Гипотезы происхождения жизни

Библейские представления и развитие естествознания. Взаимоотношение времени и вечности в теории сотворения. Концепции возникновения жизни, их разновидности и особенности. Основные положения естественнонаучной теории, этапы зарождения жизни на Земле.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 11.11.2010
Размер файла 48,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Гипотезы происхождения жизни

1.1 Библейские представления и развитие естествознания

Примирить библейскую картину творения с эволюционными взглядами современной науки не столь сложно, если провести между ними четкое разделение. Библия символически выражает связь природного мира с Творцом, а наука непосредственно описывает природу, отвлекаясь от существования этой связи. Но не теряет ли от этого сама наука?

Мысль о том, что природный мир не существовал изначально, но был создан Творцом рядом последовательных актов творения, стимулирует глубокие научные идеи. В космологии она привела к открытию «антропного принципа», согласно которому законы природы и вся Вселенная устроены так, как будто они были специально созданы для появления человека. Небольшие изменения в законах микромира сделали бы невозможным появление атомов. Существующие законы электрического взаимодействия позволили возникнуть сложным молекулярным структурам. Закон всемирного тяготения гарантирует возникновение и устойчивость Солнечной системы, обеспечивающей нужные климатические условия Земле.

Конечно, признание учеными «антропного принципа» не означает их уверенности в том, что мир был сотворен, а лишь в том, что изучаемая наукой Вселенная устроена так, как если бы она создавалась специально для того, чтобы в ней мог существовать человек. Этот факт допускает различные мировоззренческие интерпретации.

Здесь и открывается интересная возможность перейти к принципиально новым отношениям между религией и естествознанием. Вместо соперничества возникает сотрудничество, которое можно пояснить такой аналогией. Палеонтология дала огромный эмпирический материал, который можно интерпретировать как следы эволюционного процесса жизни. Подобно этому естествознание накопило гигантский запас сведений об устройстве физического мира и жизни на Земле, который можно интерпретировать как следы Божественного акта творения. Антропный принцип в космологии - это лишь первая ласточка в возможном ряду таких представлений.

Все дело в том, что наука позволяет обнаружить в глубине открытых непосредственному наблюдению феноменов фундаментальные сущности. Эти сущности составляют реальность, совсем не похожую на то, что непосредственно видит наблюдатель. Классическое естествознание еще пыталось объяснить мир «видимых» явлений через наглядные представления: взаимодействие атомов, мыслимых как обычные частицы миниатюрных размеров, или движение материальных субстанций (теплород или эфир), похожих по своим свойствам на жидкость или газ. Современная наука отказалась от принципа подобия «глубинной» и наблюдаемой реальности. Современная физика ищет объяснение в математических структурах, лишенных наглядной интерпретации (бесконечномерные пространства, структуры симметрий и т.п.). Биолог объясняет появление органических форм через свойства генетического кода, записанного в молекулярном строении ДНК и несущего информацию об этих формах. Глубинная («невидимая») реальность как бы несет в себе «замысел Творца», проявляющийся в феноменах, доступных наблюдению.

Ученый ставит себе целью не просто объяснить одни явления через другие, но понять этот «замысел». Для этого требуется воображение, способность конструировать объекты, свойства которых совсем не похожи на свойства вещей, открытых в непосредственном опыте. Опять-таки, не важно, верит ли данный конкретный исследователь в существование Творца. Объективная логика развития науки заставляет ученого действовать так, как будто он разгадывает замысел Творца, чтобы понять феномен природы.

Ученый волен здесь сместить акцент: пытаясь понять некий феномен, он реконструирует обусловившую его фундаментальную реальность как запечатленный след акта творения. Так, например, концепция эволюции по Л.С. Бергу позволяет ставить вопрос о расшифровке эволюционной программы преобразования генотипа, как некоторой исходной информации, возникающей в акте творения жизни.

С данной точки зрения интересно не столько объяснить сам процесс эволюции, сколько понять факторы, определяющие многообразие живых форм. Поэтому самостоятельный интерес приобретают систематика, морфология, генетика и эмбриология, позволяющие обнаружить фундаментальные механизмы, которые лежат в основе эволюционного развития жизни на Земле.

1.2 Время и вечность
Акт творения отличается от эволюционного процесса не только своей однократностью, но и тем, что сотворение мира происходит в вечности, а эволюция длится во времени. Вечность - это вовсе не бесконечно длящееся время, но отсутствие времени, преодоление его. В вечности нет понятий «раньше» и «позже», «короче» и «дольше». Само время было сотворено вместе с миром. Поэтому бессмысленно ставить вопрос о том, сколько в действительности длился каждый из шести дней творения. Однако если в этот «день» был инициирован определенный этап эволюционного процесса, то длительность этапа правомерно пытаться оценить. Строго говоря, нельзя говорить о том, что первый день имел место раньше второго или пятого, ибо и тот и другой состоялись не во времени, но в вечности. Нумерация этих дней характеризует, скорее, их логическую, а не временную последовательность. Можно было бы говорить о шести уровнях или «пластах» вечности, в лоне которой зародилось время.
Про событие, происходящее в вечности, нельзя сказать «оно было» или «оно будет». Это событие есть всегда - пребывает вечно. Последовательность дней творения - это только попытка символического соотношения шести уровней акта творения, как начальной точки отсчета исторического времени (Ю.А. Шрейдер)
Если дни творения интерпретировать не как события на временной оси, но как пласты вечности, то мы придем к представлению о том, что эта временная ось располагается как бы внутри этих пластов. Вечность не только предшествует историческому времени, но и замыкает временную ось (Ю.А. Шрейдер)
Такая интерпретация имеет определенную опору в Апокалипсисе, повествующем о конце земной истории. Если творение мира завершается созданием человека, то история имеет своим непосредственным финалом суд над человеком, а этапы конца света, по откровению святого Иоанна Богослова, допускают сопоставление, по крайней мере, с тремя из этапов творения мира, но следуют в обратном порядке.
Все это еще раз подчеркивает, что представления о сотворении мира и его эволюционном развитии в принципе не конкурируют, но дополняют друг друга. Первое из них рассматривает мир в перспективе вечности, допускающей лишь символическое описание, а второе - в перспективе исторического времени, требующей научного объяснения. Проблема состоит в правильном соотнесении обеих перспектив для понимания природных феноменов

1.3 Концепции возникновения жизни

Сейчас уже прочитаны тысячи последовательностей белков и кодирующих их генов и становится ясным, что гены - не что иное, как случайные последовательности из четырех нуклеотидов, которые чередуются в разных комбинациях. Лишь в незначительной части эти последовательности «отредактированы» естественным отбором для лучшего исполнения своих функций. Такая корректировка не скрывает явных следов случайного, стохастического возникновения последовательности исходной. Но мог ли ген, скажем, гемоглобина или цитохрома возникнуть случайно?

