Клеточная поверхность: рецепторы, рециклирование мембран и передача сигналов

Клеточные механизмы контроля состояния окружающей среды, работа рецепторных систем. Рецепторы, определяющие клеточную адгезию. Группирование в структурно родственные семейства. Передача сигналов в животных клетках. Рецептор фактора роста эпидермиса.

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 31.07.2009
Размер файла 3,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4. Слияние мембран

Анализ процессов перемещения мембранных компонентов показывает, что слияние отдельных мембранных структур внутри клетки является весьма распространенным и очень существенным клеточным процессом. Такое слияние должно происходить очень быстро и с высокой избирательностью, без утечки вакуолярного содержимого в цитоплазму. Регуляция процесса должна быть очень тонкой. Например, плазматическая мембрана быстро сливается с периферическими эндоцитозными пузырьками, но не с плазматическими мембранами соседних клеток; с ними она слипается. Каков механизм слияния мембран и как он регулируется? Ответы на эти вопросы пока не получены, но из экспериментов на модельных мембранах установлены минимальные требования к слиянию мембран и показано, что в быстром и избирательном слиянии могут участвовать белки; об этом свидетельствуют результаты работ с использованием белков шиловидных выростов оболочки вирусов животных. Эти исследования показали, что слияние может происходить по крайней мере в два этапа. Во-первых, сливающиеся мембраны должны вступить в тесный контакт. Для этого необходимо преодолеть электростатическое отталкивание и, что наиболее важно, должна произойти дегидратация полярных групп липидных молекул. Во-вторых, в плотно прилегающих друг к другу бислоях должен существовать некий локальный дефект упаковки, чтобы могли реализоваться межмембранные гидрофобные взаимодействия. На каждом из этих этапов могут принимать участие белки, что, вероятно, и происходит in vivo.

4.1 Работы с липидными везикулами

Для опытов использовали две модельные системы: слияние липидных везикул и слияние плоской модельной мембраны с липидными везикулами. За процессом слияния можно следить с помощью светового или электронного микроскопа, но чаще проводят прямой количественный анализ слияния внутренних компартментов или смешивания липидов, образующих везикулы

Пусть одна группа везикул содержит дипиколиновую кислоту, а другая - Tb3 +. При слиянии везикул и смешивании их содержимого эти два реагента быстро образуют сильно флуоресцирующий ТЬ3 + - дипиколинатный комплекс, что и позволяет проводить количественные измерения. За процессом смешивания липидов можно следить, измеряя эффективность переноса энергии электронного возбуждения между флуоресцирующими липидными молекулами, принадлежащими до смешивания разным везикулам. Эти методы позволяют различать агрегацию везикул и их истинное слияние.

Замечательной особенностью однослойных фосфолипидных везикул является то, что самопроизвольно они сливаются с большим трудом. Хотя между противоположными фосфолипидными бислоями существует вандерваальсово взаимодействие, между ними имеется также сильное электростатическое отталкивание, особенно в том случае, когда везикулы содержат отрицательно заряженные фосфолипиды. Например, везикулы, содержащие фосфатидилсерин, не будут агрегировать, поскольку существует значительный энергетический барьер, препятствующий образованию плотного контакта между мембранами, необходимого для образования комплекса. Все фосфолипиды, включая цвиттерионные липиды, связываются с водой, и для того, чтобы два близлежащих бислоя могли вступить в прямой контакт, этот поляризованный водный слой на поверхности липидного бислоя должен быть удален. Дегидратация фосфолипидов требует больших энергетических затрат, и роль агентов, облегчающих слияние мембран, состоит, в частности, в снижении этого энергетического барьера. Некоторые фосфолипиды ги-дратированы в меньшей степени, чем другие, и образуют везикулы, которые сливаются гораздо легче. Например, везикулы, состоящие из фосфатидилэтаноламина / фосфатидилсерина, сливаются эффективнее, чем везикулы из фосфатидилхолина / фосфатидилсерина. Векзикулы, состоящие из фосфатидилэтаноламина, слипаются друг с другом сильнее, чем везикулы из фосфатидилхолина, из-за различий в степени гидратации.

Агенты, облегчающие слияние мембран

1. Кальций. При добавлении Са2+ к везикулам, содержащим анионные липиды, часто происходит их слияние. Если везикулы состоят только из анионных липидов, добавление Са2+ приводит к разрушению везикул; если же анионные липиды смешаны с нейтральными, такими, как фосфатидилэтанола-мин, то происходит слияние. Для этого необходимы высокие концентрации Са2+, который не может быть заменен Mg2+. Са2+ нейтрализует отрицательный поверхностный заряд, создаваемый анионными липидами, и облегчает агрегацию везикул. Кроме того, Са2+ особенно эффективен при образовании мостика между анионными фосфолипидами в близлежащих бислоях благодаря формированию прочного комплекса Саг. Это приводит к дегидратации липидов, т. е. выталкиванию воды из пространства между противоположными бислоями. Mg2 + стабилизирует агрегацию везикул, но обычно не стабилизирует тесный контакт дегидратированных противоположных бислоев, причем эффективность его действия зависит от липидного содержания везикул.

Деформация, происходящая при адгезии везикул, приводит к напряжению в мембранах, которое снимается при слиянии. Слияние облегчается при наличии дефектов упаковки липидного бислоя, возникающих из-за каких-то локальных флуктуации или образующихся на границе раздела фаз в присутствии Са2+. Как правило, четкой корреляции между условиями, приводящими к слиянию везикул, и условиями, облегчающими крупномасштабное разделение фаз липидов, не обнаруживается. Са2 + - индуцируемое слияние часто сопровождается лизисом.

Са2+ способствует также слиянию везикул из анионных липидов с плоскими мембранами. Однако в этом случае необходимым условием является наличие осмотического градиента или на везикуле, или на плоской мембране. По-видимому, слияние стимулируется благодаря дополнительным механическим напряжениям. Высказывалось предположение, что осмотическое набухание является движущей силой слияния мембран in vivo, но пока это не подтверждено экспериментально.

Имеет ли Са +-индуцированное слияние какое-либо физиологическое значение? Часто замечали, что во многих случаях слиянию in vivo предшествует изменение концентрации Са2+ в цитоплазме. Но концентрации Са2 +, требуемые для этого in vitro, гораздо выше физиологических. С другой стороны, отмечалось, что если два липидных бислоя уже тесно контактируют друг с другом, то их сродство к Са2+ очень высоко и образование Са2 +-мостиков между противоположными мембранами может индуцироваться при изменениях концентрации Са2 +, не выходящих за пределы физиологического диапазона.

