Основы биологии

Биологические системы, организация живой природы. Цитология: строение ядра, деление клетки; молекулярная биология. Размножение и развитие организмов, общая и медицинская генетика, хромосомная теория наследственности; теория эволюции и антропогенез.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 13.02.2012
Размер файла 301,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Такая форма паразитизма как кровепаразитизм-явление вторичное, возникшее из кишечного паразитизма. Tripanosoma жила в кишечнике насекомых. Когда эти насекомые стали питаться кровью позвоночных, Tripanosoma стала попадать во время акта сосания в кровь. Кровь оказалась ещё более питательной средой, чем содержимое кишечника и они стали в крови размножаться, не утратив способности жить в кишечнике.

Паразитизм внутренний в ряде случаев произошёл от эктопаразитизма. Например, у пеликана клещ пухоед мигрировал с перьев этой птицы в её громадный подклювный мешок и стал питаться кровью.

Основная масса случаев внутреннего паразитизма, а именно, случаи паразитизма кишечного, представляют собой первичное явление, развивавшееся в результате случайного заноса в пищеварительную систему яиц или покоящихся стадий различных свободно живущих организмов. Так, среди нематод Aloionema appendiculatum ведёт свободно живущий образ жизни. Однако, её личинки могут попасть в кишечник слизня и там достигнуть вдвое большей величины. Половозрелости же достигают лишь покинув слизня и откладывают 500-600 яиц вместо 30-40.

Взаимодействия паразита и хозяина

Между хозяином и паразитом существует сложное и противоречивое взаимодействие: паразит, находясь в хозяине и питаясь за счёт него, вызывает изменения его гомеостаза, выражающееся в аллергизации развития иммунитета той или иной силы и в большинстве случаев развития патологии. Смерть хозяина не выгодна для паразита, так как может привести к гибели и самого паразита. Поэтому эволюционно сложились между ними такие взаимоотношения, когда хозяин, несмотря на снижение в большинстве случаев жизнеспособности может в течение сравнительно длительного времени сохранять качество жизни.

Паразиты оказывают на хозяина:

1) механическое воздействие, повреждая те или иные органы (давление эхинококкового пузыря на печёночную ткань, протыкание стенок мочевого пузыря яйцами кровяного сосальщика, закупорка протоков);

2) отнимают пищу у хозяина (аскарида);

3) отравляющее действие продуктов метаболизма, особенно эндопаразитов на организм хозяина;

4) токсины и антигены вызывают образование антитоксинов и антител (слюна эктопаразитов вызывает специфические аллергические воспалительные реакции на коже);

5) эндопаразиты выделяют ферменты, которые мешают фагоцитам хозяина влиять на паразита;

6) паразиты могут выступать и как переносчики других паразитарных заболеваний;

7) могут быть косвенной причиной развития различных инфекций (изъязвление кишечника при дизентерийном амёбиазе-образует ворота инфекции).

Организм хозяина отвечает на присутствие в нем чужеродного в антигенном отношении паразита развитием:

1) клеточных реакций {лимфоциты и другие иммунокомпонентные клетки устремляются к месту расположения паразита (трихина, дизентерийная амёба) и нападают на паразита};

2) тканевых реакций (защитная соединительнотканная капсула вокруг трихины, цистицерка и т.д.);

3) развитием гуморальных реакций (образование антител).

Переход той или иной особи к паразитическому существованию также ведёт к целому ряду изменений приспособительного характера (атрофия органов дыхания у круглых червей, кишечника у ленточных червей), развитие специальных приспособлений, направленных на удержание в теле хозяина (присоски сосальщиков, крючья свиного цепня, ботрии широкого лентеца). У паразитов сильно гипертрофируется система органов размножения, так как шансы на выживание их во внешней среде резко снижаются (самка аскариды откладывает около 250 000 яиц в сутки).

Распространение паразитизма

Организм хозяина представляет для паразита среду первого порядка, а среда второго порядка - это окружающая среда, организм паразита сообщается непосредственно с внешней средой через организм хозяина.

Живые организмы создали возможность возникновения и эволюции паразитизма: жить за счёт другого, не убивая его сразу, оказалось выгодным для паразита. В настоящее время насчитывается около 9000 видов паразитических простейших, 2000 видов цестод, около 7000 видов трематод, 11000 видов нематод, около 100000 видов членистоногих, не считая многих бактерий, кокков, спирилл, спирохет, грибов, вирусов и других, также ведущих паразитическое существование.

Исходя из этого, почти все живущие на Земле виды организмов имеют своих паразитов, видимо, близки к истине утверждения о том, что на нашей планете больше паразитов, чем их хозяев.

Перед паразитологами стоит задача полной ликвидации паразитарных и в первую очередь глистных инвазий (учение К.И.Скрябина о девастации).

Ликвидирована в нашей стране малярия, ришта, резко снижена заболеваемость свиным и бычьим цепнями, а также кишечными паразитами.

Лекция 9. Генетика как наука. Основные закономерности наследования

План

1. Генетика как наука. Основные понятия генетики

2. Моногибридное скрещивание. Правило единообразия гибридов первого поколения

3. Моногибридное скрещивание. Правило расщепления

4. Ди- и полигибридное скрещивание. Правило независимого наследования признаков

5. Анализирующее скрещивание

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость - это способность организмов приобретать новые признаки - различия в пределах вида.

Наследование - это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

- скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

- был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

- было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум - дигибридным, по трем и более - полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака - прописной, а рецессивного - строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА - особь, гомозиготная по доминантному признаку

аа - особь, гомозиготная по рецессивному признаку

Аа - особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный - как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Моногибридное скрещивание

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г.Менделя).