Вообще-то эта проблема отнюдь не нова. Философы еще в древности задавались вопросом: возможно ли возникновение достаточно сложной структуры в результате случайных, стохастических процессов? И все давали отрицательный ответ. Еще Цицерон полагал, что из случайно брошенных знаков алфавита не могут сложиться «Анналы» Энния.

Теперь эту проблему называют «парадоксом миллиона обезьян»: за сколько лет миллион обезьян, посаженных за пишущие машинки, напечатают полное собрание сочинений Шекспира или хотя бы одного «Гамлета»? «Обезьяний парадокс» переходит из одного философского трактата в другой: может ли миллион людей, никогда о Шекспире не слыхавших, написать «Гамлета»? Отсюда недалеко до вопроса: а мог ли «Гамлета» написать сам Шекспир, если даже миллиону людей это не под силу? И применима ли вообще теория вероятностей к этой категории явлений?

Как видите, начав с вопроса о случайности сочетаний знаков в нуклеотидных последовательностях, мы пришли к проблеме философской, затрагивающей коренные тайны мироздания.

Еще в 1936 г. Н.К. Кольцов писал, что вероятность случайного возникновения полипептида из 17 аминокислотных остатков (гептакайдекапептида) равна одной триллионной, и сделал из этого совершенно правильный вывод: гены синтезируются не заново, а матричным путем. Но как возникла первая матрица?

Хватает ли времени на возникновение первого гена - протогена - случайным путем, стохастическим перебором нуклеотидов? Вспомним, что солнечная система - Солнце со всеми планетами - сформировалась, по самым последним оценкам, 4.6 млрд. лет назад (плюс-минус 0.1 млрд.). Первые следы жизни на Земле имеют возраст более 3.8 млрд. лет. В период становления - а это значительный срок - наша планета явно не годилась для возникновения жизни.

Подобные соображения воскрешают гипотезу о внеземном, космическом происхождении жизни. Гипотеза панспермии еще в прошлом веке была выдвинута Сванте Аррениусом, и суть ее можно выразить так: в вечной и бесконечной Вселенной жизнь так же вечна и бесконечна; споры, микроорганизмы - эти зародыши жизни - могут покинуть родную планету и давлением света транспортируются Бог весть куда - от планеты к планете, от звезды к звезде. У нас к идее панспермии склонялся В.И. Вернадский.

Однако гипотеза достаточно слабая. Пусть во Вселенной, хотя бы в одной нашей Галактике, миллионы планет. Исчезающе малую вероятность возникновения жизни (то есть протогена) на одной из них нужно умножить на столь же малую величину - вероятность благополучного межзвездного перелета. Это только видимость решения проблемы. Кроме того, похоже, что и всей Вселенной не хватает для возникновения жизни. Манфред Эйген подсчитал, что вероятность возникновения одного лишь белка - цитохрома С, состоящего примерно из ста аминокислотных остатков, - 10-130, а во всей Вселенной хватит места лишь для 1074 молекул (при условии, что все планеты, звезды и галактики состоят из вариантов молекул цитохрома).

Как видим, положение все более драматизируется. Получается, что все мы живем вопреки теории вероятностей. Нас не должно быть вообще!

Выход из сложившегося положения попытался найти Фрэнсис Крик. В 1982 г. он совместно с Л. Орджелом издал книгу «Жизнь как она есть, ее происхождение и природа». Сначала Крик драматизирует положение. Он исходит из того, что первичный полипептид, кодируемый протогеном, имел 200 аминокислотных остатков, а не 100, как у Эйгена. Тогда вероятность его возникновения 10-260 (это десятичная дробь с двумястами шестьюдесятью нулями после запятой). Далее он напоминает, что и Вселенная, в том виде, в каком она есть, не вечна. Большинство космологов сейчас считают, что она продукт «Big Bang» - «Большого взрыва», разметавшего все планеты, звезды и галактики, прежде сжатые в предельно малом (атомных размеров!) объеме.

Когда произошел Большой взрыв? Прежние расчеты по скорости разбегания галактик и энергии реликтового радиоизлучения давали неточные и завышенные величины возраста Вселенной. Теперь она уточнена - по соотношению в звездах радиоактивного тория (период полураспада 14 миллиардов лет) и стабильного ниобия. Оказалось, что возраст самых старых звезд - не выше одиннадцати миллиардов лет. Значит, для возникновения жизни не хватает не только пространства, но и времени. Ведь Вселенная лишь примерно вдвое старше Солнечной системы.

Крик также склоняется к неземному происхождению жизни. Но он физик и потому понимает слабости гипотезы панспермии. Конечно, давление солнечного света может придать споре микроорганизма третью космическую скорость, - но оно же будет отталкивать от звезды «чужие» микрочастицы. За миллионнолетние странствования гены неизбежно разрушатся космическим излучением. Разумеется, споры могут быть экранированы от него, например в метеоритах, но метеорит из-за большой массы не получит нужного ускорения давлением света. Да и вероятность того, что спора, ускоренная наугад, долетит до звезды с подходящими планетами, чересчур уж мала. Вероятность, что выстрел вслепую со стратосферного лайнера поразит, например, белку в глаз, намного выше. Конечно, за большой промежуток времени может произойти и маловероятное событие. Но времени-то как раз и не хватает.

И Крик выдвигает гипотезу направленной, управляемой панспермии. Предположим, пишет он, на какой-то из многочисленных планет во Вселенной миллиарды лет назад возникла некая сверхцивилизация. Ее носители, убедившись в том, что жизнь - штука редкая, возможно, уникальная, захотят распространить ее как можно шире. С этой целью сверхцивилизация начинает рассылать по всем направлениям, в свою и чужие галактики, автоматические ракетные корабли. Двигаясь со скоростью хотя бы 0.0015% скорости света (около 3 миль/сек), они в среднем за 1000 лет достигнут ближайших систем с планетами и рассеют в их атмосферу пакеты с «пассажирами».

