Фундаментальные свойства живых систем

Признаки живой материи, которые отличают ее от неживой. Ферменты, их применение в пищевых технологиях. Отличие ферментов от небиологических катализаторов. Органы и ткани животных. Углеводы, получаемые из растительного сырья. Полисахариды второго порядка.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 26.11.2012
Размер файла 35,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Фундаментальные свойства живых систем

На данный момент нет строгого определения, что же такое жизнь, но мы можем перечислить и описать те признаки живой материи, которые отличают ее от неживой. Это прежде всего:

1. Питание.

Пища нужна всем живым существам. Они используют ее как источник энергии и веществ, необходимых для роста и других процессов жизнедеятельности. Растения и животные различаются главным образом по тому, как они добывают пищу. Почти все растения способны к фотосинтезу, т.е. они сами создают питательные вещества, используя энергию света. Фотосинтез - одна из форм автотрофного питания. Животные и грибы питаются по-иному: они используют органическое вещество других организмов, расщепляя с помощью ферментов это органическое вещество и усваивая продукты расщепления. Такое питание называют гетеротрофным. Гетеротрофами являются многие бактерии, хотя некоторые из них автотрофны.

2. Дыхание

Для всех процессов жизнедеятельности нужна энергия, поэтому основная масса питательных веществ, получаемых в результате автотрофного или гетеротрофного питания, используется в качестве источника энергии. Энергия высвобождается в процессе дыхания при расщеплении некоторых высокоэнергетических соединений. Высвобождаемая энергия запасается в молекулах аденозинтрифосфата (АТФ), который обнаружен во всех живых клетках.

3. Раздражимость

Все живые существа способны реагировать на изменение внешней и внутренней среды, что помогает им выжить. Например, кровеносные сосуды кожи млекопитающих при повышении температуры тела расширяются, рассеивая избыточное тепло и тем самым снова восстанавливая оптимальную температуру тела. А зеленое растение, которое стоит на подоконнике и освещается только с одной стороны, тянется к свету, потому что для фотосинтеза нужна определенная освещенность.

4. Подвижность

Животные отличаются от растений способностью перемещаться из одного места в другое, т.е. способностью к движению. Животным необходимо двигаться, чтобы добывать пищу. Для растений подвижность необязательна: растения способны сами создавать питательные вещества из простейших соединений, доступных почти повсюду. Но и у растений можно наблюдать движения внутри клеток и даже движения целых органов, хотя и с меньшей, чем у животных, скоростью. Могут двигаться и некоторые бактерии, и одноклеточные водоросли.

5. Выделение

Выделение, или экскреция - это выведение из организма конечных продуктов обмена веществ. Такие ядовитые «шлаки» возникают, например, в процессе дыхания, и их надо обязательно удалять. Животные потребляют очень много белков, и, поскольку белки не запасаются, их необходимо расщепить, а затем вывести из организма. Поэтому у животных выделение сводится в основном к экскреции азотистых веществ. Еще одной из форм экскреции можно считать выведение из организма свинца, радиоактивной пыли, алкоголя и массы других вредных для здоровья вещеста

6. Размножение

Продолжительность жизни у каждого организма ограничена, однако все живое «бессмертно». Выживание вида обеспечивается сохранением главных признаков родителей у потомства, возникшего путем бесполого или полового размножения. Пытаясь объяснить природу наследования признаков, «редукционисты» открыли нуклеиновые кислоты: ДНК (дезоксирибонуклеиновую кислоту) и РНК (рибонуклеиновую кислоту). В молекулах этих кислот содержится закодированная наследственная информация, которая передается от одного поколения к другому.

7. Рост

Объекты неживой природы (например, кристалл или сталагмит) растут, присоединяя новое вещество к наружной поверхности. Живые существа растут изнутри за счет питательных веществ, которые организм получает в процессе автотрофного или гетеротрофного питания. В результате ассимиляции эти веществ образуется новая живая материя.

Эти семь главных признаков живого более или менее выражены у любого организма и служат единственным показателем того, жив он или мертв. Не следует, однако, забывать, что все эти при знаки - лишь наблюдаемые проявления главных свойств живой материи, т.е. ее способности извлекать, превращать и использоват энергию извне. К тому же живая материя способна не только поддерживать, но и увеличивать свои энергитические запасы.