Опыты по скрещиванию записывают в виде схем:

А - ген желтой окраски

а - ген зеленой окраски

Р - (parents - родители)

F - (filii - дети)

Р +АА х >аа

ж з

G (А) (а)

F1 Аа - 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Р + Аа х > Аа

ж ж

G (А) (а) (А) (а)

F2 АА; Аа, Аа; аа

желтые зеленые

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки - желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А - ген желтого цвета

а - ген зеленого цвета

В - ген гладкой формы

в - ген морщинистой формы

Р +ААВВ х >аавв

ж. гл. з. морщ.

G (АВ) (ав)

F1 АаВв - желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Р + АаВв х >АаВв

АВ

Ав

аВ

Ав

АВ

ААВВ-ж.гл

ААВв-ж.гл

АаВВ-ж.гл

АаВв-ж.гл.

Ав

ААВв-ж.гл

ААвв-ж.м.

АаВв-ж.гл

Аавв-ж.м

аВ

АаВВ-ж.гл

АаВв-ж.гл

ааВВ-з.гл.

ааВв-з.гл

ав

АаВв-ж.гл

Аавв-ж.м

ааВв-з.гл

аавв-з.м

9 частей - желтых гладких

3 части - желтых морщинистых

3 части - зеленых гладких

1 часть - зеленых морщинистых

Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Р + АА х > аа

G (А) (а)

F1 Аа

Р + Аа х > аа

G (А) (а) (а)

F2 Аа; аа

1:1

Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

Лекция 10. Хромосомная теория наследственности

План

1. Пол как наследственный признак

2. Определение пола

3. Наследование признаков, сцепленных с полом и ограниченных полом

4. Сцепление генов. Опыты и правило Моргана

5. Основные положения хромосомной теории наследственности

Хромосомная теория наследственности - раздел генетики о локализации наследуемых факторов в хромосомах клеток.

Суть ее заключается в том, что все признаки и свойства живых организмов определяются генами, расположенными в хромосомах клетки в линейном порядке. Основателем ее явился американский генетик Томас Морган, теория разработана его сотрудниками в начале ХХ века.

Пол как наследственный признак

Одним из признаков у многих живых организмов является пол (мужской и женский).

Пол - это совокупность морфологических, физиологических, биохимических и поведенческих признаков организма, которые обуславливают репродукцию (воспроизведение).

Пол - это генетически обусловленный признак, т.е. пол зародыша определяется генетическими механизмами - комбинацией половых хромосом. Половые хромосомы определяют первичные половые признаки.

Под их влиянием формируются половые железы (семенники и яичники), выделяющие мужские и женские половые гормоны. Половые гормоны определяют развитие вторичных половых признаков того или другого пола и проявляются у организмов в период полового созревания (у человека в 12 - 15 лет). Вторичные половые признаки - различие в размерах и пропорциях тела, тембр голоса, степень развития волосяного покрова и др.

Определение пола

У большинства организмов пол определяется в момент оплодотворения (сингамно) и регулируется хромосомным набором зиготы, его называют хромосомный тип определения пола.

У человека и млекопитающих женские особи имеют в кариотипе две Х - хромосомы (ХХ), а мужские Х- и У- хромосомы. Женские особи являются гомогаметными, поскольку формируют лишь один тип гамет, а мужские - гетерогаметными, т.к. образуют два типа гамет.

У птиц и бабочек гетерогаметным полом является женский пол, а гомогаметными - мужской. У них половые хромосомы обозначают как Z и W.

У некоторых клопов, жуков самки имеют состав половых хромосом ХХ, самцы же несут всего одну из них - (ХО).

Совершенно особый тип определения пола имеется у перепончатокрылых, в частности, у пчел. У этих насекомых самки развиваются из оплодотворенных яиц и клетки их тела диплоидны, а самцы развиваются партеногенетически из неоплодотворенных яиц и имеют гаплоидные клетки.

Хромосомная теория наследования пола утверждает, что гены определяющие развитие пола, локализованы в половых хромосомах. У человека гены, обуславливающие развитие женского пола, находятся в Х - хромосоме, а гены мужского пола - в У - хромосоме.

Основные типы хромосомного определения пола

Иначе обстоит дело у дрозофилы. При изучении наследования пола у мухи - дрозофилы было установлено, что у самки две одинаковые Х - хромосомы, а у самца Х- и У- - хромосомы. У дрозофилы гены, определяющие женский пол, находятся в Х - хромосоме, а У - хромосома генетически инертна и гены, определяющие развитие мужского пола, находятся в аутосомах. Оплодотворенные яйцеклетки, имеющие диплоидный набор хромосом и две Х - хромосомы дают начало самкам (2А + ХХ), а имеющие диплоидный набор аутосом и одну Х - хромосому дают самцов(2А+ХУ).

Опыты подтвердили, что чем больше наборов аутосом, тем больше были выражены признаки мужского пола. Из этого был сделан вывод, что У - хромосома у мухи - дрозофилы не имеет существенного значения для определения мужского пола.

Кроме сингамного способа определения пола существует эпигамный способ дифференцировки пола, который определяется воздействием условий окружающей среды, например, у морского кольчатого червя Bonnelia определяется условиями развития яйцеклеток (прогамный способ, как у коловраток).

Наследование признаков, сцепленных с полом и ограниченных полом

Сцепленными с полом называют признаки, развитие которых обусловлено генами, расположенными в половых хромосомах.

Если ген находится в У-хромосоме, то он наследуется у человека, млекопитающих - от отца к сыну, а у птиц - от матери к дочери.

Если ген располагается в Х-хромосоме, наследование будет более сложным. Впервые особенности наследования генов, сцепленных с Х-хромосомой были открыты в опытах на дрозофиле при изучении наследования окраски глаз. Красная окраска глаз доминирует над белой.