Образуются ли при слиянии липидных бислоев какие-то промежуточные формы? Этот вопрос широко обсуждался. Рассматривалась возможность существования липидных частиц и небислойных форм. Однако об образовании редко встречающихся короткоживущих промежуточных структур, возникающих при слиянии липидных бислоев, мало что известно.

Полиэтиленгликоль и декстран. Эти агенты используются довольно часто, но охарактеризованы они хуже, чем Са2 +. Обычно считают, что они вызывают дегидратацию везикул, приводящую к их агрегации и слиянию.

Слияние под действием электрических сил. Слияние фосфолипидных везикул, как и клеток, можно индуцировать с помощью коротких электрических импульсов. Под действием высокого напряжения в мембранах образуются поры, что может привести к образованию тесного контакта между липидными бислоями. При наложении сильного электрического поля в мембранах могут также возникнуть долговременные дефекты, которые, по-видимому, облегчают образование гидрофобных контактов между близлежащими липидными бислоями.

Белки и пептиды. Показано, что слиянию везикул способствуют многие растворимые белки и амфифильные пептиды. Во многих случаях этот процесс зависит от рН и протекает только при протонировании соответствующих групп белковой молекулы. Например, в кислых условиях а-лактальбумин подвергается конформационному изменению, приводящему к экспонированию гидрофобной петли, что облегчает связывание с фосфо-липидными везикулами. Это каким-то образом облегчает слияние везикул. Слиянию фосфатидилхолиновых везикул способствуют два амфифильных пептида - мелиттин и 5_гемолизин из S. aureus. Оба они имеют гидрофобный участок, который может связываться с мембранами. Вероятно, благодаря локальному раазрушению бислоя преодолеваются электростатический и гидратационнный барьеры, затрудняющие агрегацию и слияние везикул. Высказывалось предположение, что при необходимости подобные гидрофобные пептиды могут образовываться и in vivo, однако убедительные данные на этот счет отсутствуют. Кроме того, известно, что отдельные участки белковых молекул могут вызывать такой же эффект без расщепления с последующим образованием пептидов.

4.2 Изучение белков, входящих в состав шиловидных структур оболочки вирусов

Конечно, описанная выше способность таких белков, как а-лак-тальбумин, облегчать слияние никак не связана с их физиологической ролью. Однако имеются белки, функция которых состоит именно в ускорении слияния мембран. Это гликопротеины шиловидных структур оболочки вирусов животных. Вирионы этих вирусов имеют бислойную липидную оболочку, с которой связаны вирус-специфические белки, опосредующие слияние вирусов с клеткой. Некоторые вирусы сливаются с плазматической мембраной, другие связываются с рецепторами на плазматической мембране и проникают в клетку путем эндоцитоза. Эти вирусы сливаются с мембраной эндоцитозных пузырьков только после закисления их содержимого.

Белки шипов выполняют две функции: 1) с их помощью вирусная частица прикрепляется к мембране животной клетки, обычно к гликопротеину или гликолипиду: 2) вероятно, они взаимодействуют непосредственно с мембраной клетки-мишени, так что мембраны вируса и клетки-хозяина приходят в тесный контакт и их слияние ускоряется. У некоторых вирусов функции прикрепления и ускорения слияния выполняют разные белки, а у других - один и тот же белок. В качестве примера можно привести В-белок вируса везикулярного стоматита и гемагглютинин вируса гриппа, участвующие в обоих процессах. Каждый из этих белков представляет собой гомотример, состоящий из трех идентичных субъединиц. Белки были очищены и встроены в липосомы, которые приобрели способность как к прикреплению, так и к слиянию. Способность к слиянию в обоих случаях проявлялась только при слабокислых условиях, которые соответствовали значению рН внутри эндоцитозных пузырьков. Эта способность, по-видимому, определялась небольшими сегментами белков, находящимися вблизи N_конца. Синтетический пептид из 25 аминокислотных остатков, соответствующий N_концевой последовательности В-белка вируса везикулярного стоматита, проявляет рН-зависимую гемолитическую активность, сходную с таковой самого вируса. Как соотносится это наблюдение со свойствами G_белка, пока неясно.

Гемагглютинин вируса гриппа - наиболее полно охарактеризован ная гликопротеиновая структура

Этот белок связан с вирусной мембраной с помощью короткого трансмембранного домена на С-конце. Он синтезируется как единая полипептидная цепь, но при созревании претерпевает протеолитическое расщепление с образованием двух полипептидов, HAi и НА2, связанных дисульфидной связью. Участок, отвечающий за слияние, локализован на N_конце НА2. Он соответствует N_концу G_белка вируса везикулярного стоматита.

С помощью рентгеновской кристаллографии была определена трехмерная структура водорастворимого домена гемагглютинина. Этот домен получают с помощью расщепления бромелаином. Он представляет собой трнмер из - субъединиц, напоминает по форме стержень и выступает из мембраны на 135 А. Каждая субъединица имеет а-спиральный «стебель» с глобулярной «верхушкой», которая содержит рецепторыый участок для сиалогликосоединений.

Гидрофобный фузионный пептид спрятан между субъединицами тримера и находится на расстоянии 30 А от поверхности мембраны. Как известно, при низких рН третичная и четвертичная структуры белка необратимо изменяются. При рН 5,0 белок приобретает способность связывать липиды и детергенты и самоагретируется, что позволяет думать об экспонировании гидрофобного домена. По-видимому, это коррелирует с экспонированием фузионного пептида, который теперь может связаться с мембраной-мишенью, способствуя сближению обеих мембран и облегчая их слияние. Были выделены и получены in vitro мутанты с другими рН-оптнмумом и фузноинымн свойствами. Это подтверждает важность контактирования субъединиц при рН-зависимом конформационном изменении структуры белка и роль фузионного пептида. Гемагглютинин ацилирован жирными кислотами, которые, по-видимому, усиливают фузионную активность.