В отличие от живой материи мертвое органическое вещество легко разрушается под действием механических и химических факторов окружающей среды. Живые существа обладают встроенной системой саморегуляции, которая поддерживает процессы жизнедеятельности и препятствует неуправляемому распаду структур и веществ и бесцельном выделению энергии. Такая регуляция направлена в поддержание гомеостаза на всех уровнях организации живых систем от молекул до целы сообществ.

2. Ферменты и их пременение в пищевых технологиях

Ферменты, или энзимы - это белковые катализаторы, ускоряющие реакции в клетке. Ферменты катализируют 2000-3000 реакций обмена, вовлечены в передачу сигнала, процесс дыхания, мышечное сокращение, свертываемость крови, транспорт веществ, обезвреживание токсичных и чужеродных соединений, нейротрансмиссию. Ферменты имеют белковую природу, однако обнаружена способность некоторых молекул РНК осуществлять автокатализ. Такие РНК получили название «рибозимы».

Ферменты катализируют превращение веществ, которые называются субстратами (S), в продукты (Р). В общем виде ферментативную реакциюможно записать так:

Как и другие химические катализаторы, ферменты:

увеличивают скорость реакции, но не расходуются в ходе процесса и не претерпевают необратимых изменений;

не изменяют состояние равновесия химической реакции, ускоряя как прямую, так и обратную реакцию в равной степени;

повышают скорость реакции, понижая энергию активации, тот энергетический барьер, который отделяет одно состояние системы от другого.

Ферменты отличаются от небиологических катализаторов следующими свойствами:

высокой эффективностью действия - скорость ферментативных реакций обычно в 106-1012 раз выше, чем соответствующих неферментативных реакций;

высокой специфичностью действия - способностью выбирать определенный субстрат и катализировать специфическую реакцию. Для ферментов характерна как высокая субстратная специфичность, так и специфичность пути превращения. Благодаря действию ферментов реакции в клетке не беспорядочны, не перепутываются, а образуют строго определенные метаболические пути;

мягкими условиями протекания ферментативных реакций: температура 37°С, нормальное атмосферное давление, рН, близкое к нейтральному. В противоположность этому для эффективного химического катализа часто требуются высокие температура и давление, а также экстремальные значения рН; Хотя на данный момент найдены ферменты способные работать при более жёстких условиях: от 20 до 70°С и рН в диапазоне от 4 до 9.

способностью к регуляции. Каталитическая активность многих ферментов может изменяться в зависимости от концентрации веществ-регуляторов больше, чем в зависимости от концентрации их субстратов. Возможность регулирования активности ферментов делает их своеобразными организаторами обменных процессов в клетке.

Активный центр - это относительно небольшой участок, расположенный в узком гидрофобном углублении (щели) поверхности молекулы фермента, непосредственно участвующий в катализе. Активные центры ферментов образуются на уровне третичной структуры. Активный центр, кроме каталитического участка, включает субстратсвязывающий участок, который отвечает за специфическое комплементарное связывание субстрата и образование фермент-субстратного комплекса; в активный центр фермента часто входит участок или домен для связывания кофактора. Каталитически активный комплекс фермент-кофактор называется холоферментом. Отделение кофакторов, обычно связанных нековалентными связями с белком, приводит к образованию неактивного апофермента:

Апофермент (неактивный)+кофактор > холофермент.

Ферменты катализируют реакции, используя в качестве кофакторов как ионы металлов, так и органические соединения, многие из которых являются производными витаминов.

Коферменты - это органические вещества, предшественниками которых являются витамины. Некоторые из них (например, NAD, HSKoA, Н4-фо-лат) непрочно связаны с белком, и восстановление их исходной структуры (регенерация) после участия в катализе может катализироваться уже другим ферментом. Есть коферменты, которые прочно (часто кова-лентно) связаны с апоферментом, т.е. представляют собой простетическую группу сложного белка (холофермента). Например, гем и флавиновые коферменты. Принятая в настоящее время классификация ферментов использует в качестве основного отличительного признака их субстратную специфичность, характер проводимых ими реакций.