Такими пассажирами могут быть лишь замороженные и высушенные микроорганизмы. Они устойчивы к излучениям и перенесут сверхдлительный космический перелет. Устойчивы они и к огромным ускорениям, так что эти гипотетические корабли могут набирать скорость самым экономичным путем - взрывным ускорением в сотни g. Если условия на поверхности новой планеты окажутся пригодными, начнется стремительное размножение - и последующая эволюция, вплоть до появления человека.

А что значит пригодные условия? Мы знаем микроорганизмы, живущие без кислорода, в горячей серной кислоте, использующие в качестве источника энергии серу и восстановленные металлы. Многие земные бактерии, похоже, отлично выживут на Марсе или хотя бы на полюсах Венеры.

И Крик вспоминает старый спор между великими физиками-атомщиками Энрико Ферми и Лео Сцилардом. Сцилард был горячим сторонником сверхцивилизаций, рассеянных по космосу, и скептик Ферми спросил: «Если их много, почему мы их не видим и не слышим? Где же они?» И Крик полагает, что нашел ответ: «Они - это мы, вернее, мы - их сверхотдаленные потомки. В будущем мы, возможно, подхватим эту эстафету». (Крик подсчитывает, что даже наши современные космические корабли долетят до туманности Андромеды за 4 млрд. лет, когда от нашей цивилизации не останется даже праха.)

Однако доказательства космического происхождения жизни, выдвигаемые Криком и Орджелом, немногочисленны и неубедительны. Первое из них - повышенное по сравнению со средней концентрацией для общей массы Земли содержание молибдена в живых организмах. Молибден входит в состав ряда ферментов, например нитрогеназы микроорганизмов, связывающих атмосферный азот. Это ключевой фермент, делающий жизнь на Земле возможной. И Крик с Орджелом заключают: мы все эмигранты с богатой молибденом планеты. Но Морисабуро Эгами показал, что относительные единицы количества (кларки) для живой природы и морской воды по молибдену совпадают. Так что молибденовый след ведет не в космос, а в земной океан.

Второй довод Крика - внезапное возникновение микроорганизмов 3.8 млрд. лет назад. Увы, этот довод в равной мере годится для всех форм жизни, включая человека. Внезапность - артефакт, обусловленный спецификой палеонтологической летописи. Она всегда констатирует широкое распространение формы («торжествующую обыденность»), а не процесс ее становления. Принцип телевидения и первые успешные попытки его применения известны с 20-х годов, но археологи будущего найдут первые обломки телевизоров, скорее всего, в слоях 50-х и ими датируют его внезапное возникновение. А на деле никакой внезапности не было.

Но главное не в этом. Самое досадное, что красивая гипотеза Крика не помогает. Даже призвав на помощь все планеты Вселенной, мы лишь в ничтожной мере повысим сверхкороткую вероятность возникновения протогена. Из исчезающе малой дроби (10-260) срежется каких-нибудь пятьдесят нулей после запятой - ни времени, ни места по-прежнему не хватает. Так что, перефразировав известное изречение Н. Бора, эта гипотеза недостаточно безумна, чтобы быть верной.

Пожалуй, до конца пошел в этом вопросе лишь астроном и математик Налин Чандра Викрамасингх (Шри-Ланка). Его исходные положения те же: жизнь не может возникнуть случайным путем. Для жизни нужно возникновение около 2000 ферментов - число пробных комбинаций 10-40000 (сорок тысяч нулей после запятой!). Вывод Викрамасингха: «Скорее ураган, проносящийся по кладбищу старых самолетов, соберет новехонький суперлайнер из кусков лома, чем в результате случайных процессов возникнет из своих компонентов жизнь». Но ведь происхождение жизни как-то надо объяснить? И Викрамасингх объясняет (или полагает, что объясняет, хотя это не одно и то же): «Свои собственные философские предпочтения я отдаю вечной и безграничной Вселенной, в которой каким-то естественным путем возник творец жизни - разум, значительно превосходящий наш».

У нас есть выбор. Можно, конечно, согласиться с астрофизиком из Шри-Ланки и на этом покончить с разгадкой происхождения жизни. А можно рассмотреть такую проблему: все статистические выкладки, приводящие к чудовищному количеству вариантов и, следовательно, к ничтожно малым вероятностям спонтанного возникновения протогена, верны. Вот только применимы ли они?

Полагаем, что повторить создание «Гамлета» не под силу не только миллиону обезьян, но и миллиону людей с пишущими машинками. Но - последний риторический вопрос: мог ли существовать театр, если бы «Гамлет» не был написан? Ведь в бурный елизаветинский век Шекспир мог бы попасть не в «Глобус», а, скажем, в экипаж к Фрэнсису Дрейку и сложить свою буйную голову в кругосветке «Золотой лани». Ясно, что мы имели бы театр без шекспировских пьес и не переживали бы по поводу их отсутствия. Ибо нельзя скорбеть по тому, что не появилось на свет.

И М. Эйген со своим примером - цитохромом С, и Ф. Крик с гипотетическим ферментом, и Н.Ч. Викрамасингх в расчетах исходят из того, что имеется только один пригодный вариант цитохрома С, по единственному варианту каждого фермента и так далее-то есть, не будь «Гамлета», и театра не было бы. А ведь это не так. Если вариантов множество (а их практически бесконечность), то и полипептидов, пригодных для работы, например в качестве фермента, так же должно быть практически бесконечное число.

Это утверждение допускает экспериментальную проверку. Если мы правы, то полипептиды, в которых аминокислотные остатки чередуются случайным образом (стохастические полимеры), должны проявлять биологическую активность. Как только стохастический полимер смог проявить ферментную активность при синтезе своей же матрицы - протогена, возникновение жизни можно было бы считать завершенным. Пусть эти полимеры работали хуже современных ферментов - не так эффективно и специфично. Но на то и отбор, чтобы корректировать их последовательности, совершенствуя функции.