При скрещивании гомозиготной красноглазой самки с белоглазым самцом в F1 все потомство красноглазое.

Р + ХАХА х >ХЄУ

кр. бел.

G (XА) (XЄ) (У)

F1 XАXЄ х XАУ

кр. кр.

G (ХА) (XЄ) (XА) (У)

F2 ХАХА , ХАХЄ, ХАУ, ХЄУ

кр. кр. кр. бел.

При скрещивании гибридов первого поколения друг с другом в F2 происходит расщепление по фенотипу: 3 красноглазые особи: 1 белоглазая, и белоглазыми бывают только самцы.

При реципрокном (обратном) скрещивании, когда самка гомозиготная по гену белоглазости, скрещивается с красноглазым самцом, расщепление в F1 по фенотипу 1:1. При этом белоглазыми будут только самцы. При скрещивании мух F1 между собой в F2 будут мухи с обоими признаками в равном отношении 1:1, как среди самок, так и среди самцов.

Р + ХЄХЄ х >ХА У

бел. кр.

G (ХЄ) (ХА) (У)

F1 ХАХЄ х ХЄУ

кр. бел.

G (ХА) (ХЄ) (ХЄ) (У)

F2 ХАХЄ, ХЄХЄ, ХАУ, ХЄУ

кр. бел. кр. бел.

Из результатов опыта Моргана можно заключить, что гены окраски глаз расположены только в половой Х-хромосоме. Результаты скрещивания зависят от того, какой пол несет доминантный признак.

Наследование, сцепленное с полом, необходимо отличать от наследования, ограниченного полом.

Развитие признаков (ограниченных полом) обусловлено генами, расположенными в аутосомах (а не в половых хромосомах), но на проявление признаков в фенотипе сильно влияет пол, т.е. развитие признака зависит от влияния половых гормонов.

Например, облысение со лба, типично для мужчин. У мужчин под действием мужских половых гормонов (тестостерона) ген ведет себя как доминантный. Еще пример, тембр голоса - баритон и бас - характерны только для мужчин.

Сцепление генов. Опыты и правило Моргана

Изучение сцепленного с полом наследования стимулировало изучение сцепления между генами, находящимися в аутосомах.

Для любого организма характерно видовое постоянство хромосом в кариотипе. Генов, определяющих признаки, у организмов намного больше, чем хромосом. Например, у мухи дрозофилы 8 хромосом в соматических клетках, а генов около 1000. Значит, в каждой хромосоме находится много генов.

Гены, локализованные в одной хромосоме, образуют группы сцепления.

Число групп сцепления равно гаплоидному числу хромосом.

Наследование генов, локализованных в одной хромосоме, называется сцепленным наследованием.

В начале ХХ века Т. Морган и его сотрудники описали явление сцепления генов - совместную передачу групп генов из поколения в поколение.

Опыты проводились на мухах дрозофилах с учетом двух пар альтернативных признаков:

Цвет тела - серый (В) и черный (в)

Длина крыльев - нормальные (V) и короткие (v)

У мухи - дрозофилы окраски тела и длины крыльев находятся в одной паре гомологичных хромосом, т.е. относятся к одной группе сцепления, что и было доказано в опытах. Запись генотипов при сцеплении видоизменяется: генотип записывается BV

=

bv

(две черточки означают, что организм диплоидный).

При скрещивании мух, имеющих серый цвет тела и нормальные крылья с мухами черного цвета и короткими крыльями в F1 все мухи имели серый цвет тела и нормальные крылья.

Запись схемы скрещивания:

P +BV >bv

= x =

BV bv

сер.нор. чер.кор.

G (BV) (bv)

BV

F1 =

bv

Провели анализирующее скрещивание. В первом случае скрестили гибридного самца с серым телом и нормальными крыльями с черной самкой, имеющей короткие крылья, и в результате скрещивания получили 2 типа потомков, похожих на родителей в соотношении 1:1.

Ген серого цвета тела и ген нормального строения крыльев передаются вместе, а ген черного цвета тела и ген коротких крыльев тоже вместе. Этот опыт демонстрирует полное сцепление. Причина его заключается в том, что гены, обуславливающие два различных признака, лежат в одной хромосоме. Это видно на схеме полного сцепления:

Р +bv >BV

= x =

bv bv

G ( bv) ( BV ) (bv)

BV bv

F1 = =

bv bv

1:1

Другой результат получается, если для анализирующего скрещивания брать гибридную самку с серым телом и нормальными крыльями и рецессивного по обоим признакам самца.

В этом случае появилось четыре типа потомков в соотношении:

серых длиннокрылых - 41,5%; серых короткокрылых - 8,5%,

черных длиннокрылых - 8,5% , черных короткокрылых - 41,5%.

В этом случае имеет место неполное сцепление:

Р +BV > bv

= x =

bv bv

G ( BV) (bv)

некроссов. ( bv)

(Bv) (bV)

кроссов.

BV bv Bv bV

F1 = = = =

bv bv bv bv

41,5% 41,5% 8,5% 8,5%

Причиной неполного сцепления генов является кроссинговер (перекрест хромосом) и обмен участками между гомологичными хромосомами в профазе I деления мейоза при созревании половых клеток. Кроссинговер происходит у самок, у самцов дрозофил кроссинговер не происходит (установлено, что для особей гетерогаметного пола характерна более низкая частота кроссинговер).

При изучении результатов скрещивания получается 4 фенотипа среди потомков:

17%(8, 5+8, 5) особей образовались из кроссоверных гамет

83%(41, 4+41, 5) особей образовались из некроссоверных гамет.

Частота кроссинговера зависит от расстояния между генами в хромосоме. Расстояние между генами выражается в процентах кроссинговера между ними и обозначается в морганидах.