Класс

Реакции

Основные поклассы, группы

Оксидоредуктазы

Окислительно-восстановительные реакции

Авосст + Вокис > Аокис + Восст

Дегидрогеназы, оксидазы, редуктазы, гидроксилазы

Трансферазы

Перенос групп

А-В + С > А + В-С

Киназы (фосфатные фуппы), трансаминазы (аминофуппы)

Гидролазы

Гидролиз связей (эфирных, пептидных, гликозидных, связей С-С, P-N)

А-В + Н20 > А-Н + В-ОН

Эстеразы, фосфатазы, протеазы, липазы, нуклеазы, тиолазы

Лиазы

Разрыв связей С-С, С-О, C-N, C-S путем элиминирования молекулы с образованием двойных связей. В обратной реакции ускоряют присоединение воды, аммиака и т.д. по двойной связи А(ХН) - В > А-Х+В-Н

Альдегидлиазы (альдолаза), угперод-киспородлиазы (фумараза), дегидратазы (енопаза), декарбоксипазы

Изомеразы

Взаимопревращение изомеров

А - Изо-А

Изомеразы, мутазы

Лигазы

Соединение 2 молекул, сопряженное с гидролизом АТР:

A + B + ATP > A-B + ADP + Pi

Карбоксилазы, синтетазы

Все ферменты имеют окончание «аза», прибавленное к названию субстрата или прибавленное к фразе описывающей действие фермента.

Источники получения ферментных препаратов. Ферменты присущи всем живым объектам и находятся практически во всех растениях, животных и микроорганизмах. Однако процесс биосинтеза ферментов в организме связан с обеспечением метаболизма клеток, и количество синтезируемых ферментов строго определяется жизненной потребностью организма; такие объекты не могут служить источником получения ферментных препаратов. Для этого пригодны только некоторые растительные организмы или отдельные органы растений и животных, способные накапливать значительное количество ферментов.

Растительное сырье. Источником ферментов может быть пророщенное зерно различных злаков (солод). В тропических и субтропических странах в качестве сырья для промышленного производства протеиназ используют латекс дынного дерева, латекс растений, относящихся к виду фикусовых, например листья, побеги инжира, сок зеленой массы ананаса.

Органы и ткани животных. На всех мясоперерабатывающих комбинатах собирают сырье, содержащее ферменты, консервируют его и используют для получения ферментных препаратов. Таким сырьем являются поджелудочная железа, слизистые оболочки желудков и тонких кишок свиней, сычуги крупного рогатого скота, сычужки молочных телят и ягнят, семенники половозрелых животных. Поджелудочная железа содержит большое количество разнообразных ферментов: химотрипсин, коллагеназу, эластазу, трипсин, амилазу, липазу и др. Слизистая оболочка желудков свиней и сычугов крупного рогатого скота служит источником пепсина и липазы. Из сычужков молочных телят и ягнят получают реннин (сычужный фермент). Семенники половозрелого скота содержат фермент гиалуронидазу.

Микроорганизмы. В специально созданных условиях микроорганизмы способны синтезировать огромное количество разнообразных ферментов. Они неприхотливы к составу питательной среды, легко переключаются с синтеза одного фермента на другой и имеют сравнительно короткий цикл роста (16-100 ч). Для промышленного получения ферментных препаратов используют как природные штаммы микроорганизмов, выделенные из естественных объектов, так и мутантные штаммы. Продуцентами ферментов могут быть различные микроорганизмы: бактерии, грибы, дрожжи, актиномицеты. Микроорганизмы могут синтезировать одновременно целый комплекс ферментов, но есть и такие, особенно среди мутантных штаммов, которые являются моноферментными и образуют в больших количествах только один фермент.