Суммируя все сказанное выше, можно сделать вывод, что, хотя физико-химические механизмы слияния мембран до конца не установлены, очевидно, что специфическое слияние мембран внутри клетки может осуществляться с помощью некоего белокзависимого процесса. Для этого должно произойти специфическое межмембранное взаимодействие, обеспечивающее прикрепление мембран друг к другу, и должен присутствовать мембранный белок, который при необходимости обеспечивает слияние. Для изучения свойств таких белков можно использовать белки, образующие шиловидные структуры вирусных частиц. Но могут применяться и другие модельные системы. Вероятно, семейство таких белков участвует в слиянии мембран как при экзоцитозе, так и при эндоцитозе.

5. Рецепторные системы бактерий обладают некоторыми свойствами, присущими и высшим организмам

Во всех клеточных ответах участвуют системы передачи сигнала, которые преобразуют событие, происходящее вне клетки, - связывание лиганда с рецептором, - в сложный внутриклеточный ответ. Мы рассмотрим системы передачи сигналов у бактерий, а далее суммируем данные по таким системам у животных клеток.

Бактерии реагируют на изменение концентрации различных растворимых веществ в окружающей среде. Свободноплавающие бактерии, например Е. coli, обладают способностью к хемотаксису и при увеличении содержания в среде специфических питательных веществ перемещаются вверх по градиенту их концентрации, к источнику питания. В этом процессе участвуют рецепторы цитоплазматической мембраны, которые связываются с «привлекательным» для бактерии растворенным веществом и индуцируют серию событий в цитоплазме, приводящих к вращению жгутиков. Сходным образом клетки Е. coli реагируют на уменьшение концентрации фосфата или азота, синтезируя белки, которые придают клеткам способность «улавливать» эти компоненты из окружающей среды. В этом процессе также участвуют специфические рецепторы цитоплазматической мембраны.

Такие системы ответа активно изучались в первую очередь с помощью генетических и молекулярно-биологическнх методов. Данные по гомологии аминокислотных последовательностей позволили идентифицировать два семейства белковых рецепторов прокариот.

Рецепторы, участвующие в хемотаксисе и влияющие на вращение жгутиков.

Рецепторы, опосредующие ответы, которые влияют на аппарат транскрипции и активность генов.

Изученные типы рецепторов поражают своим сходством с рецепторами, характерными для клеток высших организмов.

5.1 Рецепторы, ответственные за хемотаксис Е. coli

К этому семейству белков относятся четыре рецептора. Их часто считают продуктами четырех генов - tsr, tar, tap и trg. Например, Wr_белок связывается с аттрактантом серином, а также опосредует хемотаксис в ответ на репеллент лейцин. Наиболее полно изучен рецептор для аспартата, который связывается с аттрактантом аспартатом, а также с мальтозосвяззывающим белком. Все четыре рецептора содержат единственную полипептидную цепь. Данные об их первичной структуре позволяют предположить, что это трансмембранные белки, которые имеют по две пронизывающие мембрану а-спирали. Характер укладки рецептора для аспартата, представленный на рис. 9.12, согласуется с результатами экспериментов по слиянию генов, а также с генетическими и биохимическими данными. Биохимические свойства рецептора для аспартата свидетельствуют о том, что он, по-видимому, представляет собой тетрамер. Все четыре хемотаксических белковых рецептора имеют высококонсервативные С-концевые половины, составляющие цитоплазматические домены; N_концевые части, составляющие периплазматические домены, гораздо менее консервативны.

Рецептор для аспартата выполняет три разные функции.

1. Связывание аспартата, за которое ответствен N_концевой домен, обращенный в периплазму. Белки с укороченным цитоплазматическим доменом тем не менее связываются с аспартатом нормально.

2. Передача сигнала, в которой участвуют аминокислотные остатки трансмембранных спиралей; об этом свидетельствуют результаты замещения лизина в положении 19 на аланин в первой трансмембранной спирали. Полученный мутантный рецептор связывает аспартат, но не индуцирует ответной реакции, что, вероятно, обусловлено изменением конформации белковой молекулы. Показано также, что рецептор может связываться с аспар-татом и с мальтозосвязывающим белком одновременно, при этом ответы усиливают друг друга. Природа конформацнонного изменения в рецепторе, индуцируемого связыванием лиганда, неизвестна, но, по-видимому, это изменение затрагивает значительную часть полипептида. Механизм, с помощью которого рецептор влияет на «мотор», приводящий в движение жгутики, также неизвестен; установлено только, что в нем участвует С-концевой домен рецептора и он может быть связан с фосфорилнрованием одного из других белковых компонентов системы.

3. Адаптация, которая заключается в том, что система способна реагировать на увеличение концентрации лишь непродолжительное время; через несколько минут рецептор десенсибилизуется, т. е. адаптируется к новой концентрации аттрактанта. Но затем рецептор вновь приобретает способность реагировать на дальнейшие изменения концентрации аттрактанта. Частично это связано с метилированием и деметилированием рецептора по нескольким глутаминовым остаткам, расположенным в цитоплазматическом домене. Адаптация отсутствует у рецепторов с укороченным С-концом; эта мутантная форма реагирует на аспартат в течение всего времени, пока последний находится в среде.

В ходе многочисленных экспериментов была продемонстрирована кажущаяся независимость функциональных доменов, расположенных на N- и С-концах белка. Такие белки обладали хемотаксической активностью по отношению к серину. Подобные конструкции наблюдались также у семейства рецепторов пептидных гормонов животных клеток.

Из всего сказанного можно сделать следующие выводы.

Существует семейство трансмембранных рецепторов с родственными последовательностями.

Наличие у рецепторов разных функций предполагает, что у них имеются разные структурные и функциональные домены.

И высшие, и низшие организмы обладают системой передачи сигнала, в которую вовлечены другие цитоплазматические белки, вероятно каким-то образом модифицирующиеся благодаря конформационному изменению, которое претерпевает рецептор при связывании лиганда.

Система адаптируется к сигналу, т. е. может отвечать на него лишь непродолжительное время. Это свойство присуще многим системам клеточного ответа; его называют также десенсибилизацией.