Изучение Морганом сцепления генов представляет собой закономерное биологическое явление.

Гены, локализованные в одной хромосоме, наследуются, сцеплено, причем сила сцепления зависит от расстояния между генами. Эта закономерность получила название правило Моргана.

Основные положения хромосомной теории наследственности

Основные положения хромосомной теории наследственности сводятся к следующему:

- носителями наследственной информации являются хромосомы и расположенные в них гены,

- гены расположены в хромосоме в линейном порядке друг за другом в определенных локусах. Аллельные гены занимают одинаковые локусы гомологичных хромосом,

- гены, расположенные в одной хромосоме, образуют группы сцепления и наследуются преимущественно вместе. Число групп сцепления равно гаплоидному набору хромосом,

- между гомологичными хромосомами возможен обмен участками - кроссинговер, который нарушает сцепление генов.

Сила сцепления зависит от расстояния между генами

- процент кроссинговера пропорционален расстоянию между генами. За единицу расстояния принимается 1 морганида, которая равна 1% кроссинговера,

- при неполном сцеплении в сумме вероятность некроссоверных гамет (гибридов) всегда больше, чем 50%,

- при расстоянии в 50 морганид и больше признаки наследуются независимо, несмотря на то, что локализованы в 1 хромосоме.

Лекция 11. Молекулярная генетика

План

1. Этапы развития молекулярной генетики.

2. Генетический код и его свойства.

3. Функционально-генетическая классификация генов.

4. Функциональная активность генов (экспрессия генов).

5. Регуляция экспрессии генов у про - и эукариот.

Молекулярная генетика занимается изучением структурно-функциональной организации генетического аппарата клеток и механизма реализации наследственной информации.

Этапы развития молекулярной генетики

Молекулярная генетика выделилась из биохимии и сформировалась как самостоятельная наука в 50-х годах прошлого столетия. Рождение этой науки связано с рядом важных биологических открытий:

1) В 20-40 гг. ХХ века было установлено, что носителем наследственной информации в клетке является молекула ДНК, а не белок, как считали раньше. Были получены прямые доказательства роли ДНК в наследственности. Это явления трансформации, трансдукции, половой процесс у бактерий, строение вируса, а также обнаружение почти полной идентичности химического состава ДНК (но не белков) у всех представителей данного биологического вида.

Данные о видовой специфичности строения ДНК получены в начале 50-х годов Эрвином Чаргаффом и его сотрудниками. Любая ДНК состоит из четырех типов нуклеотидов, содержащих одно из четырех азотистых оснований: аденин, тимин, гуанин, цитозин. Чаргафф с сотрудниками обнаружил, что соотношения между нуклеотидами, входящими в состав ДНК одинаковы в пределах вида и различаются у разных видов. Кроме того, число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых равно числу цитозиловых. Это открытие послужило главным ключом к выявлению структуры молекулы ДНК.

Трансформация у бактерий - это передача от одной бактериальной клетки другой наследственного материала. В 1928 году Фред Гриффит изучал трансформацию у двух штаммов пневмококка: вирулентного (вызывающего гибель мышей) и авирулентного (не вызывающего гибели).

Если убить вирулентные бактерии и вводить их вместе с живыми авирулентными, то часть животных все равно погибнет. Этот опыт свидетельствовал о том, что часть генетического материала из вирулентных бактерий проникла в авирулентные и сделала их вирулентными. После того как вирулентные клетки разделили на отдельные компоненты: углеводы, липиды, белки и ДНК, было обнаружено, что именно ДНК наделило живые бактерии генетическим признаком, которого у них до этого не было.

Трансдукция - это явление, заключающееся в том, что вирусы, выходя из бактериальной клетки, в которой они паразитировали, могут захватывать с собой часть ДНК и, перемещаясь в новые клетки передавать им признаки прежних хозяев.

Так, при внесении в неподвижные бактерии вирусов, размножавшихся в клетках подвижных культур, некоторые из бактерий становятся подвижными.

Половой процесс у бактерий - коньюгация, когда происходит обмен молекулами ДНК, и хотя новые бактерии не образуются, но их наследственный материал изменяется, т.к. происходит рекомбинация генетического материала.

Строение вируса или бактериофага: вирус состоит из молекулы ДНК (или РНК), заключенной в белковую оболочку. С помощью радиоизотопов было доказано, что именно ДНК проникает в клетку, а белковая оболочка остается снаружи. В результате образуются новые фаговые частицы. Таким образом, ДНК является носителем генетической информации и дает начало новым бактериофагам.

Косвенные доказательства: в соматических клетках разных органов содержится одинаковое количество ДНК, вдвое большее, чем в половых. Количество белков варьирует и не всегда больше, чем в половых.

2) Следующий этап развития молекулярной генетики связан с таким важным открытием, как установление структурной организации молекулы ДНК - в 1953 году. Крик и Уотсон установили, что ДНК состоит из двух спирально-закрученных цепей.

В настоящее время принято говорить о первичной, вторичной и третичной структуре ДНК: Первичной структурой ДНК называют линейную полинуклеотидную цепь, в которой мононуклеотиды соединены 3`,5`- фосфоэфирными связями. Модель Крика и Уотсона - это вторичная структура ДНК, основанная на принципе комплементарности и получившая название двойной спирали. Один виток спирали состоит из 10 нуклеотидов, размер витка 3,4 нм.

Дополнительное структурирование в пространстве двуспиральной молекулы ДНК (в конденсированных хромосомах) с образованием суперспирали является третичной структурой.

3) Определение направления передачи информации - «один ген - один фермент» - Бидл и Татум - 50-е годы. (В настоящее время - один ген - один полипептид).