Вот хороший пример: есть целая группа ферментов - сериновые протеазы, расщепляющие белки по амидным связям. Установлено, что активность их определяется наличием в последовательности тройки: серин-гистидин-аспартат - только тогда белок ускоряет расщепление (реакцию протеолиза) в 10 миллиардов раз против контроля. Если же мы будем убирать из последовательности сначала серин, потом гистидин, потом аспартат, активность соответственно будет снижаться в 2x106, 2x1O6 и 3x104 раз. Но и без магической тройки она не исчезнет, не будет нулевой.

Отсюда следует, что в достаточно большой и разнообразной совокупности случайно синтезированных полимеров можно найти такие, которые смогут выполнять функцию любого белка, например фермента, - такие опыты уже были поставлены. Американский исследователь X.С. Фокс смешивал сухие аминокислоты и нагревал их до 200? С; в результате получались полипептиды-цепочки из аминокислотных остатков, практически неотличимые от белков малой молекулярной массы. Мономеры в этих полимерах были распределены совершенно случайно, и в этой смеси вряд ли можно было найти две одинаковые молекулы. По-видимому, такие соединения - протеиноиды - легко возникали на начальном этапе существования Земли, например на склонах вулканов.

Х.С. Фокс и его сотрудник Л. Бахадур проверили, может ли смесь протеиноидов работать как фермент. Оказалось, что она проявляла активность, имитирующую функцию ферментов пирофосфатазы, каталазы, АТФазы. Другие исследователи, многократно проверив опыты Фокса, пришли к выводу, что подобная смесь может имитировать функцию практически любого фермента. Возможно, что протеиноиды катализировали синтез первых генов - матриц, на которых синтезировались уже настоящие белки, но тоже со случайными последовательностями. Как только среди них нашлась одна, способная ускорить синтез и репликацию своей матрицы - нуклеиновой кислоты, труднейшая проблема происхождения жизни была решена.

Для этого не требовалось сверхастрономического числа Вселенных и вмешательства сверхразума. В опытах Фокса участвовало не 10230 молекул, а существенно меньше - 1023, - одного моля, как говорят химики. Для возникновения жизни вполне хватило бы случайных химических реакций в достаточно большой грязной луже, вроде той, которую воспел Н.В. Гоголь в «Миргороде».

Опровергнуть эту концепцию можно посетив несколько планет земного типа из других звездных систем. Вполне возможно обнаружить на некоторых из них, хотя бы на одной, жизнь. Вот если тамошние гены и кодируемые ими белки будут гомологичны генам и белкам земных организмов, можно принять идею Творца.

Пока это не грозит: мы знаем, что и на Земле один и тот же ген не возникал дважды, как не было написано дважды любое литературное произведение, тот же «Гамлет

1.2 Концепции происхождения жизни

Одним из наиболее трудных и в то же время актуальных и интересных в современном естествознании является вопрос о происхождении жизни. Жизнь - одно из сложнейших, если не самое сложное явление природы. Для нее особенно характерны обмен веществ и самовоспроизведение, а особенности более высоких уровней ее организации обусловлены строением более низких уровней. Живые существа - это естественные информационные системы, т.е. системы, существующие сами по себе, а не в результате построения или составленной кем-то программы.

Отличие живого от неживого заключается в нескольких фундаментальных направлениях: вещественном, структурном и функциональном планах его изучения. В вещественном плане в состав живого обязательно входят высокоупорядоченные макромолекулярные органические соединения, называемые биополимерами, - белки, нуклеиновые кислоты (ДНК и РНК). В структурном плане живое отличается от неживого клеточным строением. В функциональном плане для живых тел характерно воспроизводство самих себя, вернее самовоспроизводство.

Живые тела отличаются от неживых также наличием обмена веществ, способностью к росту и развитию, активной регуляцией своего состава и функций, способностью к движению, раздражимостью, приспособленностью к среде и т.д. Однако имеются переходные формы от нежизни к жизни. Например, вирусы вне клеток другого организма не обладают ни одним из атрибутов живого, хотя у них есть наследственный аппарат. Они могут расти и размножаться лишь в клетке организма-хозяина, используя его ферментные системы.

В современном естествознании существует пять основных концепций возникновения жизни: 1) креационизм - божественное сотворение живого; 2) концепция многократного самопроизвольного зарождения жизни из неживого вещества; 3) концепция стационарного состояния, в соответствии с которой жизнь существовала всегда; 4) концепция панспермии - внеземного происхождения жизни; 5) концепция происхождения жизни на Земле в историческом прошлом в результате процессов, подчиняющихся естественнонаучным законам.

Первая концепция является религиозной и к науке прямого отношения не имеет. Хотя к нему близка концепция, согласно которой жизнь создана высшим разумом, находящимся вне Вселенной. Основывается она на отрицании возможности объяснить генезис жизни естественными причинами и направлена против концепции химической, предбиологической эволюции. В качестве основополагающего тезиса в данных концепциях рассматривается положение о том, что жизнь как на Земле, так и вообще где-либо во Вселенной не может возникнуть случайно. Жизнь представляет собой акт преднамеренного творения, что приводит к отождествлению современных космологических представлений с религиозными истинами, и для вечной, безграничной Вселенной характерно неизменное постоянство картин

В развитии учений о происхождении жизни существенное место занимает теория, утверждающая, что все живое происходит только от живого - теория биогенеза. Эту теорию в середине XIX века противопоставляли ненаучным представлениям о самозарождении организмов (червей, мух и даже мышей) в болотах, в гниющей массе и тому подобных местах. Однако как теория происхождения жизни биогенез несостоятелен, поскольку принципиально противопоставляет живое неживому, утверждает отвергнутую наукой идею вечности жизни. Абиогенез - идея о происхождении живого из неживого - исходная гипотеза современной теории происхождения жизни, опровергнутая французским микробиологом XIX в. - Луи Пастером, получившим за это премию в 1862 г. от Французской Академии наук.

Важно подчеркнуть, что в настоящее время жизнь на Земле не может возникнуть абиогенным путем. Возможность повторного возникновения жизни на Земле исключена.

Еще Дарвин в 1871 г. писал: «Но если бы сейчас… в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т.п., химически образовался белок, способный к дальнейшим все более сложным превращениям, то это вещество немедленно было бы разрушено и поглощено, что было невозможно в период возникновения живых существ».