5.2 Рецепторы, участвующие в активации транскрипции

Это второе семейство рецепторов обнаружено у множества бактерий, которые отвечают на сигнал активацией транскрипции отдельных генов. Во всех случаях система имеет два белковых компонента: 1) сенсор, или рецептор, и 2) регулятор. Все рецепторы, по-видимому, имеют сходную структуру. Они содержат две трансмембранные спирали в N_концевой половине молекулы. С-концевые последовательности представителей этого семейства, находящиеся на цитоплазматической стороне мембраны, в значительной степени гомологичны. Регуляторные белки, по-видимому, находятся в цитоплазме в растворимой форме. Вероятно, рецепторы каким-то образом модифицируют эти белки, и затем они прямо или косвенно активируют транскрипцию. Возможно, модификация состоит в фос-форилировании; об этом свидетельствуют данные, полученные при исследовании системы ответа на ограничение концентрации азота.

Рассмотрение семейства бактериальных рецепторов показывает, что на основе одной структурной идеи может быть получено соответствие между самыми разными лигандами и ответами на них. Об этом же свидетельствует и изучение некоторых рецепторов животных клеток. Система передачи сигнала в животных клетках в отличие от бактерий изучена весьма детально.

6. Передача сигналов в животных клетках

Животные клетки реагируют на самые разные вещества, содержащиеся во внешней среде. Первым шагом при этом всегда является связывание лиганда со специфическим рецептором на наружной поверхности плазматической мембраны. Связывание с лигандом инициирует каскад специфических для данных клетки и рецептора событий, которые весьма интенсивно и плодотворно изучаются. Быстрое накопление новых данных в этой области вскоре потребует привлечения новых подходов для их систематизации. Однако наиболее общие проблемы здесь уже вполне ясны, даже при том, что многие детали малоизучены или неизвестны. Мы ознакомимся с этими центральными вопросами и теми связанными с мембранами биохимическими явлениями, которые уже хорошо охарактеризованы.

В табл. 1 перечислены рецепторы животных клеток, которые участвуют в передаче сигнала; многие из них были клонированы и была определена их первичная структура. Таблица составлена таким образом, чтобы подчеркнуть их структурное сходство. Большинство рецепторов, опосредующих передачу сигнала, связывают либо митогенные агенты, либо нейромедиаторы. К митогенным агентам относятся такие вещества, как ФРЭ, пептидные гормоны и регуляторные пептиды. Эти соединения регулируют рост клеток при различных условиях, в частности при эмбриогенезе, созревании клеток или их пролиферации, которая является частью иммунного ответа. К нейромедиаторам относятся адреналин, норадреналин, ацетилхолин, глицин и множество других малых молекул, участвующих в клеточном ответе.

Было бы полезно сказать еще несколько слов о классификации рецепторов, особенно рецепторов нейромедиаторов. В основе названий и классификаций этих рецепторов лежит их способность отвечать на различные агонисты и антагонисты, а также их физиологические функции и локализация. Однако тот факт, что имеются рецепторы, отвечающие на один и тот же агонист, означает, что классификация, основанная на свойствах и локализации, не может использоваться для разграничения рецепторных белков. Например, адренергические рецепторы, специфически связывающие катехоламиновые агонисты, такие, как норадреналин и адреналин, были сначала подразделены на типы а и 13 и далее на подтипы а, аг, 0\ и ft - Были выделены соответствующие рецепторные белки, правда, не все они строго вписывались в рамки классификации по фармакологическим признакам. Аналогичным образом по фармакологическим признакам были выделены два класса мускариновых холинергических рецепторов и идентифицированы по крайней мере четыре клонированных гена. Они отличались от никотинового ацетилхолинового рецептора по специфическому ответу на лекарственные препараты. Существуют также многочисленные классы рецепторов для гистамнна, дофамина, опиатов и других агонистов. Можно ожидать, что в будущем благодаря применению биохимических методов и методов молекулярного клонирования удастся идентифицировать разные рецепторные белки и установить механизмы клеточного ответа. Это позволит по-новому подойти к классификации рецепторов, основанной на их фармакологических свойствах.

6.1 Первичный ответ и семейства рецепторов

Лиганд, связываясь с рецептором, должен индуцировать в нем конформационный переход, приводящий к функциональным изменениям в других частях молекулы. Природа такого перехода абсолютно неизвестна. Установлено лишь, что по крайней мере в IgE_рецепторе с высоким сродством связывание лиганда индуцирует агрегацию рецептора в плоскости мембраны, однако нет никаких указаний на то, что это характерно для всех передающих сигнал рецепторов. Хотя структурные детали гормонов или нейромедиаторов остаются неизвестными, их важные функциональные особенности сейчас более или менее ясны. При связывании агониста происходят следующие три события.

Связывание агониста индуцирует открывание канала, образуемого рецептором. Примерами могут служить никотиновый ацетил-холииовый рецептор, рецептор 7_амнномасляной кислоты и глициновый рецептор. Все это рецепторы нейромедиаторов, которые структурно объединены в малое суперсемейство. На основании данных о первичной структуре этих рецепторов / ионных каналов для каждого полипептида была построена модель с четырьмя трансмембранными сегментами, однако экспериментальные исследования топологии nAChR еще не закончены.

При связывании лиганда активируется тирозиновая протеин-киназа, представляющая собой цитоплазматический домен рецептора. Обычно сам рецептор и является мишенью, но данные о том, какие именно белки фосфорилируются и как они влияют на клетку, практически отсутствуют. Этот механизм используют рецепторы митогенных пептидных гормонов и факторов роста, причем многие из этих рецепторов структурно родственны между собой. Каждый из этих рецепторных полипептидов имеет по одному трансмембранному сегменту.

3. Рецептор образует комплекс с одной из групп мембраносвязанных GTP_связывающих белков, называемых G_белками. При связывании лиганда с рецептором в комплексе peuenTop/G_белок происходит конформационное изменение, в результате чего облегчается обмен связанного GDP и GTP на G_белке.

Последовательность происходящих событий изображена на рис. 9.15. G_белок активируется на короткое время, будучи связанным с GTP, и в этом состоянии может отделиться от рецептора, причем одна или больше субъединиц G_белка могут связаться с другими мембранными белками, обозначенными на рис. 9.15 словом «мишень», оказывая на них определенное воздействие. К этим мишеням относятся ионные каналы, аденилатциклаза, cGMP/фосфодиэстераза и фосфолипаза С.

Принадлежат также /З-адренергические рецепторы, мускариновые ацетилхолиновые рецепторы и опсины. Каждый из этих рецепторов имеет семь трансмембранных сегментов. На рис. 4.1 показана предполагаемая структура родопсина - наиболее полно охарактеризованного представителя этой группы.