4) Расшифровка генетического кода - Ниренберг, Очоа (К 1964 году расшифрованы коды для всех аминокислот). Выяснение механизма экспрессии генов у прокариот и ее регуляции - Франсуа Жакоб и Жан Моно - 50-е годы. природа клетка организм генетика

5) 70-е годы и до настоящего времени - выявление особенностей экспрессии генов у эукариот. Развитие генетической инженерии.

Генетический код и его свойства

Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в молекуле ДНК.

Свойства генетического кода:

1. Код триплетен - каждая аминокислота зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном.

2. Код вырожден - каждая аминокислота кодируется более чем одним кодоном. (Исключения - аминокислоты метионин и триптофан. Они кодируются одним кодоном.)

3. Код универсален - одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов.

4. Генетический код не перекрывающийся - триплеты нуклеотидов не перекрывают друг друга. У некоторых вирусов обнаружено перекрывание, но это исключение.

5. Имеются стартовый и терминальный кодоны. Стартовый - единый для всех - АУГ. Терминальный трех видов - УАГ, УАА, УГА.

Функционально-генетическая классификация генов

В настоящее время ген рассматривается как единица функционирования наследственного материала. Ген - это участок молекулы ДНК, ответственный за синтез одного полипептида.

Различают три вида генов:

- структурные;

- модуляторы;

- регуляторы.

Структурные гены несут информацию об аминокислотах в белках, ферментах, а также о последовательности нуклеотидов в молекулах р-РНК и т-РНК.

Гены-модуляторы влияют на функционирование структурных генов, могут смещать в ту или иную сторону процесс развития признака. Они подразделяются на:

1) ингибиторы или супрессоры (эпистатичные гены),

2) интенсификаторы - могут повышать способность структурных генов к мутациям,

3) модификаторы - могут влиять на структурные гены по типу комлементарности.

Гены-регуляторы контролируют синтез регуляторных белков, а также время включения различных структурных генов в процессе индивидуального развития.

Свойства генов:

1. Дискретность действия - каждый ген действует как самостоятельная единица наследственности.

2. Стабильность - при отсутствии мутаций ген передается в ряду поколений в неизмененном виде.

3. Специфичность действия - каждый ген влияет на развитие своего определенного признака.

4. Плейотропия - способность одного гена обеспечивать развитие одновременно нескольких признаков (синдром Марфана).

5. Присутствие в виде двух у диплоидных и большего числа аллелей у полиплоидных организмов.

6. Действие гена дозировано, при изменении числа доз гена в организме изменяется признак (например, при болезни Дауна происходит увеличение до трех доз генов 21 хромосомы)

Функциональная активность генов или экспрессия генов

У прокариот она осуществляется в два этапа: транскрипция и трансляция. У эукариот есть еще стадия процессинга.

Экспрессия генов заключается в синтезе на молекуле ДНК молекулы и-РНК, комлементарной ей (или транскрипции - переписывание, считывание биологической информации) и дальнейшее ее использование для синтеза белка. Единицей транскрипции в ДНК является транскриптон, превышающий по размерам структурные гены. Транскриптон в клетках эукариот состоит из неинформативной (акцепторной) и информативной зоны. Неинформативная зона начинается геном-промотором (участок из 80 нуклеотидов), к которому присоединяется фермент РНК-полимераза, катализирующая процесс считывания. У прокариот один вид РНК-полимеразы, у эукариот три.

За геном промотором находятся гены-операторы, которые связывают регуляторные белки (белки, включающие и прекращающие транскрипцию).

Информативная зона состоит из структурных генов, располагающихся за генами операторами. Структурные гены эукариот разделены спейсерами - участками ДНК, не несущими информации.

Кроме того, в составе самих структурных генов есть информационные участки - экзоны и неинформационные - интроны. У пркариот спейсеров, экзонов и интронов нет.

В каждой фазе жизненного цикла в клетке транскрибируется только 10% структурных генов, а остальные гены не активны, но часть из них может включаться в других фазах жизненного цикла.

В результате транскрипции у прокариот сразу образуется м-РНК (зрелая РНК) и сразу же начинается процесс трансляции.

У эукариот транскрибируется большая молекула и-РНК, содержащая все неинформативные участки. Она называется РНК-предшественница или пре-РНК. Поэтому за транскрипцией наступает процессинг, в результате, которого разрушаются все неинформативные участки: акцепторная зона, спейсеры и интроны, а оставшиеся экзоны сшиваются (сплайсинг).

На этапе процессинга к начальному отрезку образовавшейся РНК присоединяется последовательность нуклеотидов, называемая колпачком, к концевому - последовательность остатков аденина - поли- A.

В процессинге происходит модификация нуклеотидов в РНК, например, их метилирование, гидрирование.

И только после этих превращений образуется зрелая м-РНК, которая начинается вводной последовательностью, называемой лидером, и заканчивается концевой последовательностью - трейлером. Лидер - вводная последовательность нуклеотидов, комплементарная последовательности в молекуле р-РНК малой субъединице рибосом, которая обеспечивает прикрепление и-РНК к малой субъединице. Трейлер включает нонсенс-кодон и поли-А последовательность.

Кодовым элементом м-РНК является триплет нуклеотидов, называемый кодоном. Каждому кодону соответствует определенная аминокислота.

Первичной структурой РНК является, как и в ДНК, линейная цепь полинуклеотидов, в которой мононуклеотиды соединены 3`,5`-фосфоэфирными связями.

Вторичная структура РНК - изогнутая цепь, а третичная представляет собой нить, намотанную на катушку, роль катушки играет особый транспортный белок - информатор.

Образующаяся м-РНК идет в цитоплазму к месту синтеза полипептида (белка), т.е. к рибосомам.