Из исходных материалов ферменты экстрагируют солевыми растворами. Затем их разделяют на фракции, осаждая солями [обычно (NH4)2SO4] или, реже, органическими растворителями, и очищают методами гель-проникающей и ионо-обменной хроматографии. На заключительных этапах очистки часто используют методы аффинной хроматографии. Контроль за ходом очистки фермента и характеристику чистых препаратов осуществляют, измеряя каталитическую активность фермента с применением специфических (обычно дающих цветные р-ции) субстратов. За единицу количествава фермента принимают такое его количество, которое катализирует превращение 1 мкмоля субстрата в 1 мин. в стандартных условиях. Число единиц фермента, отнесенное к 1 мг белка, называют удельной активностью.

Применение ферментов. В неочищенном состоянии ферменты с древнейших времен используют для получения продуктов питания и выделки изделий в хлебопечении, сыроделии, виноделии, обработке кож и т.д. Достаточно очищенные ферменты применяют в производствеве аминокислот и их смесей для искусственного питания, в производстве сахарных сиропов из углеводсо-держащего сырья, для удаления лактозы из молока и в производстве ряда лекарственных средств (некоторые очищенные ферменты сами используются как лекарственные средства). Особенно перспективно применение в промышленности иммобилизованных ферментов на полимерных носителях (например, для получения полусинтетических пенициллинов применяют иммобилизованную пенициллинамидазу). Ферменты также активно используют в химическом анализе.

Применение ферментов в пищевой промышленности можно свести в следующую таблицу:

Отрасль

Этапы технологически» процессов и технологические цели применения ферментов

Технология переработки зерна

Повышение выхода муки и круп, улучшение качества клейковины, производство модифицированной муки зернобобовых

Хлебопечение

Сокращение расхода муки, улучшение теста, замедление черстеения изделий, улучшение цвета корочки, производство охлажденного и замороженного теста

Пивоварение

Использование неосоложенного сырья, разжижение, усиление ферментируемое™, улучшение фильтрации, контроль содержания ззота, получение низкокалорийного пива, стабилизация пива

Технология молочных продуктов

Коагуляция молока, замена сычужного фермента в производстве сыра, модификация молочного белка, создание сырного аромата, получение ферментативно модифицированных сыров, удаление перекиси водорода, получение молочного сахара

Производство вина, фруктовых соков, газированных напитков, консервов

Осветление, мацерация сырья, удаление крахмала из сока, увеличение выхода, получение сладких ликеров, стабилизация вин и соков, производство соков с мякотью и пюре

Переработка крахмала

Увеличение выхода, модификация крахмала, разжижение, осахаривание, получение глюкозо-фруктовых и зерновых сиропов

Спиртовая промышленность

Конверсия сырья, разжижение крахмала, осахаривание, улучшение роста дрожжей, увеличение выхода спирта

Производство кофе

Сепарация зерен, контроль вязкости зкетрактов, улучшение вкуса и аромата

Производство белков

Гидролиз белков и полисахаридов, снижение вязкости, производство модифицированных пептидов и белков

Производство сахара

Удаление крахмала, белков и полисахаридов

Производство ароматизаторов

Синтез тонких ароматов, получение натуральных ароматических эфиров и т.д.

Производство масел и жиров

Увеличение выхода, модификация жиров, экстракция масла, получение биологически активных веществ (лецитина, токоферолов, каротинов и др.)

Технология мясопродуктов

Увеличение выхода, тендеризация мыса, получение мясных экстрактов, текстуризация белков, продление сроков хранения

Производство растительных экстрактов

Увеличение экстрактивности, сокращение длительности экстракции, улучшение фильтрации, повышение выхода пигментов, производство чая и чайных экстрактов, сокращение времени экстракции, усиление аромата и цвета

Производство пектина

Упрощение технологии, увеличение выхода, регулирование степени этерификации

Продолжается поиск новых возможностей использования ферментов в пищевой промышленности. Основными направлениями исследования являются:

модификация свойств индивидуальных ферментов с целью повышения их активности и удешевления целевых продуктов;

скрининг новых микроорганизмов-продуцентов ферментов;

получение новых рекомбинантных ферментов с заданными свойствами;

применение ферментативных реакций для получения ценных пищевых ингредиентов и биологически активных веществ;

разработка пищевых нанотехнологий с использованием ферментов.