6.2 G_белки

Гуаниннуклеотидсвязывающие регуляторные белки, или G_белки, ответственны за передачу сигналов множества гормонов или нейромедиаторов к разнообразным мишеням клетки. Соответствующие примеры приведены в табл. 9.3. Четыре G_белка были очищены до гомогенного состояния и биохимически охарактеризованы: d, Gs, Gi и G0. Оказалось, что каждый из них имеет уникальные мишени или эффекторные белки. Gt активирует cGMP_специфичную фосфодиэстеразу в наружных сегментах палочек сетчатки; Gs и Gi соответственно стимулируют и ингибируют аденилатциклазу и присутствуют во всех клетках; G0 представлен в большом количестве в клетках мозга и, по-видимому, ингибирует электрочувствительный Са2 +-канал в нейронах. Кроме того, почти несомненно имеются и другие, пока не выделенные G_клетки. G_белок Gp, вероятно, использует в качестве мишени фосфатидилинозитолспецифичную фосфолипазу С, которая инициирует быстрый распад фосфатидилинозитола в плазматической мембране и образование нескольких вторых посредников. Существует также G_белок, обозначаемый Gp, выделенный из мембран плаценты человека, однако его функция неизвестна. Другой G_белок, GK, по-видимому, открывает К+-специфичные каналы в сердечной мышце и других клетках; G_белки участвуют также в регуляции экзоцитоза. В некоторых случаях какой-то один G_белок внутри клетки может отвечать на связывание лиганда с одним из нескольких разных рецепторов. Такая ситуация скорее всего имеет место, например, для белка Gk из клеток ганглия Aplysia. Кроме того, G_белки могут иметь больше одной мишени. В качестве примера можно привести белок Gt, который активирует как cGMP_фосфоднэстеразу, так и фосфолипазу А2 в наружных сегментах палочек сетчатки быка. По-видимому, в этих процессах активации участвуют различные субъединицы Gt.

Все четыре выделенных белка являются а-гетеротримерами. Биохимический анализ и анализ последовательности кДНК указывают на значительное различие между субъединицами, на существование по меньшей мере двух разных /З-субъединиц, а также на различия между 7_субъединицами. а-Субъединицы связывают GDP и обладают ОТРазной активностью при отсоединении от /37_субъединич-ной пары. а-Субъединица также содержит сайт, по которому может происходить ADP_рибозилирование бактериальными экзотоксинами. Gi, G0 и Gt модифицируются коклюшным токсином, a Gs и Gt - холерным токсином. Эта ковалентная модификация блокирует фосфорилирование G_белка и служит одним из тестов на участие G_белков в качестве интермедиатов в клеточных ответах. Заметим, что модификации холерным и коклюшным токсинами оказывают существенно разные эффекты. Модификация холерным токсином приводит к непрерывной активации Gs в присутствии АТР, а коклюшный разъединяет Gi, G0, Gt и рецептор, необходимый для их активации.

G_белки могут стимулироваться в отсутствие гормона при добавлении в цитозоль негидролизуемого аналога GTP - GTP7S, который связывается а-субъединицей. Это служит вторым тестом на участие G_белков в физиологическом ответе. Стимулировать G_белок может и добавление фторида; по-видимому, при этом образуется фторалюминатный комплекс со следовыми количествами алюминия. Этот ион, A14, связывается с комплексом G_белок/ GDP и активирует его, по-видимому, так же, как аналог 7_фосфата GTP.

Все G_белки прочно связаны с плазматической мембраной, за исключением трансдуцина, который in vitro может легко отсоединяться от мембраны. По крайней мере в двух случаях - для Gi и Go - было показано, что для прочного прикрепления а-субъединиц к мембране необходимо присутствие 07_пары. Ни одна из субъединиц не является трансмембранным белком. Однако по меньшей мере в некоторых случаях а-субъединица ацилирована и может присоединяться к мембране с помощью ковалентно связанной жирной кислоты. Присоединение к рецептору гормона или нейромедиатора ускоряет быстрый обмен GDP, связанного с а-субъединицей, с GTP. G_белок отсоединяется от рецептора, и в конечном счете а-субъединица отсоединяется от /37_пары. G_белок или отсоединившиеся а-либо /37_субъединицы диффундируют в плоскости мембраны или через цитоплазму к мишени. Способы связывания субъединиц G_белка с мембраной и с их партнерами-мишенями или рецептором точно не известны. Однако установлено, что после отсоединения а- и 07_субъединицы могут обладать разными функциями; так, в случае трансдуцина-а был выделен из родопсинсвязан-ной системы, где он присутствует в относительном избытке. Установлено, что G_белки повсеместно используются для передачи информации о том, что рецептор занят, на специфическую внутриклеточную систему амплификации сигнала. По-видимому, в будущем будут обнаружены другие G_белки и достигнуты новые успехи в определении их специфичности, особенно в случае, когда одна клетка содержит разные G_белки.

6.3 Обновление фосфатидилинозитола и вторые посредники

Наиболее широкораспространенными мишенями G_белков являются аденилатциклаза и фосфолипаза С, ответственная за гидролиз фосфатидилинозитола. Модуляция адени-латциклазы приводит к изменению внутриклеточной концентрации сАМР, который, как известно, служит вторым посредником, влияя на множество внутриклеточных процессов. Одним нз последствий увеличения содержания сАМР является, например, стимуляция сАМР-зависимой протеинкиназы, которая в свою очередь фосфорилирует специфические белковые субстраты. Клетки содержат также два типа Са2 + - зависимых протеннки-наз, активируемых соответственно Са2 +-кальмодулином и Са2 + вместе с диацилглицеролом и фосфатидилсерином. Активность обеих этих кии аз регулируется вторыми посредниками, образующимися при деградации фосфатидилинозитола, которая во многих клетках инициируется путем G_белокзависимой активации специфической фосфолипазы С. Установление механизма обновления фосфатидилинозитола и физиологической роли продуктов его деградации явилось главным достижением в выяснении роли гормонов и нейромедиаторов в осуществлении клетками их функций.