На рибосомах осуществляется процесс трансляции. Трансляция - это механизм, с помощью которого последовательность нуклеотидов в молекулах м-РНК переводится в специфическую последовательность аминокислот в полипептидной цепи.

Трансляция складывается из трех стадий:

1. Инициация - начало синтеза полипептида.

2. Элонгация - удлинение полипептида.

3. Терминация - окончание синтеза полипептида.

На этапе инициации меньшая субъединица рибосомы узнает стартовый кодон АУГ м-РНК и прикрепляется к ней. АУГ занимает первую позицию. После этого присоединяется большая субъединица рибосомы и в ней начинается собственно синтез белка. К большой субъединице подходит т-РНК с аминокислотой.

В молекуле т-РНК одна ее часть присоединяет аминокислоту, а другая - антикодон, спаривается с колоном м-РНК, определяющим эту аминокислоту.

В большой субъединице есть:

1 - аминоацильный участок

2 - пептидильный участок

В т-РНК, антикодон которой комплементарен кодону АУГ

м-РНК приносит аминокислоту метианин и останавливается в аминоацильном участке. Стадия инициации контролируется факторами инициации. У прокариот их 3, у эукариот 6-7.

Вторая стадия - элонгации начинается с перемещения т-РНК с метианином в пептидильный участок, а на ее место приходит другая т -РНК с новой аминокислотой. Между двумя аминокислотами образуется пептидная связь. Тем временем рибосома продвигается вдоль м-РНК, на рибосоме оказывается новый кодон, к которому вскоре присоединяется своим антикодоном соответствующая т-РНК.

Все это повторяется многократно, до тех пор, пока рибосома не дойдет до одного из терминальных кодонов (УАА, УАГ, УГА).

Этим кодонам нет антикодона, нет аминокислоты. Наступает фаза терминации. К одной молекуле м-РНК прикрепляется обычно много рибосом и образуются полисомы.

В процессе трансляции наряду с факторами инициации и элонгации важное значение имеет фермент, связывающий т-РНК с аминоацильным участком - аминоацил т-РНКаза.

Регуляция экспрессии генов у про- и эукариот

У прокариот она осуществляется на уровне промотора, оператора и трансляции.

У эукариот регуляция происходит на всех этапах экспрессии: транскрипции, процессинга и трансляции.

Подробнее остановимся на регуляции экспрессии генов у бактерий.

Регуляция экспрессии генов у прокариот

Схема регуляции транскрипции структурных генов прокариотической клетки по типу репрессии

Схема регуляции транскрипции структурных генов прокариотической клетки по типу индукции

В 1961 году Жакоб и Моно установили, что у бактерий под контролем гена-регулятора синтезируется белок-репрессор, который регулирует активность других генов. Белок-репрессор связывается с геном-оператором и блокирует его, вследствие чего транскрипция (считывание информации) становится невозможной и клетка не может синтезировать соответствующие белки. Но если в клетку проникает какой-либо субстрат, для расщепления которого необходимо синтезировать ферменты, то происходит следующее: субстрат присоединяется к репрессору и лишает его способности блокировать ген-оператор.

К ДНК присоединяются РНК-синтезирующие ферменты и начинается транскрипция генов. Синтез белка-фермента прекращается, если субстрат полностью расщепляется, белок-репрессор освобождается и снова блокирует гены-операторы. Это пример регуляции по типу индукции. Также существует регуляция по типу репрессии: когда конечные продукты биохимической реакции, соединяясь с неактивным белком-репрессором, образуют комплекс, блокирующий работу гена-оператора.

Антитерминация - заключается в том, что происходит игнорирование терминальных кодонов, процесс экспрессии продолжается.

Регуляция у эукариот

1) Регуляция генной активности у эукариот намного сложнее, чем у бактерий. У эукариот она происходит не только на уровне клетки. Существуют системы регуляции организма как целого. Огромную роль в регуляции играют гормоны, но регулируют они процессы синтеза белков лишь в клетках-мишенях. Гормоны связываются с белками-рецепторами, расположенными в мембранах таких клеток и включают системы изменения структуры клеточных белков. Те, в свою очередь, могут влиять как на процессы транскрипции, так и процессы трансляции. Каждый гормон через систему посредников активирует свою группу генов. Так адреналин включает синтез ферментов, расщепляющих гликоген мышц до глюкозы, а инсулин влияет на образование гликогена из глюкозы в печени.

2) На стадии транскрипции белки-гистоны участвуют в процессах регуляции генной активности у эукариот. Непременное условие - это деконденсация участка, где происходит транскрипция.

3) Регуляция на уровне трансляции направлена на сохранение стабильности м-РНК, а эффективность трансляции осуществляется с помощью факторов инициации, элонгации, терминации.

Лекция 12. Изменчивость

План

1. Определение и формы изменчивости: модификационная, комбинативная, мутационная

2. Мутагенные факторы

3. Классификация мутаций

4. Устойчивость и способы репарации генетического материала

5. Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

Определение и формы изменчивости

Генетика изучает два основных свойства живых существ - наследственность и изменчивость.

Изменчивость - свойство организмов приобретать новые признаки и особенности индивидуального развития под влиянием факторов среды.

Изменчивость - один из важнейших факторов эволюции, обеспечивающих все многообразие живой природы.

Различают два вида изменчивости:

1. Фенотипическую (ненаследственную, модификационную);

2. Генотипическую (наследственную):

а) комбинативную;

б) мутационную.

Модификационная изменчивость - форма изменчивости, не связанная с изменением генотипа и вызванная влиянием факторов среды.