Изложенная в ней временная и иерархическая последовательность событий содержит исходное представление об эволюции: первый день - появление света, второй день - звезд, третий день - создание Земли, четвертый день - Солнца и Луны, пятый день - рыб в море и птиц в небе, шестой день - создание человека и, наконец, седьмой день-день отдыха. В пользу данной концепции авторы приводят следующие аргументы: 1) белки, нуклеиновые кислоты и другие биологические соединения с их весьма сложной структурой могут быть созданы только живым существом, поскольку системы такой сложности не могут возникнуть в результате взаимодействия простых веществ в первичном океане; 2) в естественно-научном объяснении происхождения жизни необходимо исходить из положения, что жизнь уже была закодирована в структуре атомов.

В конце ХIХ в. были распространены «теории», согласно которым жизнь возникает в болотах, гниющей массе и тому подобных местах. Именно там из неживой материи возникают живые организмы - личинки мухи и даже мыши. Вторую концепцию опроверг изучавший деятельность бактерий французский микробиолог XIX в. - Луи Пастер. Третья концепция из-за своей оригинальности и умозаключительности всегда имела немного сторонников.

К началу XX в. в науке господствовали две последние концепции. Концепция панспермии, согласно которой жизнь была занесена на Землю извне, опиралась на обнаружение при изучении метеоритов и комет «предшественников живого» - органических соединений, которые, возможно, сыграли роль «семян». Во второй половине прошлого века шведский ученый Сванте Ар-рениус выдвинул оригинальную гипотезу. По его мнению, жизнь возникла не на Земле, а была занесена на нее из космоса. Наша планета была «заражена» микроорганизмами, прибывшими из глубин Вселенной. Этот процесс Аррениус назвал панспермией. Гипотеза шведского ученого не получила поддержки его коллег. Никто не видел возможности для микроорганизмов длительно путешествовать в космическом пространстве, не погибая от губительных излучений.

Аристотель на основе сведений о животных, которые поступали от воинов Александра Македонского и купцов-путешественников, сформировал идею постепенного и непрерывного развития живого из неживого и создал представление о «лестнице природы» применительно к животному миру. Аристотель, который считал, что живое может возникать и в результате разложения почвы Он не сомневался в самозарождении лягушек, мышей и других мелких животных. Платон говорил о самозарождении живых существ из земли в процессе гниения.

С распространением христианства идеи самозарождения были объявлены еретическими, и долгое время о них не вспоминали. Гельмонт придумал рецепт получения мышей из пшеницы и грязного белья. Бэкон тоже считал, что гниение - зачаток нового рождения. Идеи самозарождения жизни поддерживали Галилей, Декарт, Гарвей, Гегель, Ламарк. В 1688 г. итальянский биолог Франческо Реди (1626-1698), серией опытов с открытыми и закрытыми сосудами доказал, что появляющиеся в гниющем мясе белые маленькие черви - это личинки мух, и сформулировал свой принцип: все живое - из живого. Он первым усомнился в состоятельности этой теории. Доказать «принцип Реди» удалось лишь два века спустя, в 1860 г., Луи Пастеру. В серии изящных опытов с хитро изогнутыми колбами он показал, что «зарождение» микроорганизмов в стерильном бульоне происходит только в том случае, если их зародыши могут попасть в бульон из воздуха или иным путем. Если преградить путь «зародышам» (оставив при этом доступ воздуху), никакого самозарождения не происходит. За это он в 1862 г. получил премию от Французской Академии наук. очень бурно. Его сторонниками были выдающиеся умы своего времени. Но были противники. Так, А.И. Опарин показал, что эта теория, строго говоря, ничего не дает. Во всяком случае, она не имеет никакого отношения к происхождению жизни, ибо даже если удастся доказать, что жизнь была занесена на нашу планету извне, то это не освобождает нас от необходимости объяснить, как же она возникла изначально. Теория панспермии позволяет разрешить лишь проблему происхождения земной жизни, одновременно увеличивая сложность основной проблемы во много раз.

В настоящее время возрождается старая идея панспермии. На международном симпозиуме «Поиски внеземной жизни», состоявшемся в Бостоне (США) в 1984 г., голландский ученый М. Гринберг сообщил, что в его экспериментах было показано, что в условиях вакуума и чрезвычайно низкой температуры, характерной для межзвездной среды, бактериальные споры могут противостоять радиации в течение нескольких тысяч лет. Этого, конечно, недостаточно, чтобы перенестись от звезды к звезде, но если «материнская» звезда проходит через пылевое облако, некоторые споры получают от его частиц дополнительную защиту и могут путешествовать миллионы лет.

У концепции появления жизни на Земле в историческом прошлом два варианта. Согласно одному, происхождение жизни - результат случайного образования единичной «живой молекулы», в строении которой был заложен весь план дальнейшего развития живого. Согласно другой точке зрения, происхождение жизни - результат закономерной эволюции материи.

Эта последняя концепция представляется наиболее научной, рассмотрим ее детально. Широко распространенной и экспериментально обоснованной является модель, получившая за рубежом название гипотезы Опарина-Холдейна - по имени ученых, выдвинувших сходные гипотезы скорее всего независимо друг от друга. Общность развиваемых учеными взглядов состоит в принятии за исходные тезисы утверждения о том, что все необходимые для возникновения жизни биологически значимые органические соединения могут образоваться в абиогенных условиях, т.е. без участия живого, лишь на основе физико-химических закономерностей превращения веществ. Большинство современных специалистов также убеждено, что возникновение жизни в условиях первичной Земли есть результат естественной эволюции материи. Для изучения научной проблемы происхождения жизни необходимы прежде всего сведения о физико-химических условиях на ранней Земле. Такие данные связаны как с геологической эволюцией планеты, так и с эволюцией химических элементов Солнечной системы и солнечной активностью. Из большого числа химических элементов для жизни необходимы только 16, а водород, углерод, кислород и азот составляют почти 99% живой материи. В вещественном плане для становления жизни нужен, прежде всего, углерод. Жизнь на Земле основана на этом элементе, хотя в принципе можно предположить существование жизни и на кремниевой основе.