Современные методы модификации ферментов позволяют увеличивать стойкость ферментов к действию различных химических реагентов и ингибиторов, рН, температурному воздействию; изменять рН оптимума ферментов, их субстратную специфичность и связывающие свойства; регулировать предпочтения определенных металлов-кофакторов и каталитические свойства ферментов.

3. Углеводы, получаемые из растительного сырья

Углеводы широко распространены в природе, главным образом, в растительном мире. Синтезируются углеводы в зеленых частях растений. Наряду с белками и жирами, они являются необходимой составной частью пищи человека и животных, причем по количеству преобладают над всеми другими компонентами.

В семенах злаков углеводы составляют до 80%, а в рисе до 90%. Большое количество содержится их в хлебе, крупах и картофеле в виде крахмала, в виде сахаров - в сахаре, в кондитерских изделиях, сладких плодах и ягодах.

Многие отрасли пищевой промышленности связаны с биохимической переработкой углеводов (брожение теста, получение вина, пива, спирта, дрожжей, пищевых кислот, ацетона и т.д.). В крахмало-паточной промышленности из растений добывается крахмал и превращается в патоку, декстрины, глюкозу, мальтозу. Свеклосахарная промышленность добывает из клубней сахарной свеклы и сахарного тростника ценнейший пищевой продукт - сахарозу.

Углеводы - это вещества, состоящие из углерода, кислорода и водорода с общей формулой Сm(Н20) n. Они делятся на две группы: моносахариды и полисахариды, которые в свою очередь делятся на полисахариды первого порядка (сахароза, мальтоза, лактоза и др.) и полисахариды второго порядка - высокомолекулярные углеводы (крахмал, клетчатка и др.).

Наиболее важное значение из моносахаридов в пищевом отношении имеют глюкоза и фруктоза.

Глюкоза широко распространена в растительном мире; она находится в семенах, плодах, листьях и корнях растений в свобод-ном состоянии или в составе полисахаридов. Много ее в соке винограда (до 10%). Особенно много связанной глюкозы находится в растениях в виде крахмала и клетчатки. Много в пчелином меде - около половины сухих веществ. В промышленности глюкозу получают путем кислотного гидролиза крахмала. Глюкоза сбраживается дрожжами, негигроскопична. Сладость ее составляет 70% от сладости сахарозы.

Фруктоза (левулеза, плодовый сахар) в природе распространена как в свободном, так и в связанном состоянии. Вместе с глюкозой она находится во многих плодах и ягодах. В равном с глюкозой количестве находится в виноградном соке и пчелином меде. В связанном состоянии находится в сахарозе. Получают из сахарозы, инсулина, трансформацией других моноз методами биотехнологии.

Глюкоза и фруктоза играют большую роль в пищевой промышленности, являясь важным компонентом продуктов питания и исходным материалом при брожении.

Пентозы. В природе широко распространены L (+) - арабиноза, рибоза, ксилоза, главным образом в качестве структурных компонентов сложных полисахаридов: пентозанов, гемицеллюлоз, пектиновых веществ, а также нуклеиновых кислот и других природных полимеров.

L (+) - арабиноза, не сбраживается дрожжами. Содержится в свекле.

Рибоза - важный структурный компонент рибонуклеиновых кислот.

D-ксилоза - структурный компонент содержащихся в соломе, отрубях, древесине полисахаридов ксилозанов. Получаемую при гидролизе ксилозу используют в качестве подслащивающего вещества для больных диабетом.

Гликозиды. В природе, главным образом в растениях, распространены производные сахаров, получившие название гликозидов. Молекула гликозида состоит из двух частей: сахара, он обычно представлен моносахаридом, и агликона («несахара»).

В качестве агликона в построении молекул гликозидов могут принимать участие остатки спиртов, ароматических соединений, стероидов и т.д. Многие из гликозидов имеют горький вкус и специфический запах, с чем и связана их роль в пищевой промышленности, некоторые из них обладают токсическим действием, об этом следует помнить.

Гликозид синигрин - содержится в семенах черной и сарептской горчицы, корнях хрена, в рапсе, придавая им горький вкус и специфический запах. Под влиянием содержащихся в семенах горчицы ферментов этот гликозид гидролизуется. Горький и жгучий вкус, который характерен и из-за которого ценятся горчица и хрен, обусловлен образованием при гидролизе эфирногорчичного масла. Содержание калиевой соли синигрина в горчице и хрене достигается 3-3,5%.