На долю фосфатидилинозитола приходится лишь 2-8% всех фосфолипидов, содержащихся в клеточных мембранах эукариот. Структура его полярной головки представлена на рис. 9.16. Этот стереоизомер называют миоинозитолом, поскольку впервые он был выделен из мышц. Небольшая часть фосфатидилинозитола фосфорилирована по положению 4 или по положениям 4 и 5. От 1 до 10% фосфатидилинозитола, присутствующего в мембране, приходится на долю фосфатидилинози-толбисфосфата, обозначаемого как PIP2 или Р1Р2. Этот компонент является, вероятно, первой мишенью для фосфатидили-нозитолспецифичной фосфолипазы С, которая активируется во многих клетках G_белком. Последующий гидролиз приводит к быстрому распаду фосфатидилинозитола в плазматической мембране и кратковременному возрастанию количества продуктов распада. Например, во время активации тромбоцитов за 90 с деградирует половина общего пула фосфатидилинозитола. Продукты распада действуют как вторые посредники и участвуют во многих клеточных процессах. Исследование этой системы еще не закончено, но общая ее схема уже построена и представлена на рис. 9.16. Последовательность событий такова.

Начальными продуктами гидролиза PIP2 являются диацил-глицерол и ииозитолтрисфосфат. Диацилглицерол связан с мембраной, а 1Рз является растворимым компонентом. Обычно жирные кислоты фосфатидилинозитола представлены стеариновой кислотой в положении 1 и арахидоновой кислотой в положении 2 глицерола. Из мозга быка были выделены две разные фосфатидилииозитолспецифичные фосфолипазы С, но данные об их активации G_белком in vitro отсутствуют.

1Рз служит вторым посредником, и его основной функцией, по-видимому, является мобилизация Са2 +, аккумулированного в эидоплазматическом ретикулуме. Возможно, этот компонент путем прямого связывания открывает Са2 + - специфичные каналы в эидоплазматическом ретикулуме, что приводит к увеличению концентрации Са2 + в цитоплазме в несколько раз. Обычно концентрация свободного Са2+ в цитоплазме составляет 0,1 мкМ.

3. Специфическая кии аза превращает некоторое количество 1Рз в тетрафосфорилированный продукт 1Р4. Образуются также другие, в том числе циклические, фосфоинозитиды, и некоторые из них тоже имеют физиологическое значение.

4. Одним из ферментов, регулируемых Са2 +, является фосфолипаза С, которая при низкой концентрации Са2+ использует в качестве субстрата преимущественно PIP2, но при более высокой концентрации Са 2 +, по крайней мере in vitro, использует нефосфорилированиый фосфатидилинозитол. Возможно, это облегчает непосредственный быстрый гидролиз основной части фосфатидилинозитола, но так ли это - неясно.

Наиболее важным ферментом, активируемым Са2 +, является протеинкиназа С. Этот фермент локализован преимущественно в цитозоле до момента появления там диацилглице-рола и Са2 +. Затем в зависимости от присутствия фосфатидилсери-на он связывается с плазматической мембраной и активируется. Эффекты, сходные с действием диацилглицерола, оказывают форболовые эфиры, и протеинкиназу С часто рассматривают как рецептор этих соединений. Одним из признаков участия протеинкиназы С и фосфоинозитидной системы в клеточном ответе на присутствие агониста является дублирование эффектов агониста путем добавления форболовых эфиров, которые непосредственно активируют протеинкиназу С.

В активированном состоянии протеинкиназа С является серини треонинспецнфичной протеинкиназой, которая фосфорилирует как специфические мишени, так и саму себя. Природа такой субстратной специфичности и физиологические последствия фосфори-лирования белков точно не известны. Однако с помощью молекулярного клонирования удалось установить, что существует семейство протиеинкиназ С. Возможно, оии обладают разной специфичностью, как и семейство G_белков.

Механизм регуляции работы протеинкиназы С неизвестен; установлено лишь, что ганглиозиды и лизосфннголипиды ин-гибируют этот фермент, а кроме того, выделен его ингибитор белковой природы.

Диацилглицерол может подвергаться дальнейшей деградации под действием диацилглицероллипазы до арахидоновой кислоты, которая окисляется до множества биологически активных метаболитов, называемых эйкозаноидами и включающих простагландины. Хотя арахидоновая кислота сама является вторым посредником, неясно, насколько существен для ее образования фосфатидилинозитолспецифичный, зависимый от фосфолипазы С путь. С другой стороны, арахидоновая кислота может образовываться из множества фосфолипидов при действии фосфолипазы А2. В нескольких типах клеток путь биосинтеза с участием фосфолипазы Аг более важен.

Итак, суммируя сказанное выше, можно утверждать, что при функционировании рассмотренной сложной системы образуются по меньшей мере три известных вторых посредника: диацилглицерол, 1Рз и арахидоновая кислота. Каждый из них выполняет специфические функции, включая увеличение содержания внутриклеточного Са2 + н активацию Са2 + - зависимых протеинкинаэ. Эта система распространена весьма широко, но детали механизма воздействия с ее помощью на специфические клеточные функции пока неясны.

6.4 Фосфорилирование рецепторов и десенсибилизация

Физиологический ответ на действие гормона или нейромедиатора обычно является кратковременным даже при постоянном присутствии агониста. Это явление называется десенсибилизацией и характерно для многих систем ответа как у эукариот, так и у прокариот. Десенсибилизация системы хемотаксиса Е. coli частично обусловлена ковалентной модификацией рецепторов путем метилирования. В животных клетках решающую роль в десенсибилизации играет фосфорилирование рецепторов.

Индуцируемая лигандом десенсибилизация может рассматриваться в двух вариантах. Гомологичная десенсибилизация происходит тогда, когда ослабляется ответ на специфический агонист, но ответ на другие агоиисты, действующие через разные рецепторы, остается без изменения. Гетерологичная десенсибилизация наблюдается в случае, когда применение одного агониста ослабляет ответ клетки на многочисленные агонисты, действующие через различные рецепторы. В обоих случаях происходит фосфорилирование в основном рецепторных белков. В этих реакциях участвуют две киназы - протеинкиназа С и сАМР-зависимая протеинкинаэа, называемая также протеинкиназой А. Кроме того, рецепторы могут модифицироваться под действием рецепторспецифичных киназ; протекают также реакции аутофосфорилирования, катализируемые теми рецепторами, которые представляют собой тирозиновые протеинкиназы.