Уникальными свойствами обладает углерод, и наша жизнь называется углеродной или органической. Четырехвалентность углерода приводит к огромному числу его соединений, которыми занимается органическая химия. Углерод образует сложные молекулы, представляющие собой кольца и цепи, обеспечивающие разнообразие органических соединений. Аминокислоты - важный для жизни класс органических соединений. В живых организмах они используются для синтеза белков, растения могут синтезировать их из простых веществ, а в животные организмы часть их должна поступать с пищей, поэтому их называют незаменимыми. Из четырех нуклеотидов построены и другие крупные молекулы - нуклеиновые кислоты, тоже входящие в состав живой клетки. Кислород, водород и азот наряду с углеродом можно отнести к основам живого. Клетка состоит на 70% из кислорода, 17% углерода, 10% водорода, 3% азота. Все они принадлежат к наиболее устойчивым и распространенным на Земле химическим элементам. Они легко соединяются между собой, вступают в реакции и обладают малым атомным весом. Их соединения легко растворяются в воде. Органические вещества присутствовали на Земле при ее образовании. Они могли синтезироваться и на поверхности пылинок.

Современная теория происхождения жизни основана на идее о том, что биологические молекулы могли возникнуть в далеком геологическом прошлом неорганическим путем. Для возникновения жизни нужны определенные температуры, влажность, давление, уровень радиации, определенная направленность развития Вселенной и время. Земля подходила для зарождения жизни. Ее возраст 4,6 млрд. лет. Температура поверхности в начальный период была 4000-8000°С и по мере остывания Земли углерод и более тугоплавкие металлы конденсировались и образовали земную кору. Первичная атмосфера Земли на протяжении 2 млрд. лет состояла, вероятно, главным образом из водяных паров, N2, C02, с небольшой примесью других газов (NH3, CH4, H2S) при почти полном отсутствии 02 (практически весь кислород, содержащийся в атмосфере в настоящее время, является продуктом фотосинтеза). Отсутствие в первоначальной атмосфере кислорода было необходимым условием возникновения жизни, так как органические вещества легче создаются в восстановительной среде. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане, возникшем по мере охлаждения поверхности Земли вследствие конденсации водяных паров и выпадения осадков. В 1953 г. Г. Меллер экспериментально установил, что при подводе энергии (например, в форме электрических зарядов, ультрафиолетового излучения, радиоактивного излучения и тепла) к газовой смеси, содержащей углерод, водород, кислород и азот, в восстановительной среде образуются все важные детали для построения биовеществ: аминокислот, гидроокисей, Сахаров, пуриновых и пиримидиновых оснований. С инициацией химических процессов на планете Земля началась фаза химической эволюции около 4-4,5 млрд. лет назад. Основным результатом первой стадии химической эволюции стала интеграция простых атомов Н, С, N, Р,… в относительно сложные органические молекулы. Результатом химической эволюции стала интеграция атомов химических элементов во многие сложные органические молекулы, а молекул - во многие еще более сложные цепные молекулы. Важную роль в этих превращениях играли следующие химические элементарные процессы: гомогенный и гетерогенный катализ, автокатализ, бистабильность и колебания.

Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Видимо, на первичной Земле образование полимеров со случайной последовательностью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, оставшихся после отлива. Если полимер образовался, он способен влиять на образование других полимеров.

Сложную химическую эволюцию обычно выражают следующей обобщенной схемой: атомы -> простые соединения -> простые биоорганические соединения -> макромолекулы -> организованные системы. Следующим этапом после химической эволюции элементов является биохимическая эволюция.

Жизнь как особая форма существования материи характеризуется двумя отличительными свойствами-самовоспроизведением и обменом веществ с окружающей средой. На свойствах саморепродукции и обмена веществ строятся все современные гипотезы возникновения жизни. Наиболее широко признанные гипотезы - коацерватная и генетическая.

Коацерватная гипотеза (биохимическая эволюция). В 1924 г. русский ученый Александр Иванович Опарин впервые сформулировал основные положения концепции предбиологической эволюции и затем, опираясь на эксперименты Бунгенберга де Йонга, развил эти положения в коацерватной гипотезе происхождения жизни. Основу гипотезы составляет утверждение, что начальные этапы биогенеза были связаны с формированием белковых структур. Первые белковые структуры (протобионты, по терминологии Опарина) появились в период, когда молекулы белков отграничивались от окружающей среды мембраной. Эти структуры могли возникнуть из первичного «бульона» благодаря коацервации - самопроизвольному разделению водного раствора полимеров на фазы с различной их концентрацией. Процесс коацервации приводил к образованию микроскопических капелек с высокой концентрацией полимеров. Часть этих капелек поглощали из среды низкомолекулярные соединения: аминокислоты, глюкозу, примитивные катализаторы. Взаимодействие молекулярного субстрата и катализаторов уже означало возникновение простейшего метаболизма внутри протобионтов.

Схема образования коацерватной капли следующая: молекула белка в растворе сближение молекул белка с потерей воды образование коацерватной капли.

Обладавшие метаболизмом капельки включали в себя из окружающей среды новые соединения и увеличивались в объеме. Когда коацерваты достигли размера, максимально допустимого в данных физических условиях, они распадались на более мелкие капельки, например, под действием волн, как это происходит при встряхивании сосуда с эмульсией масла в воде. Мелкие капельки вновь продолжали расти, и затем образовывали новые поколения коацерватов. Постепенное усложнение протобионтов осуществлялось отбором таких коацерватных капель, которые обладали преимуществом в лучшем использовании вещества и энергии среды. Отбор как основная причина совершенствования коацерватов до первичных живых существ - центральное положение в гипотезе Опарина.

Генетическая гипотеза. Согласно этой гипотезе, вначале возникли нуклеиновые кислоты как матричная основа синтеза белков. Впервые ее выдвинул в 1929 г. Г. Меллер. Способность нуклеиновых кислот служить матрицами при образовании комплементарных цепей (например, синтез и-РНК на ДНК) - наиболее убедительный аргумент в пользу представлений о ведущем значении в процессе биогенеза наследственного аппарата и, следовательно, в пользу генетической гипотезы происхождения жизни. Гены наследственности располагаются в ДНК и передача информации идет в направлении ДНК-РНК-белок. Изменение пути передачи информации РНК-белок-ДНК произошло в результате эволюции РНК.