В косточках персика, абрикосов, слив, вишен, яблок, груш, в листьях лавровишни, семенах горького миндаля содержится гликозид амигдалин. Он представляет собой сочетание дисахарида гентиобиозы и агликона, включающего остаток синильной кислоты и бензальдегида. При кислотном или ферментативном гидролизе образуются две молекулы глюкозы, синильная кислота и бензальдегид. Содержащаяся в амигдалине синильная кислота может вызвать отравление.

Гликозид ванилина содержится в стручках ванили (до 2% на сухое вещество), при его ферментативном гидролизе образуются глюкоза и ванилин. Ванилин - ценное душистое вещество, применяемое в пищевой и парфюмерной промышленности.

В картофеле, баклажанах содержатся гликозиды салонины, которые могут придавать картофелю горький, неприятный вкус, особенно, если плохо удаляются наружные его слои.

Наибольшее пищевое значение из полисахаридов первого порядка имеют три дисахарида: сахароза, мальтоза и лактоза. Все они являются кристаллическими веществами, хорошо растворимы в воде, сладкие. Наибольшую сладость имеет сахароза, затем мальтоза и лактоза. Все три сахара оптически активны и обладают общим для полисахаридов свойством подвергаться гидролитическому распаду (кислотному или ферментативному) с образованием двух моноз.

Сахароза (тростниковый сахар, свекловичный сахар) - наиболее известный и широко применяемый в питании и пищевой промышленности сахар. Содержится в листьях, стеблях, семенах, плодах, клубнях растений. В сахарной свекле от 15 до 22% сахарозы, сахарном тростнике -12-15%, это основные источники ее получения, отсюда же возникли и ее названия - тростниковый или свекловичный сахар. В картофеле 0,6% сахарозы, луке - 6,5, моркови - 3,5, свекле - 8,6, дыне - 5,9, абрикосах и персиках - 6,0, апельсинах - 3,5, винограде - 0,5%. Ее много в кленовом и пальмовом соке, кукурузе - 1,4-1,8%. Гидролиз сахарозы сопровождается образованием глюкозы и фруктозы. Сахароза сбраживается дрожжами (после гидролиза), а при нагревании выше температуры плавления (160-186°С) карамелизуется, т.е. превращается в смесь сложных продуктов: карамелана, карамелена и других, теряя при этом воду. Эти продукты под названием «колер» используют при производстве напитков и в коньячном производстве для окраски готовых продуктов.

Мальтоза (солодовой сахар) при гидролизе распадается на две молекулы глюкозы. В свободном состоянии мальтоза в природе встречается главным образом в семенах злаковых, особенно при их прорастании. Сбраживается дрожжами в присутствии глюкозы. Мальтоза довольно широко распространена в природе, она содержится в проросшем зерне и особенно в больших количествах в солоде и солодовых экстрактах. Отсюда и ее название (от лат. maltum - солод). Образуется при неполном гидролизе крахмала разбавленными кислотами или амилолитическими ферментами, является одним из основных компонентов крахмальной патоки, широко используемой в пищевой промышленности.

Лактоза (молочный сахар) - сахар, дающий при гидролизе галактозу и глюкозу. Лактозу получают из молочной сыворотки; отхода при производстве масла и сыра. В коровьем молоке содержится 4-6% лактозы. Отсюда и возникло ее название (от лат. lactum - молоко). Не участвует в спиртовом брожении, но под влиянием молочнокислых дрожжей гидролизуется с последующие сбраживанием образовавшихся продуктов в молочную кислоте (молочнокислое брожение). Сбраживается лактоза лишь теми видами дрожжей, которые вырабатывают фермент лактазу.

Полисахариды второго порядка - это высокомолекулярные соединения. В растительном мире они играют роль запасного питательного вещества или же являются основой опорных тканей организма. Полисахариды под действием кислот или соответствующих ферментов расщепляются на свои первичные строительные структуры.