В основе гетерологичной десенсибилизации лежит классическая регуляция по типу обратной связи. Агонисты, стимулирующие аденилатциклазы, активируют протеинкиназу А, которая в свою очередь фосфорилирует рецептор и вызывает его десенсибилизацию. Например, фосфорилированный /3_адренергический рецептор обладает меньшей способностью активировать Gs_белок. Аналогичным образом агонисты, стимулирующие фосфатидилинозитольную систему, активируют протеинкиназу С, которая фосфорилирует рецептор и ослабляет ответ. В качестве примера можно привести а 1 - адренергический рецептор. Не исключено также, что рецепторы, связанные с фосфатидилинозитольной системой, модулируются протеинкиназой А, стимулированной сАМР. Примером такого рода является мускариновый ацетилхолиновый рецептор.

Гомологичная десенсибилизация была описана для /3_адренергических рецепторов и включает фосфорилирование рецепторов с помощью рецепторспецифичной киназы. Эта киназа фосфорилирует только комплекс рецептор / агонист, в результате чего происходит интерн ал изация фосфорил ированного рецептора путем эндоцитоза. В эндоцитозных везикулах находится фосфатаза, которая отщепляет фосфатную группу и регенерирует активную форму рецептора, возвращающегося к плазматической мембране. Аналогичная киназа была описана для «светового» рецептора родопсина, где субстратом является его обесцвеченная форма.

Одним из сигналов для интериализации рецепторов может быть фосфорилирование по специфичным сайтам. Например, фосфорилирование рецептора ФРЭ протеинкиназой С приводит к его интериализации. Этот процесс блокируется замещением остатка специфичного треонина на остаток аланина с помощью сайт-специфического мутагенеза. Однако ФРЭ-стимулируемая интерна-лизация рецептора не прекращается, что указывает на множественность сигналов интериализации. Как мы уже говорили, форболо-вые эфиры вызывают фосфорилирование н интернализацию транс-ферринового рецептора.

Интернализация не является единственным механизмом, с помощью которого фосфорилирование ослабляет рецепториый ответ. Активность рецептора, локализованного в плазматической мембране, тоже может регулироваться. Например, фосфорилированный рецептор ФРЭ обладает меньшей тирозинкиназной активностью, а также меньшим сродством к агонисту ФРЭ. Фосфорилированный мускариновый ацетилхолиновый рецептор также дезактивируется в плазматической мембране.

Реакции аутофосфорилирования рецепторов, обладающих тирозинкииазиой активностью, как правило, являются стимуляторными.

Это было показано для инсулинового рецептора, при аутофосфорилировании которого увеличивалась его способность фосфорилировать другие белки, а рецепторная активность становилась независимой от инсулина. С помощью мутагенеза было показано участие в регуляции этих эффектов специфических остатков тирозина, локализованных в цитоплазматическом домене /З-субъединицы.

6.5 Некоторые рецепторы, принимающие участие в передаче сигналов в животных клетках

Мы остановимся на некоторых наиболее важных особенностях трех типичных систем передачи сигнала в животных клетках. Эти системы относительно хорошо изучены и иллюстрируют интересные особенности механизма ответа животных клеток на внешние раздражители. Основной особенностью является то, что центральную роль в изменении ионных токов играют протеин-киназы.

Рецептор фактора роста эпидермиса

Фактор роста эпидермиса является сильнодействующим митогенным белком, который связывается со специфическим рецептором, находящимся на поверхности различных эпителиальных, эпидермальных и фибробластных клеток. Рецептор представляет собой один гликозилированный полипептид с мол. массой около 170 кДа и относится к семейству митогенных рецепторов. Его N_концевая часть расположена вне клетки и является ФРЭ-связывающим доменом. Рецептор имеет единственный мембранный сегмент и большой внутриклеточный домен, обладающий тирозинкиназной активностью. ФРЭ-рецептор, как и другие рецепторные белки, содержит внеклеточные домены, богатые цистеином, но их функция неизвестна.

ФРЭ-рецептор находится на плазматической мембране в высокоаффинной и низкоаффинной формах. Возможно, это связано с существованием в мембране различных состояний ассоциации этого белка. Показано, что связывание с ФРЭ стабилизирует димерную форму очищенного рецептора в детергенте; это указывает на важность агрегации рецептора для передачи сигнала. Биохимические исследования показывают, что связывание с ФРЭ индуцирует тирозинкиназную активность, в частности аутофосфорилирование рецептора, по нескольким остаткам тирозина в цитоплазматическом домене. Как связаны между собой киназная активность и клеточный ответ, неясно. В некоторых типах клеток существует какой-то независимый механизм, с помощью которого ФРЭ влияет на фосфатидилинозитольную систему, возможно, путем стимулирования фермента, фосфорилирующего фосфатндилинозитол с образованием монофосфорилированного производного.

Рецептор ФРЭ фос-форилируется протеинкиназой С, которая десенсибилизирует рецептор и индуцирует его поглощение путем эндоцитоза. Одним из ранних событий, связанных с ФРЭ-стимуляцией клеток, является активация Na + /H +-антипортера в плазматической мембране. Это приводит к замене внутриклеточного Н+ на внеклеточный Na+ и к незначительному повышению рН. Это ранний ответ на многие митогенные агенты, и изменения рН может быть достаточно для индукции активности других клеточных ферментов. Митогенный ответ, т. е. индукция синтеза ДНК, является длительным ответом, требующим присутствия ФРЭ во внешней среде в течение нескольких часов. Механизм этого явления остается непонятным.

ФРЭ-рецептор поглощается путем рецепторзависимого эндоцитоза. Исходно рецепторы распределены в плазматической мембране случайным образом, но при связывании ФРЭ комплекс рецептор/ФРЭ концентрируется в окаймленных ямках, поглощается и попадает в лизосому, где происходит его деградация. Это очищает поверхность с эффективностью примерно 80% рецепторов за 20 мин. Латеральная подвижность рецептора, измеренная с помощью метода FRAP, составила 1,5-10~ 10 см2-с * ', что указывает на существование каких-то препятствий при его латеральном движении. Мутанты, у которых отсутствует большая часть цитоплазматического домена, тоже диффундируют медленно, из чего следует, что этот домен не связан с с уменьшением латеральной подвижности. Возможно, для этого важны взаимодействия с компонентами внеклеточного матрикса. Однако цитоплазматический домен необходим для эндоцитоза, как и у других рецепторов. Делеция 63 аминокислотных остатков с С-конца приводит к потере рецептором сайта аутофос-форилирования и высокого сродства к ФРЭ. Тем не менее, этот рецептор остается способным к эндоцитозу и обладает митогенными свойствами.

