Особенности организации генов про- и эукариот. Строение оперона прокариот. Регуляторные области и структурные гены. Активатор, промотор, оперон и терминатор. Стартовый кодон, терминатор

Исследование структуры гена и его экспрессия. Геном современных прокариотических клеток. Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами. Единица транскрипции у прокариот. Промотор и терминатор (ДНК).

Рубрика Биология и естествознание
Вид курсовая работа
Язык русский
Дата добавления 23.03.2014
Размер файла 100,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ФГБОУ ВПО «Пензенский государственный университет»

Педагогический институт им. В.Г.Белинского

Кафедра «Биология, методика преподавания биологии и БЖД»

Курсовая работа по дисциплине «Биология»

на тему:

«Особенности организации генов про- и эукариот. Строение оперона прокариот. Регуляторные области и структурные гены. Активатор, промотор, оперон и терминатор. Стартовый кодон, терминатор»

Пенза-2013 г

Содержание

Введение

Особенности организации генов про- и эукариот

Строение оперона прокариот

Регуляторные области и структурные гены

Активатор,промотор,оператор и терминатора

Стартовый кодон, терминатор

Заключение

Список литературы

Введение:

Исследование структуры гена и его экспрессия в настоящее время являются одним из главных направлений в современной генетике. Но, как это часто бывает при стремительном развитии какой-либо научной отрасли, громадный поток полученных фактов не сразу осмысливается, выявленные противоречия не сразу разрешаются, а введённая терминология не сразу признаётся. Одно и то же явление подчас имеет столько различных названий, что по ним без труда можно определить число исследователей изучавших данный феномен.

Примерно такое положение складывается сейчас в направлении, которое выясняет структуру и функцию отдельного гена и генома живых существ.

Существует множество определений гена, но ни одно из них полностью не удовлетворяет всех учёных. Мы будем придерживаться определения, которое дал Сингер М. и Берг П. в книге «Гены и геномы» (1998). Формулируется оно следующим образом. «Ген это - совокупность сегментов ДНК, обуславливающих образование либо молекулы РНК, либо белкового продукта». В этом определении, прежде всего, однозначно подчёркнуто, что ген это не один непрерывный отрезок ДНК, а совокупность нескольких сегментов (отрезков) ДНК. И, во-вторых, ген несёт информацию не только о строении полипептида, но и о строении какой-либо РНК. В этом случае он может не содержать информацию о строении белка.

Особенности организации генов про- и эукариот

Геном современных прокариотических клеток характеризуется относительно небольшими размерами. У кишечной палочки он представлен кольцевой молекулой ДНК длиной около 1 мм, которая содержит 4·106 пар нуклеотидов, образующих около 4000 генов. Основная масса ДНК прокариот (около 95%) активно транскрибируется в каждый данный момент времени. Как было сказано выше, геном прокариотической клетки организован в виде нуклеоида - комплекса ДНК с негистоновыми белками.

У эукариот объем наследственного материала значительно больше. У дрожжей он составляет 2,3 107 п.н., у человека общая длина ДНК в диплоидном хромосомном наборе клеток - около 174 см. Его геном содержит 3·109 п.н. и включает по последним данным 30-40 тыс. генов.

У некоторых амфибий и растений геном характеризуется еще большими размерами, достигающими 1010 и 1011 п. н. В отличие от прокариот в эукариотических клетках одновременно активно транскрибируется от 1 до 10% ДНК. Состав транскрибируемых последовательностей и их количество зависят от типа клетки и стадии онтогенеза. Значительная часть нуклеотидных последовательностей у эукариот не транскрибируется вообще - молчащая ДНК.

Большой объем наследственного материала эукариот объясняется существованием в нем помимо уникальных также умеренно и высоко повторяющихся последовательностей. Так, около 10% генома мыши составляют тандемно расположенные (друг за другом) короткие нуклеотидные последовательности, повторенные до 106 раз. Эти высоко повторяющиеся последовательности ДНК располагаются в основном в гетерохроматине, окружающем центромерные участки. Они не транскрибируются. Около 20% генома мыши образовано умеренными повторами, встречающимися с частотой 103-105 раз.

Такие повторы распределены по всему геному и транскрибируются в РНК. К ним относятся гены, контролирующие синтез гистонов, тРНК, рРНК и некоторые другие. Остальные 70% генома мыши представлены уникальными нуклеотидными последовательностями. У растений и амфибий на долю умеренно и высоко повторяющихся последовательностей приходится до 60% генома.