Крахмал - наиболее важный по своей пищевой ценности и использованию в пищевой промышленности полисахарид, главный компонент зерна, картофеля и многих видов пищевого сырья. Например, в зернах разных злаков крахмала содержится от 55 до 80%, в картофеле - 75%. Содержание крахмала в пищевом сырье определяется культурой, сортом, условиями произрастания, спелостью. Под действием ферментов или кислот при нагревании крахмал присоединяет воду и гидролизуется. Глубина гидролиза зависит от условий его проведения и вида катализатора (кислота, ферменты). В ходе гидролиза постепенно идет деполимеризация крахмала и образование декстринов, затем мальтозы, а при полном гидролизе глюкозы. Деструкция крахмала, которая начинается с набухания и разрушения крахмальных зерен и сопровождается его деполимеризацией (частичной или более глубокой) до образования в качестве конечного продукта глюкозы, происходит при получении многих пищевых продуктов - патоки, глюкозы, хлебобулочных изделий, спирта и т.д. При ферментном гидролизе солодовой амилазой - в основном в мальтозу и частично в глюкозу. Патока применяется в кондитерской промышленности в качестве антикристаллизатора.

В последние годы все более широкое применение в пищевой промышленности находят модифицированные крахмалы, свойства которых в результате разнообразных видов воздействия (физического, химического, биологического) отличаются от свойств обычных крахмалов. Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, способность к клейстеризации, студнеобразование), а следовательно, и направление его использования. Модифицированные крахмалы нашли применение в хлебопекарной и кондитерской промышленности, в том числе для получения безбелковых продуктов питания.

В растительных продуктах наряду с углеводами, обеспечивающими организм энергией, содержатся так называемые непищевые углеводы - целлюлоза, или клетчатка, и пектиновые вещества. Практического значения как источник энергии в пищевом рационе клетчатка не имеет, поскольку усваивается только на 25%, но клетчатка способствует нормальной функции кишечника.

Клетчатка - самый распространенный высокомолекулярный полимер. Это основной компонент и опорный материал клеточных стенок растений. Содержание клетчатки в волосках семян хлопчатника 98%, древесине - 40-50, зернах пшеницы - 3, ржи и кукурузе - 2,2, сое - 3,8, подсолнечнике с плодовой оболочкой - до 15%. Молекула клетчатки имеет линейное строение и состоит из 2000-3000 остатков глюкопиранозы. Клетчатка нерастворима в воде и при обычных условиях не гидролизуется кислотами. При повышенных температурах при гидролизе образуется в качестве конечного продукта D-глюкоза. Продукты гидролиза, содержащие клетчатку отходов, которые образуются при переработке древесины, широко используют для получения кормовых дрожжей, этилового спирта и других продуктов. В настоящее время под действием ферментного комплекса целлюлаз уже в промышленных условиях получают продукты гидролиза клетчатки, в том числе глюкозу. Учитывая, что возобновляемые запасы целлюлозосодержащего сырья практически безграничны, ферментативный гидролиз клетчатки является очень перспективным путем получения глюкозы.

Гемицеллюлозы - это группа высокомолекулярных полисахаридов, образующих совместно с целлюлозой клеточные стенки растительных тканей. Присутствуют главным образом в периферийных оболочечных частях зерна, соломе, кукурузных початках, подсолнечной лузге. Содержание их зависит от сырья и достигает 40% (кукурузные початки). В зерне пшеницы и ржи до 10% гемицеллюлоз. В их состав входят пентозаны, образующие при гидролизе пентозы (арабинозы, ксилозы), гексозаны, гидролизующиеся до гексоз (маннозы, галактозы, глюкозы, фруктозы) и группа смешанных полисахаров, гексоз и урановых кислот. Гемицеллюлозы обычно имеют разветвленное строение; порядок расположения моноз внутри полимерной цепи неодинаков. Они растворяются в щелочных растворах. Кислотный гидролиз гемицеллюлозы протекает значительно легче, чем целлюлозы. В гемицеллюлозы иногда включают группу агара (смесь сульфированных полисахаридов - агарозы и агаропектина) - полисахарида, присутствующего в водорослях и применяемого в кондитерской промышленности. Гемицеллюлозы широко применяют для получения разнообразных технических, медицинских, кормовых и пищевых продуктов, среди которых необходимо выделить агар и агарозу, ксилит. Гемицеллюлозы относят к группе пищевых волокон, необходимых для нормального пищеварения.