Модификационная изменчивость имеет особенности:

- не затрагивает наследственную основу организма и поэтому модификации не передаются по наследству, то есть от родителей к потомству,

- изменения направлены, происходят закономерно, их можно предсказать,

- имеют адаптивное (приспособительное) значение,

- имеют массовый (групповой) и обратимый характер,

- определенный фактор внешней среды вызывает сходное изменение у всех особей данного вида.

Модификационная изменчивость имеет предел. Границы изменчивости признака, обусловленные генотипом называются нормой реакции. Она может быть узкой, когда признак изменяется незначительно (цвет глаз), и широкой, когда признак изменяется в широких пределах (рост, масса тела).

В медицине часто приходится устанавливать норму реакции для оценки max и min количественных показателей (уровень гормонов, ферментов, гемоглобина и др.)

Комбинативная изменчивость - это наследственная изменчивость, обусловленная перекомбинацией имеющихся генов и хромосом, без изменения структуры генов и хромосом (наследственного материала). Этот тип изменчивости проявляется уже на стадии образования половых клеток.

Источниками комбинативной изменчивости являются процессы, происходящие в мейозе и в результате оплодотворения:

1. Рекомбинация генов при кроссинговере в профазе 1 мейоза.

2. Рекомбинация хромосом в ходе мейоза (независимое расхождение хромосом и хроматид при мейозе)

3. Комбинация хромосом в результате слияния гамет при оплодотворении (случайное сочетание гамет при оплодотворении).

Комбинативная изменчивость обеспечивает генотипическое разнообразие людей, объясняет наличие признаков у детей и внуков от родственников по отцовской и материнской линии.

Мутационная изменчивость - способность генетического (наследственного) материала изменяться и эти изменения наследуются в потомстве.

В основе мутационной изменчивости лежат мутации.

Мутации - это внезапные изменения генетического материала под влиянием среды и передающиеся по наследству.

Частота мутаций зависит от вида организма, от возраста, от фазы онтогенеза, стадии гаметогенеза, может происходить в половых и соматических клетках, иметь рецессивный и доминантный характер. Например, у человека до 6% гамет несут мутантные гены.

Процесс образования мутаций называется мутагенезом.

Факторы, вызывающие мутации называются мутагенными.

Мутации первоначально действуют на генетический материал особи, а через генотип изменяется и фенотип.

Мутагенные факторы

Факторы, вызывающие мутации называются мутагенными факторами (мутагенами) и подразделяются на:

1. Физические;

2. Химические;

3. Биологические.

К физическим мутагенным факторам относятся различные виды излучений, температура, влажность и др. Наиболее сильное мутагенное действие оказывает ионизирующее излучение - рентгеновские лучи, б-, в-, г- лучи. Они обладают большой проникающей способностью.

При действии их на организм они вызывают:

а) ионизацию тканей - образование свободных радикалов (ОН) или (Н) из воды, находящейся в тканях. Эти ионы вступают в химическое взаимодействие с ДНК, расщепляют нуклеиновую кислоту и другие органические вещества;

б) ультрафиолетовое излучение характеризуется меньшей энергией, проникает только через поверхностные слои кожи и не вызывает ионизацию тканей, но приводит к образованию димеров (химические связи между двумя пиримидиновыми основаниями одной цепочки, чаще Т-Т). Присутствие димеров в ДНК приводит к ошибкам при ее репликации, нарушает считывание генетической информации;

в) разрыв нитей веретена деления;

г) нарушение структуры генов и хромосом, т.е. образование генных и хромосомных мутаций.

К химическим мутагенам относятся:

- природные органические и неорганические вещества (нитриты, нитраты, алкалоиды, гормоны, ферменты и др.);

- синтетические вещества, ранее не встречавшиеся в природе (пестициды, инсектициды, пищевые консерванты, лекарственные вещества).

- продукты промышленной переработки природных соединений - угля, нефти.

Механизмы их действия:

а) дезаминирование - отщепление аминогруппы от молекулы аминокислот;

б) подавление синтеза нуклеиновых кислот;

в) замена азотистых оснований их аналогами.

Химические мутагены вызывают преимущественно генные мутации и действуют в период репликации ДНК.

К биологическим мутагенам относятся:

- Вирусы (гриппа, краснухи, кори)

- Невирусные паразитические организмы (грибы, бактерии, простейшие, гельминты)

Механизмы их действия:

а) вирусы встраивают свою ДНК в ДНК клеток хозяина.

б) продукты жизнедеятельности паразитов-возбудителей болезней действуют как химические мутагены.

Биологические мутагены вызывают генные и хромосомные мутации.

Классификация мутаций

Различают следующие основные типы мутаций:

1. По способу возникновения их подразделяют на спонтанные и индуцированные.

Спонтанные - происходят под действием естественных мутагенных факторов внешней среды без вмешательства человека. Они возникают в условиях естественного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности земли.

Индуцированные мутации вызываются искусственно воздействием определенных мутагенных факторов.

2. По мутировавшим клеткам мутации подразделяются на генеративные и соматические.

Генеративные - происходят в половых клетках, передаются по наследству при половом размножении.

Соматические - происходят в соматических клетках и передаются только тем клеткам, которые возникают из этой соматической клетки. Они не передаются по наследству.

3. По влиянию на организм:

Отрицательные мутации - летальные (несовместимые с жизнью); полулетальные (снижающие жизнеспособность организма); нейтральные (не влияющие на процессы жизнедеятельности); положительные (повышающие жизнеспособность). Положительные мутации возникают редко, но имеют большое значение для прогрессивной эволюции.

4. По изменениям генетического материала мутации подразделяются на геномные, хромосомные и генные.

Геномные мутации - это мутации, вызванные изменением числа хромосом. Могут появляться лишние гомологичные хромосомы. В хромосомном наборе на месте двух гомологичных хромосом оказываются три - это трисомия. В случае моносомии наблюдается утрата одной хромосомы из пары. При полиплоидии происходит кратное гаплоидному увеличение числа хромосом. Еще один вариант геномной мутации - гаплоидия, при которой остается только одна хромосома из каждой пары.