Избыточность генома эукариот объясняется также экзон-интронной организацией большинства эукариотических генов, при которой значительная часть транскрибированной РНК удаляется в ходе следующего за синтезом процессинга и не используется для кодирования аминокислотных последовательностей белков.

В настоящее время окончательно не выяснены функции молчащей ДНК, которая составляет значительную часть генома, реплицируется, но не транскрибируется. Высказывают предположения об определенном значении такой ДНК в обеспечении структурной организации хроматина. Некоторая часть нетранскрибируемых нуклеотидных последовательностей, очевидно, участвует в регуляции экспрессии генов.

Характеризуя наследственный материал прокариотической клетки в целом, необходимо отметить, что он заключен не только в нуклеоиде, но также присутствует в цитоплазме в виде небольших кольцевых фрагментов ДНК - плазмид. В прокариотических (бактериальных) клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.

В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл - митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки (вирусоподобными частицами). Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами. В митохондриях, например содержится от 2 до 10 копий мтДНК.

Внехромосомная ДНК составляет лишь небольшую часть наследственного материала эукариотической клетки. Например, мтДНК человека содержит 16569 п.н. и на её долю приходится менее 1% всей клеточной ДНК.

В отличие от хромосомной ДНК, мтДНК характеризуется высокой «плотностью генов». В них нет интронов, а межгенные промежутки невелики. В кольцевой мтДНК человека содержится 13 генов, кодирующих белки (3 субъединицы цитохром С-оксидазы, 6 компонентов АТФазы и др.) и 22 гена тРНК. Значительная часть белков митохондрий и пластид синтезируется в цитоплазме под контролем геномной ДНК.

Если большинство ядерных генов представлены в клетках организма в двойной дозе (аллельные гены), то митохондриальные гены представлены многими тысячами копий па клетку.

Для генома митохондрий характерны межиндивидуальные различия, но в клетках одного индивида, как правило, мтДНК идентична. Совокупность генов, расположенных в цитоплазматических молекулах ДНК, называют плазмоном. Он определяет особый тип наследования признаков - цитоплазматическое наследование.

Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами, а также принципы записи генетической информации у про- и эукариот свидетельствуют в пользу единства их происхождения от общего предка, у которого уже была решена проблема самовоспроизведения и записи информации на основе репликации ДНК и универсальности генетического кода. Однако геном такого предка сохранял большие эволюционные возможности, связанные с развитием надмолекулярной организации наследственного материала, разных путей реализации наследственной информации и регуляции этих процессов.

Многочисленные указания на различия в организации генома, деталях процессов экспрессии генов и механизмов ее регуляции у про- и эукариот свидетельствуют в пользу эволюции названных типов клеток по разным направлениям после их дивергенции от общего предка.

Существует предположение, что в процессе возникновения жизни на Земле первым шагом явилось образование самовоспроизводящихся молекул нуклеиновых кислот, не несущих первоначально функции кодирования аминокислот в белках. Благодаря способности к самовоспроизведению эти молекулы сохранялись во времени. Таким образом, первоначальный отбор шел на способность к самосохранению через самовоспроизведение. В соответствии с рассмотренным предположением позднее некоторые участки ДНК приобрели функцию кодирования, т.е. стали структурными генами, совокупность которых на определенном этапе эволюции составила первичный генотип.

Экспрессия возникших кодирующих последовательностей ДНК привела к формированию первичного фенотипа, который оценивался естественным отбором на способность выживать в конкретной среде.

Важным моментом в рассматриваемой гипотезе является предположение о том, что существенным компонентом первых клеточных геномов была избыточная ДНК, способная реплицироваться, но не несущая функциональной нагрузки в отношении формирования фенотипа. Предполагают, что разные направления эволюции геномов про- и эукариот связаны с различной судьбой этой избыточной ДНК предкового генома, который должен был характеризоваться достаточно большим объемом. Вероятно, на ранних стадиях эволюции простейших клеточных форм у них еще не были в совершенстве отработаны главные механизмы потока информации (репликация, транскрипция, трансляция). Избыточность ДНК в этих условиях создавала возможность расширения объема кодирующих нуклеотидных последовательностей за счет некодирующих, обеспечивая возникновение многих вариантов решения проблемы формирования жизнеспособного фенотипа.