У английского ученого Дж. Холдейна «живыми или полуживыми объектами» назывались большие молекулы, способные к созданию своих копий. Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот. Вещество обрело тем самым важнейшее свойство самовоспроизведения и вступило в новую фазу эволюции - фазу самоорганизации через самовоспроизведения. Здесь большое значение имело образование молекулярного языка биополимеров. Элементарный язык биологической системы - это химический язык. Он имеет алфавит, состоящий из различных сортов нуклеотидов и аминокислот. Он позволяет выстраивать последовательности символов различной длины - единицы мутации, кодирования и рекомбинации. Возникали все более сложные репликативные системы, конкурировавшие друг с другом.

Возникновение протоклеток положило начало биологической эволюции вещества. После того как углеродистые соединения образовали «первичный бульон», могли уже организоваться биополимеры - белки и нуклеиновые кислоты, обладающие свойством самопроизводства себе подобных. Механизм естественного отбора действовал на самых ранних стадиях зарождения органических веществ - из множества образующихся веществ сохранялись устойчивые к дальнейшему усложнению. Как показывает синергетика, энергия имела для возникновения жизни не меньшее значение, чем вещество. Некоторые из первых стадий эволюции к жизни были связаны с возникновением механизмов, способных поглощать и трансформировать химическую энергию, как бы выталкивая систему в сильно неравновесные условия.

Начало жизни на Земле положило появление нуклеиновых кислот, способных к воспроизводству белков. Однако до сих пор остаются неясными детали перехода от сложных органических веществ к простым живым организмам. Теория биохимической эволюции предлагает лишь общую схему. В соответствии с ней на границе между коацерватами - сгустками органических веществ - могли выстраиваться молекулы сложных углеводородов, что приводило к образованию примитивной клеточной мембраны, обеспечивающей коацерватам стабильность. В результате включения в коацерват молекулы, способной к самовоспроизведению, могла возникнуть примитивная клетка, способная к росту. Следующим шагом в организации живого должно было стать образование мембран, которые отграничивали смеси органических веществ от окружающей среды. С их появлением и получается клетка - «единица жизни», главное структурное отличие живого от неживого.

Основные этапы биогенеза. Процесс биогенеза включал три основных этапа: возникновение органических веществ, появление сложных полимеров (нуклеиновых кислот, белков, полисахаридов), образование первичных живых организмов. Клетка - основная элементарная единица жизни, способная к размножению, в ней протекают все главные обменные процессы (биосинтез, энергетический обмен и др.). Поэтому возникновение клеточной организации означало появление подлинной жизни и начало биологической эволюции.

Все основные процессы, определяющие поведение живого организма, протекают в клетках. Тысячи химических реакций происходят одновременно, для того чтобы клетка могла получить необходимые питательные вещества, синтезировать специальные биомолекулы и удалить отходы. Огромное значение для биологических процессов в клетке имеют ферменты. Синтез белка осуществляется в клетке. Величина клеток - от микрометра до более одного метра. Клетки могут быть дифференцированными (нервные, мышечные и т.д.). Большинство из них обладают способностью восстанавливаться, но некоторые, например, нервные - нет или почти нет.

Рассмотрим подробнее особенности эволюции на клеточном уровне организации жизни. Наибольшее различие существует не между растениями, грибами и животными, а между организмами, обладающими ядром (эукариоты) и не имеющими его (прокариоты). Последние представлены низшими организмами - бактериями и сине-зелеными водорослями (цианобактерии, или цианеи), все остальные организмы - эукариоты, которые сходны между собой по внутриклеточной организации, генетике, биохимии и метаболизму. Различие между прокариотами и эу-кариотами заключается еще и в том, что первые могут жить как в бескислородной (облигатные анаэробы), так и в среде с разным содержанием кислорода (факультативные анаэробы и аэробы), в то время как для эукариотов, за немногим исключением, обязателен кислород. Все эти различия имели существенное значение для понимания ранних стадий биологической эволюции. Сравнение прокариот и эукариот по потребности в кислороде приводит к заключению, что прокариоты возникли в период, когда содержание кислорода в среде изменялось. Ко времени же появления эукариот концентрация кислорода была высокой и относительно постоянной. Первые фотосинтезирующие организмы появились около 3 млрд. лет назад, а значительное количество данных об ископаемых эукариотах позволяет сказать, что их возраст составляет около 1,5 млрд. лет. Можно предположить, что первая микрофлора и первая микрофауна появились 3,3-4 млрд. лет назад. Первыми микроорганизмами могли быть бактерии или примитивные водоросли. В дальнейшем важную роль начали играть трофические связи. Основанием возникшей трофической цепи служили автотрофные растения, которые производили молекулярные структурные единицы из воды и молекул газа под действием солнечного света. Они медленно изменяли состав атмосферы. Из неассимилирующих организмов шанс на выживание имели лишь паразиты на протофлоре. Так появился принцип гетеротрофии, под которым понимают любой организм (травоядный, плотоядный или всеядный), который питается другими организмами.

Возникновение содержащей кислород атмосферы, начавшееся 2 млрд. лет назад, глубоко изменило условия существования жизни. Для живых существ той далекой эпохи кислород был высокотоксичным газом, который в результате процесса окисления мог привести к разрушению органических молекул. Мутация и отбор помогли преодолеть и эту смертельную угрозу: возникли живые организмы, снабженные сначала примитивными органами, а впоследствии жабрами и легкими, которые развили высокоэффективные механизмы обмена веществ для атмосферы, содержащей кислород.

Собственно биологическая эволюция начинается с возникновения клеточной организации и в дальнейшем идет по пути совершенствования строения и функций клетки, образования многоклеточной организации, разделения живого на царства растений, животных, грибов с последующей их дифференциацией на виды.

Основные положения естественнонаучной теории происхождения жизни следующие.

Органические вещества сформировались из неорганических под действием физических факторов среды.

Органические вещества взаимодействовали, образуя все более сложные вещества, в результате чего возникли ферменты и самовоспроизводящиеся системы - свободные гены.

Свободные гены соединялись с другими высокомолекулярными органическими веществами.

Вокруг них стали образовываться белково-липидные мембраны.

Возникли клетки.

6. Из гетеротрофных организмов развились автотрофные. Основные этапы развития жизни на Земле представлены в табл. 14.1.