Пектиновые вещества - это группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок и межклеточных образований растений совместно с целлюлозой, гемицеллюлозой, лигнином, не усваиваются организмом, но играют важную роль в физиологии питания и в пищевой технологии. Содержится в клеточном соке. Наибольшее количество пектиновых веществ находится в плодах и корнеплодах: яблоках, айве, абрикосах, сливе (до 1,5%). Получают их из яблочных выжимок, свеклы, корзинок подсолнечника. Различают нерастворимые пектины (протопектины), которые входят в состав первичной клеточной стенки и межклеточного вещества, и растворимые, содержащиеся в клеточном соке. Основным структурным компонентом его является галактуроновая кислота, из молекул которой строится главная цепь, а в состав боковых цепей входят L-арабиноза, D-галактоза и рамноза. При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые, с этим связано размягчение плодов при созревании и хранении. Переход нерастворимых форм в растворимые происходит при тепловой обработке растительного сырья, осветлении плодово-ягодных соков. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара при соблюдении определениях соотношений. На этом основано их использование в качестве студнеобразующего вещества в кондитерской и консервной промышленности для производства мармелада, пастилы, желе и кремов, а также в хлебопечении, сыроделии.

Литература

живой материя фермент полисахарид

1. Общая технология пищевых производств. Дегтяренко Г.Н., Никифорова Т.А., Волошин Е.В., Рагузина Л.М./ Оренбург: ГОУ ОГУ, 2003. - 40 с.

2. Всё о пище с точки зрения химика. Скурихин И.М., Нечаев А.П./М.: Высш. шк. - 1999.

Размещено на Allbest.ru


Подобные документы

  • Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация [2,6 M], добавлен 19.10.2013

  • Развитие неживой и живой природы. Структура и ее роль в организации живых систем. Современный взгляд на структурную организацию материи. Проблемы самоорганизации, изучаемые в синергетике, законы построения организации и возникновения упорядоченности.

    контрольная работа [38,2 K], добавлен 31.01.2010

  • Общая характеристика живой и неживой природы. Неорганические и органические вещества в клетке: макроэлементы, микроэлементы, ультрамикроэлементы, соли, вода, нуклеиновые кислоты, углеводы, белки, липиды. Понятие биогенных элементов. Свойства воды.

    презентация [3,7 M], добавлен 26.04.2012

  • Природа как весь мир в многообразии его форм, различия между живой и неживой природой. Высокая устойчивость творений неживой природы, ее слабая изменчивость в масштабах человеческой жизни. Способность живых организмов давать жизнь другим организмам.

    презентация [2,6 M], добавлен 06.09.2013

  • Углеводы как неотъемлемый компонент клеток и тканей живых организмов растительного и животного мира и основная часть органического вещества на Земле. Простые и сложные углеводы, их химические свойства. Особенности моносахаридов, их виды и классификация.

    презентация [1,2 M], добавлен 17.11.2014

  • Химические элементы, входящие в состав живой материи. Синтез микроорганизмами различных ферментов. Физиология и принципы культивирования микроорганизмов. Метаболизмы, дыхание микроогранизмов, краткая характеристика питательных сред, рост и размножение.

    реферат [26,1 K], добавлен 21.01.2010

  • Электромагнитные взаимодействия как определяющий уровень организации материи. Сущность живого, его основные признаки. Структурные уровни организации живой материи. Предмет биологии, ее структура и этапы развития. Основные гипотезы происхождения жизни.

    лекция [28,4 K], добавлен 18.01.2012

  • Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

    контрольная работа [13,5 K], добавлен 27.01.2011

  • Описание отличительных особенностей живой природы, ее основных структурных уровней от молекулярного до экосистемного. Различные степени сложности неживой природы. Теория биологической эволюции, основанная на открытии Дарвином естественного отбора.

    реферат [66,7 K], добавлен 22.12.2010

  • Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация [27,2 K], добавлен 28.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.