля из одного состояния в другое сопровождается взаимопревращением частиц друг в друга, аннигиляцией одних частиц и порождением других). В неклассический период развития науки кардинально меняются представления о пространстве и времени (представление о едином пространственно-временном континууме), трансформируется понимание о закономерности и причинности, их вероятностной природе, фундаментальными признаны статистические законы, частной формой которых выступают динамические.

Фундамент эволюционно-синергетической картины мира составляют ставшие общенаучными принципы развития и системности. Теоретическую основу этой картины мира определяют теории самоорганизации систем (синергетика) и концепция универсального эволюционизма.

В отличие от традиционных областей науки синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки.

По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучающей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер.

неклассический детерминизм эволюционный синергетический

Список литературы

1. Белкин П.Н. Концепции современного естествознания : учебное пособие для вузов / П.Н. Белкин. - М. : Высшая школа, 2004. - 335 с.

2. Вернадский В.И. Размышления натуралиста: В 2 кн. / Сост. М.С. Бастракова, B.C. Неополитанская, Н.Ф. Филиппова. -- М.: Наука, 1975. - Кн. 1. - 174 с.

3. Грибанов Д. П. Философские взгляды А. Эйнштейна и развитие теории относительности / Д. П. Грибанов. - М. : Наука, 1987. - 272 с.

4. Капица С. П. Синергетика и прогнозы будущего / С. П. Капица, С. П. Курдюмов, Т. Г. Малинецкий. - М. : Эдиториал УРСС, 2001. - 288 с.

5. Горелов А.А. Концепции современного естествознания / А.А. Горелов. - М. : Центр, 1997. - 208 с.

6. Кун Т. Структура научных революций / Т. Кун. - М. : Прогресс, 1975. - 288 с.

7. Новая философская энциклопедия / Рос. акад. наук, Ин-т философии ; научн.-ред. совет : предс. В.С. Степин. - М. : Мысль, 2000. - Т.1-4. - 2659 с.

8. Савченко В.Н. Начала современного естествознания : концепции и принципы : учебное пособие / В.Н. Савченко, В.П. Смагин. - Ростов н/Д. : Феникс, 2006. - 608 с.

Размещено на Allbest.ru


Подобные документы

  • Под картиной мира понимается целостная система представлений о мире, его общих свойствах и закономерностях. Различают общенаучную, естественно-научную, социально-историческую, специальную, механическую, электромагнитную и квантово-полевую картины мира.

    реферат [109,7 K], добавлен 18.01.2009

  • Естествознание в Европе и в России. Механическая картина мира (классическая и универсальная). Электромагнитная картина мира. Развитие теории электромагнитного поля Д. Максвелла. Квантово-полевая картина мира. Дифференцированное изучение природы.

    контрольная работа [23,8 K], добавлен 16.06.2012

  • Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.

    реферат [30,1 K], добавлен 11.02.2011

  • Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.

    презентация [23,6 M], добавлен 22.11.2011

  • Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа [21,9 K], добавлен 18.08.2009

  • Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.

    реферат [54,3 K], добавлен 05.06.2008

  • История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

    реферат [15,1 K], добавлен 06.07.2008

  • Естественнонаучная картина мира как целостная система представлений об общих принципах и законах устройства мироздания. Эволюция естественнонаучной картины мира в истории человечества. Предпосылки, влияющие на развитие новых научных представлений.

    реферат [21,5 K], добавлен 17.04.2011

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

  • Реферат рассматривается эволюция с точки зрения синергетики. Естественно - научная картина мира. Механическая картина мира. Электромагнитная картина мира. Концепция необратимости и термодинамики. Концепция эволюции в биологии.

    реферат [14,7 K], добавлен 20.11.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.