Таблица 1. Основные этапы развития жизни на Земле

Реальная шкала времени

Относительная шкала времени

Этапы развития жизни

3,5-4 млрд. л. н.

1 января

Процессы, приведшие к образованию органических молекул

1 февраля

Свидетельства существования первых бактерий

1 марта

Бактериальные колонии

3 млрд. л. н.

1 апреля

Нитчатые фотосинтезирующие водоросли

1 мая

Рост разнообразия бактерий

2,5 млрд. л. н.

1 июня

Высокое разнообразие бактерий

2 млрд. л. н.

1 июля

Развитие сложноорганизованных клеток

1,5 млрд. л. н.

1 сентября

Первые клетки, характерные для живых и высших растений

1 млрд. л. н.

1 октября

Рост разнообразия жизненных форм в морях, появление всех типов беспозвоночных

500 млн. л. н.

1 ноября

Начало освоения суши, первые челюст-норотые рыбы, развитие позвоночных

300 млн. л. н.

1 декабря

Развитие млекопитающих, динозавры, амфибии

100 млн. л. н.

Господство млекопитающих

11 млн. л. н.

31 декабря 8 ч

Начало эволюции человека

5 млн. л. н.

16 ч

Ископаемые останки людей

23 ч 59 м 58 с

Начало промышленной революции

Вопрос о закономерном или случайном характере возникновения живых существ является самым трудным для принятия различных концепций происхождения жизни. В гипотезе

Опарина жизнь рассматривается как закономерный результат эволюции материи во Вселенной. Альтернативные гипотезы происхождения, отрицающие это положение, постулируют либо предопределенный (американский биофизик Кеньон), либо случайный характер возникновения первичных организмов.

Если группа атомов в присутствии источника энергии образует некую стабильную структуру, то она имеет тенденцию к сохранению структуры. Самая ранняя форма конкуренции состояла в отборе стабильных форм и отбрасывании нестабильных. В этом нет ничего таинственного.

Одна из главных причин кризиса в решении проблемы происхождения жизни - отсутствие четкой границы между тремя понятиями: жизнь, живое и часть живого. Причем очень трудно одновременно изучать структуру и функцию: когда изучается структура (физико-химическими методами), то исчезает функция и наоборот.

Возраст самых древних организмов - клеток без ядер, но имеющих нити ДНК, похожих на бактерии и сине-зеленые водоросли - составляет около 3 млрд. лет. Около 2 млрд. лет тому назад в клетке появляется ядро. Одноклеточные организмы с ядром называются простейшими. Их 25-30 тыс. видов. Самые простые из них - амебы, инфузории с ресничками. Примерно 1 млрд. лет тому назад появились первые многоклеточные организмы и произошел выбор растительного и животного образа жизни.

Таким образом, эмпирические факты и теоретические концепции науки достаточно убедительно указывают, что современному уровню научного знания соответствует абиогенный характер возникновения и развития жизни. В рамках этой концепции предбиологическая эволюция имеет три фазы: первая - фаза элементарных полимеров, когда происходит абиогенный синтез простейших органических соединений; вторая фаза - полимеризация, ведущая к образованию предшественников нынешних живых клеток; третья - биохимическая фаза, в которой совершается возникновение генетического кода, биосинтез закодированных белков и переход к биологической эволюции.

Среди известных гипотез происхождения жизни наиболее распространены: креационизм, самопроизвольное возникновение, вечное существование, панспермия, биохимический путь.

Для научного изучения происхождения жизни необходимы прежде всего данные о физико-химических условиях на ранней Земле. Такие данные связаны как с геологической эволюцией планеты, так и с эволюцией химических элементов Солнечной системы и солнечной активностью.


Подобные документы

  • Тайна появления жизни на Земле. Эволюция зарождения жизни на Земле и сущность концепций эволюционной химии. Анализ биохимической эволюции теории академика Опарина. Этапы процесса, приведшего к возникновению жизни на Земле. Проблемы в теории эволюции.

    реферат [55,9 K], добавлен 23.03.2012

  • Содержание креационизма - философско-методологической концепции возникновения жизни. Основные идеи гипотез стационарного состояния, самопроизвольного зарождения и панспермии. Этапы появление живых организмов по концепции биохимической эволюции Опарина.

    реферат [26,0 K], добавлен 19.11.2010

  • История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.

    реферат [1,1 M], добавлен 17.05.2003

  • Проблема происхождения жизни на Земле. Возможности существования жизни в других областях Вселенной. Креационизм. Теория стационарного состояния, самопроизвольного самозарождения, панспермии. Современные возрения на происхождение жизни на Земле.

    реферат [2,5 M], добавлен 04.10.2008

  • Содержание и отличительные признаки теорий возникновения и развития жизни на Земле: самозарождения, биохимической эволюции, панспермии, стационарного состояния жизни, креационизма. Преимущества и недостатки каждой теории, история их становления.

    презентация [224,2 K], добавлен 17.12.2013

  • Определение понятия жизни, живых и неживых тел. Безжизненность первого периода развития планеты. Донаучные представления о происхождении жизни, научные исследования ее происхождения, невозможности самопроизвольного зарождения в современную эпоху.

    реферат [27,1 K], добавлен 07.10.2009

  • Общее понятие про креационизм. Характеристика концепций: божественное сотворение всего живого; многократное самозарождение жизни. История возникновения панспермии как концепции. Вариант возникновения жизни на Земле как следствия химических процессов.

    контрольная работа [192,5 K], добавлен 02.05.2009

  • Сущность гипотезы биохимической эволюции, предположений внеземного происхождения жизни (Панспермии), теории стационарного состояния жизни. Их основатели и сторонники. Источники и течения философско-теистической концепции креационизма христианских ученых.

    презентация [1,4 M], добавлен 27.02.2011

  • Развитие естественных наук в средние века, место и роль церкви в государстве. Построение теории строения атома на основе планетарной модели. Развитие астрономии, характеристики галактик. Теории возникновения жизни на Земле. Гипотезы происхождения рас.

    контрольная работа [34,7 K], добавлен 14.09.2009

  • Теории планетарной причинности зарождения жизни. Основные разновидности материи и связи между ними. Природа реликтового излучения - космического электромагнитного излучения с высокой степенью изотропности. Материалистическая природа эволюции Дарвина.

    контрольная работа [23,3 K], добавлен 10.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.