Хромосомные мутации связаны с нарушением структуры хромосом. К таким мутациям относятся утраты участков хромосом (делеции), добавление участков (дупликация) и поворот участка хромосом на 180° (инверсия).

Генные мутации, при которых изменения происходят на уровне отдельных генов, т.е. участков молекулы ДНК. Это может быть утрата нуклеотидов, замена одного основания на другое, перестановка нуклеотидов или добавление новых.

Устойчивость и репарация генетического материала

Устойчивость к изменениям генетического материала обеспечивается:

1. Диплоидным набором хромосом.

2. Двойной спиралью ДНК.

3. Вырожденностью (избыточностью) генетического кода

4. Повтором некоторых генов.

5. Репарацией нарушений структуры ДНК

Наличие механизмов репарации - обязательное условие существования биологических существ.

Репарация генетического материала - это процесс, обеспечивающий восстановление поврежденной структуры молекулы ДНК.

В ДНК клетки ежедневно происходит множество случайных изменений.

Большинство эффективно исправляются (репарируются) с помощью специальных ферментных систем.

Впервые репарация молекулы ДНК была установлена в 1948 году. А в 1962 году был описан один из способов репарации - световая репарация или фотореактивация.

Было установлено, что при ультрафиолетовом облучении вирусов-фагов, бактерий и простейших наблюдается резкое снижение их жизнедеятельности, даже гибель.

Если воздействовать на них видимым светом, то выживаемость их значительно увеличивается.

Оказалось, что под действием ультрафиолета в молекуле ДНК образуются димеры (химические связи между двумя основаниями одной цепочки, чаще Т-Т), образование димеров препятствует считыванию информации.

Видимый свет активирует ферменты, разрушающие димеры.

Второй способ репарации - темновая репарация, была изучена в 50-е годы ХХ века.

Темновая репарация протекает в четыре стадии с участием четырех групп ферментов. Ферменты образовались в ходе эволюции и направлены на поддержание стабильности генетической информации клетки.

1. Фермент эндонуклеаза находит поврежденный участок и рядом с ним разрывает нить ДНК.

2. Фермент эктонуклеаза «вырезает» (удаляет) поврежденный участок.

3. ДНК-полимераза по принципу комплементарности синтезирует фрагмент ДНК на месте разрушенного.

4. Лигаза «сшивает» синтезированный фрагмент с основной нитью ДНК.

Доказана возможность репарации ДНК при повреждении обеих ее нитей. При этом информация может быть получена с и-РНК (фермент ревертаза).

Закон гомологических рядов наследственной изменчивости Н.И. Вавилова

Известно, что мутирование происходит в различных направлениях. Однако, это многообразие подчиняется определенной закономерности, обнаруженной в 1920 году Н.И. Вавиловым. Он сформулировал закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что зная ряд форм в пределах одного вида, можно предвидеть существование параллельных форм у других видов и родов».

Можно сказать, что у родственных видов, имеющих общее происхождение возникают сходные мутации.


Подобные документы

  • Этапы становления биологии: традиционный - идея эволюции живой природы, эволюционный - теория Дарвина и Ламарка, молекулярно-генетический - законы наследственности. Создание синтетической теории эволюции. Мир живого: возникновение и эволюция жизни.

    реферат [33,2 K], добавлен 14.01.2008

  • Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа [28,1 K], добавлен 25.02.2012

  • Цитология как наука о клетках – структурных и функциональных единицах почти всех живых организмов. Основные положения клеточной теории. Открытие клетки. Основные свойства живых клеток. Открытие закона наследственности. Достижения современной цитологии.

    контрольная работа [1,5 M], добавлен 28.10.2009

  • Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа [378,6 K], добавлен 13.08.2010

  • Цели общей биологии, изучение происхождения, распространения и развития живых организмов, связей их друг с другом и с неживой природой. Конвергенция и параллелизм в эволюции животных, характеристика типа моллюсков, особенности их строения и образ жизни.

    контрольная работа [26,3 K], добавлен 24.03.2010

  • Эволюция как учение о длительном процессе исторического развития живой природы. Объяснение многообразия видов и приспособленности живых существ к условиям жизни. Развитие описательной ботаники и зоологии. Первая теория об эволюции органического мира.

    реферат [22,8 K], добавлен 02.10.2009

  • Развитие эволюционных учений. Исследования Менделя. Теория эволюции Дарвина. Эволюционные воззрения Ламарка. Генетический дрейф. Современная генетика. Геном человека. Аксиомы биологии. Фенотип и программа его построения. Синтез генитики и эволюции.

    реферат [41,0 K], добавлен 09.06.2008

  • Наука о клетках - структурных и функциональных единицах почти всех живых организмов. Создание клеточной теории. Открытие протоплазмы, основные свойства живых клеток. Развитие новых методов в цитологии. Законы генетической непрерывности и наследственности.

    реферат [20,2 K], добавлен 04.06.2010

  • Период жизнедеятельности клетки, в котором происходят все обменные процессы и деление. Интерфаза, метафаза и анафаза, деление клетки. Биологический смысл митоза. Вирусы и бактериофаги как неклеточные формы жизни. Виды и формы размножения организмов.

    реферат [20,3 K], добавлен 06.07.2010

  • Уровни организации живой материи. Положения клеточной теории. Органоиды клетки, их строение и функции. Жизненный цикл клетки. Размножение и его формы. Наследственность и изменчивость как фундаментальные свойства живого. Закон моногибридного скрещивания.

    шпаргалка [73,2 K], добавлен 03.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.