Строение оперона прокариот

Оперон -- способ организации генетического материала у прокариот, при котором цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки, объединяются под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов.

Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.

Опероны по количеству цистронов классифицируют на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

В состав оперона прокариот входят структурные гены и регуляторные элементы. Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества. Этих генов может быть один, два или несколько. Они тесно сцеплены друг с другом и, что самое главное, в ходе транскрипции работают как один единый ген: на них синтезируется одна общая молекула иРНК, которая лишь потом расщепляется на несколько иРНК, соответствующих отдельным генам. Регуляторными элементами являются следующие:

- промотор -- участок связывания фермента, осуществляющего транскрипцию ДНК - РНК-полимеразы. Является местом начала транскрипции. Представляет собой короткую последовательность из нескольких десятков нуклеотидов ДНК, с которой специфически связывается РНК-полимераза. Кроме того, промотор определяет, какая из двух цепей ДНК будет служить матрицей для синтеза иРНК;

- оператор - участок, которому присоединяется репрессор, который не дает РНК-полимеразе двигаться по ДНК.

- терминатор - участок, в котором РНК-полимераза отсоединяется от ДНК.

Лактозный оперон открыли Жакоб, Моно и Львов в 1961 г. Его работа:

1. Когда в среде нет лактозы, кишечная палочка не вырабатывает ферменты, необходимые для ее расщепления, потому что к оператору присоединен репрессор, который не дает происходить транскрипции.

2. Когда в среде появляется лактоза, то она соединяется с белком- репрессором, он денатурирует и отсоединяется от оператора. Теперь ничто не мешает РНК-полимеразе делать иРНК, на которой рибосомы тут же делают белки.

3. Белки-ферменты расщепляют лактозу, в том числе и ту, что была присоединена к репрессору, он возвращается на место, транскрипция прекращается.

На работу оператора данного оперона влияет самостоятельный ген-регулятор, синтезирующий соответствующий регуляторный белок. Этот ген не обязательно располагается рядом с опероном. Кроме того, один регулятор может регулировать транскрипцию нескольких оперонов. Ген-регулятор также имеет собственный промотор и терминатор.

Регуляторные белки бывают двух типов: белок-репрессор или белок-активатор. Они присоединяются к специфическим нуклеотидным последовательностям ДНК оператора, что либо препятствует транскрипции генов (негативная, отрицательная регуляция), либо способствует ей (позитивная, положительная регуляция); механизмы их работы противоположны. Кроме того, на работу белков-репрессоров могут влиять вещества -- эффекторы: соединяясь с репрессором, они влияют на его взаимодействие с оператором.

Регуляторные области и структурные гены

Структурные гены - содержат информацию о структуре белка. У прокариот в одном опероне находятся гены нескольких белков, необходимых для осуществления какой-либо биохимической реакции.

Генетическая информация о структуре белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде последовательностей нуклеотидов, называемых генами . Совокупность генов организма, наряду с другими последовательностями ДНК составляет геном .

Координированная работа (экспрессия) большого числа генов возможна благодаря наличию регуляторных механизмов, определяющих место, время и уровень экспрессии конкретного гена или группы генов. Чтобы экспрессия гена была регулируемой, он должен содержать индивидуальную (регуляторную) метку, по которой регуляторные компоненты генетической системы клетки или организма могли бы безошибочно оказать на него необходимое воздействие. В соответствии с этим любой ген состоит из двух основных функциональных частей (последовательностей нуклеотидов) - регуляторной и структурной.

Регуляторная часть обеспечивает первые этапы реализации генетической информации, заключенной в структурной части гена. Размер гена складывается из размеров его структурной и регуляторной частей.

Определить протяженность гена не так просто, особенно в случае генов эукариот. Отдельные элементы регуляторной области генов, например, энхансеры , могут располагаться на значительном расстоянии от структурной части гена как перед ней, так и позади нее или даже в ней самой.