Мутагенез очень полезен для выяснения механизма функционирования рецепторов, но важным фактором, который пока не удалось выяснить, является степень ассоциации рецептора в мембране. Это особенно интересно для тех рецепторов, которые имеют единственный спиральный трансмембранный сегмент, с точки зрения передачи конформационного изменения во внеклеточном агонист-связывающем домене к внутриклеточному тирозинкнназному домену через единственную спираль. Вряд ли связывание ФРЭ изменяет геометрию спирали; спираль не может также «скользить» вдоль другой спирали внутри трансмембранного домена, если рецептор имеет один трансмембранный сегмент. Возможно, связывание ФРЭ изменяет белково-липидные взаимодействия, благодаря которым спираль может проталкиваться через бислой. Другая возможность - изменение степени агрегации рецепторов при связывании с ФРЭ; об этом свидетельствует изучение выделенных белков.

d_Адренвргический рецептор

Многие важные особенности /9_адренергических рецепторов мы уже обсуждали. Несколько таких рецепторов было клонировано; при этом было показано, что они структурно сходны с семейством опсинов, в том числе родопсином, и с мускарииовыми холинергическими рецепторами. По-видимому, все эти белки имеют по семь трансмембранных спиралей; экспериментальное подтверждение этому было получено для родопсина. Консервативные остатки этих рецепторов локализованы главным образом в гидрофобных областях, а не в гидрофильных петлях, соединяющих трансмембранные сегменты. Среди этих консервативных остатков в трансмембранных сегментах находится несколько полярных остатков. Заметим, что эти белки негомологичны бактериоро-сопсину.

Ретинальсвязывающий сайт родопсина находится в гидрофобном ядре, образуя шнффово основание с остатком лизина в спирали VII. Было бы заманчиво предположить, что агонистсвязывающий сайт в /3_адренергическом рецепторе также локализован в гидрофобном ядре. Для проверки этого предположения был проведен сайт-специфический мутагенез /3_адренергического рецептора хомяка. Полученные результаты свидетельствуют о том, что гидрофильные петли несущественны для связывания агониста или антагониста, а также показывают, что для связывания агониста необходим остаток аспартата в положении 113, находящийся в спирали III. Не являются неожиданностью полученные в этих работах данные о том, что, вероятно, гидрофильная петля участвует во взаимодействии с G_белком.

lgE_рвцептор мастоцитов и базофилов

Мастоциты и базофилы содержат секреторные гранулы, наполненные гистамином. При соответствующей стимуляции эти экзоци-озные везикулы сливаются с плазматической мембраной и высвобождают запасенный гистамин. Показано, что этот процесс запускается агрегацией IgE_рецепторов клеточной поверхности, которая индуцируется связыванием либо с IgE, либо с другими лиган-дами, сшивающими рецепторы. IgE_система представляет особенный интерес, поскольку для нее действительно показана роль агрегации рецепторов в передаче сигнала, а кроме того, она является примером системы, связанной с деградацией фосфатидилинозитола, которая инициируется G_белком.

IgE_рецептор представляет собой а/372_тетрамер; он был очищен, а ген а-субъединицы - клонирован и секвенирован. Эта субъединица гомологична Fc_рецептору IgG, который относится к иммуноглобулиновому суперсемейству. В отсутствие сшивающего лиганда IgE_рецепторы распределены в мембране равномерно и обладают ограниченной подвижностью. Каждый рецептор может связать одну молекулу IgE, и ответ возникает только под действием мультимерных форм IgE, которые способны связывать несколько рецепторов одновременно. Олигомеры, содержащие лишь несколько молекул IgE, вызывают быструю иммобилизацию рецепторных кластеров, которая, по-видимому, осуществляется благодаря последовательным взаимодействиям с элементами цитоскелета и не может определяться простой гидродинамикой. В результате всех этих событий запускается клеточный ответ, при котором образуются фосфоинози-тиды и арахидоновая кислота, мобилизация Са2+ и секреция гистамина. Этот ответ ингибируется коклюшным токсином, по-видимому, при участии G_белка.


Подобные документы

  • Молекулярное строение и функции классов иммуноглобулинов: IgG, IgA, IgM, IgD, IgE. Изотипические, аллотипические и идиотипические различия аминокислотной последовательности молекул антител. Структура, эффекторные функции и клеточные рецепторы антител.

    реферат [201,3 K], добавлен 26.09.2009

  • Рассмотрение семейства клеточных toll-like-рецепторов. Функциональные состояния ионных каналов: открытое, закрытое, активированное, инактивированное, блокированное, модулированное. Типы рецепторных каналов: лиганд-управляемые и потенциал-регулируемые.

    презентация [827,3 K], добавлен 02.11.2014

  • Кодирование стимулов механорецепторами. Короткие и длинные рецепторы. Кодирование параметров стимула рецепторами растяжения. Рецепторы растяжения речного рака. Рецепторы растяжения в скелетных мышцах у млекопитающих. Основные типы сенсорных нейронов.

    реферат [14,1 K], добавлен 27.10.2009

  • Общая характеристика B-лимфоцитов. Характеристика субпопуляций, рецепторы и маркеры В-лимфоцитов. Антигенраспознающие рецепторы B-клеток: общая характеристика. Субпопуляции В-лимфоцитов, распознание антигенов рецепторами иммуноглобулиновой природы.

    реферат [495,4 K], добавлен 02.10.2014

  • Препараты регуляторного действия. Ингибирование/индукция ферментов. Воздействие на ионные потоки на рецепторы. Взаимодействие лиганда с рецептором. Строение "типового" химического синапса. Пресинаптические рецепторы: действие на освобождение медиатора.

    презентация [2,4 M], добавлен 23.10.2013

  • Иерархические уровни передачи внешних сигналов у высших растений: внутриклеточный и межклеточный (организменный). Передача молекулярного сигнала гормональной природы. Взаимодействие с помощью питательных веществ. Характеристика фитогормонов-стимуляторов.

    реферат [44,1 K], добавлен 17.08.2015

  • Анализ строения ионного канала и распределение в нем потенциальной энергии катиона. Воротный механизм мембраны. Принципы управления потенциалзависимыми и лиганд-активируемыми каналами. Никотиновый ацетилхолиновый и ионотропный глутаматный рецепторы.

    реферат [1,7 M], добавлен 25.03.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.