В структурной части большинства эукариотических генов кодирующие последовательности нуклеотидов ( экзоны ) перемежаются протяженными некодирующими последовательностями (интронами ). Суммарный размер интронов, как правило, многократно превышает суммарный размер экзонов конкретных генов. Таким образом, геном эукариотического организма содержит не только последовательность нуклеотидов с генетической информацией о белках и нуклеиновых кислотах, но и большое количество последовательностей нуклеотидов, не несущих такой информации. Помимо интронов в геноме эукариот имеется большое количество других некодирующих последовательностей нуклеотидов, поэтому общая длина некодирующих последовательностей нуклеотидов в геноме эукариот в десятки раз превышает длину кодирующих последовательностей.

Все клетки любого, организма, какие бы функции они ни выполняли, имеют полный набор свойственных данному организму генов. Вместе с тем хорошо известно, что у любого организма клетки разных тканей и органов отличаются по набору имеющихся в них белков. Даже в одной клетке на разных стадиях ее развития синтезируются и функционируют разные белки. Следовательно, располагая полной генетической информацией, каждая клетка на определенном этапе развития использует лишь ту ее часть, которая необходима в настоящий момент, транскрибируются только те гены, продукты которых нужны клетке в данный момент для отправления ее функций. Следовательно, клетка должна располагать механизмами, определяющими, какие гены и в какой последовательности должны транскрибироваться. Наиболее полно регуляция генной активности изучена на примерах адаптивного синтеза ферментов у микроорганизмов. Рассмотрим некоторые из них.

В зависимости от условий количество определенного фермента в бактериальной клетке может существенно изменяться. Некоторые ферменты, необходимые бактерии для усвоения определенных питательных веществ, активно синтезируются в клетке только тогда, когда эти вещества присутствуют в культурной среде, и синтез их прекращается, если каким-либо образом они удаляются из среды.

Такой тип регуляции синтеза фермента называется индукцией, а вещество, вызывающее этот синтез, -- индуктором. Один из наиболее наглядных примеров данного типа регуляции -- лактозный оперон кишечной палочки -- группа генов, контролирующая синтез ферментов, осуществляющихкатаболизм молочного сахара -- лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы бактерии начинают вырабатывать три фермента: галактозидпермеазу, бета-галактозидазу и галактозидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается.

Приведенный пример станет более понятным при рассмотрении схемы работы лактозного оперона (рис. 81), изучение которого позволило французским ученым Ф. Жакобу и Ж. Моно разработать собственно концепцию оперона и выяснить основные принципы регуляции транскрипции у прокариотов. Начинается оперон с участка A, предназначенного для присоединения некоего белка-активатора, в свою очередь необходимого для присоединения к следующему за участком А промотору (П) РНК-полимеразы. За промотором, последовательность нуклеотидов которого узнаётся РНК-полимеразой, следует оператор (О), играющий важную роль в транскрипции генов оперона, так как с ним связывается регуляторный белок-репрессор.

За оператором следуют структурные гены для трех упомянутых ранее ферментов. Заканчивается оперон терминатором, прекращающим продвижение РНК-полимеразы и транскрипцию оперона.

Регуляторный белок-репрессор в незначительном количестве синтезируется в клетке постоянно, так что в цитоплазме одновременно присутствует не более 10 его молекул. Этот белок обладает сродством к последовательности нуклеотидов в области оператора, и таким же сродством к лактозе. В отсутствие лактозы белок-репрёссор связывается с операторным участком и препятствует продвижению по ДНК РНК-полимеразы: не синтезируется мРНК, не синтезируются и ферменты. После добавления в среду лактозы белок-репрессор связывается с нею быстрее, чем с операторным участком: последний остается свободным и не препятствует продвижению РНК-полимеразы. Идет транскрипция и трансляция. Синтезирующиеся ферменты осуществляют транспорт в клетку и расщепление лактозы. После того как вся лактоза будет израсходована, нечем станет связывать белок-реп рессор и он снова свяжется с оператором, прекратив транскрипцию оперона. Таким образом, индукция оперона вызывается тем, что регуляторный белок не прикрепляется к оператору. Такой тип индукции называется негативным.

Другой известный тип индукции -- позитивная индукция. Она свойственна другому оперену кишечной палочки, кодирующему ферменты катаболизма другого сахара -- арабинозы. Этот оперон структурно очень похож на предыдущий. Разница в регуляции состоит в том, что добавленная в среду арабиноза взаимодействует с белком-репрессором и, освобождая операторный участок, одновременно превращает белок-репрессор в белок-активатор, способствующий присоединению РНК-полимеразы к промотору. В этих условиях транскрипция имеет место. Как только запасы арабинозы в среде исчерпываются, синтезирующийся белок-реп рессор опять связывается с оператором, выключая транскрипцию.

Кроме индукции, известны также два типа (негативный и позитивный) регуляции по принципу репрессии. Если при негативной индукции эффектор (индуктор) препятствует присоединению белка-репрессора к оператору, то при негативной репрессии, наоборот, эффектор придает регуляторному белку способность присоединяться к оператору. Если в первом случае соединение эффектора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает ее. Примером негативной репрессии может служить хорошо изученный триптофановый оперон кишечной палочки.

В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и два промотора. Белок-регулятор синтезируется вне триптофанового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с регуляторным белком и изменяет его таким образом, что этот белок приобретает сродство с оператором. Измененный белок-регулятор взаимодействует с оператором и препятствует транскрипции структурных генов, вследствие чего синтез триптофана прекращается. При позитивной репрессии эффектор лишает регуляторный белок способности связываться с оператором, обусловливая, таким образом, транскрипцию структурных генов.

Описанные типы регуляций характеризуют механизмы регуляции отдельных оперонов, практически не касаясь регуляции экспрессии генома в целом, в то время как совершенно очевидно, что регуляция разных оперонов должна носить согласованный характер. Такой согласованный характер работы разных оперонов и генов получил у вирусов и фагов название каскадной регуляции. Согласно принципу каскадной регуляции сначала происходит транскрипция «предранних», затем «ранних» и наконец «поздних» генов в зависимости от того, какие белки требуются на разных стадиях вирусной (фаговой) инфекции.

Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определенной последовательностью, необходима согласованная работа многих генов и оперонов. Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности.

По принципам регуляции гены эукариотов можно условно разделить на три группы: 1) функционирующие во всех клетках организма; 2) функционирующие только в тканях одного типа; 3) обеспечивающие выполнение специализированными клетками конкретных функций. Кроме того, у эукариотов известно одновременное групповое выключение генной активности, осуществляемое гистонами -- основными белками, входящими в состав хромосом. Еще одним существенным отличием транскрипции у эукариотов является то, что многие мРНК длительное время сохраняются в клетке в виде особых частиц-- информосом, в то время как мРНК прокариотов практически еще в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются.

Вместе с тем имеется много данных, указывающие, что транскрипция у эукариотов осуществляется с участков, подобных оперонам прокариотов и состоящих из регуляторных и структурных генов.

Отличительной особенностью оперонов эукариотов является то, что почти всегда они содержат только структурный ген, а гены, контролирующие различные этапы определенной цепи метаболических превращений, разбросаны по хромосоме и даже по разным хромосомам. Другой отличительной чертой оперонов эукариотов является то, что они состоят из значащих (экзонов) и незначащих (интронов) участков, чередующихся друг с другом. При транскрипции считываются как экзоны, так и интроны, а образующийся при этом предшественник информационного РНК (про-мРНК) затем претерпевает созревание (процессинг), в результате которого происходит вызревание интроиов и образование собственно мРНК (сплайсинг),

У эукариотов известны и другие типы регуляции активности генов, такие как эффект положения или дозовая компенсация. В первом случае речь идет об изменении генной активности в зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена. В целом же регуляция активности генов у эукариотов изучена недостаточно.

Активатор,промотор,оператор,терминатор

Единицей транскрипции у прокариот могут быть отдельные гены, но чаще они организованы в структуры, называемые оперонами. В состав оперона входят расположенные друг за другом структурные гены, продукты которых обычно участвуют водном и том же метаболическом пути. Как правило, оперон имеет один набор регуля-торных элементов (регуляторный ген, промотор, оператор), что обеспечивает координацию процессов транскрипции генов и синтеза соответствующих белков.

Промотор - это участок ДНК, ответственный за связывание с РНК-полимеразой. В случае прокариот, наиболее важными для регуляции транскрипции являются последовательности, обозначаемые «--35» и «-- 10». Нуклеотиды, расположенные до инициирующего кодона («вверх по течению») записываются со знаком «-», а со знаком «+» - все нуклеотиды, начиная с первого в инициирующем кодоне (стартовая точка). Направление, в котором продвигается процесс транскрипции, называется «вниз по течению».

Последовательность, обозначаемая «-35» (TTGACA), отвечает за узнавание промотора РНК-полимеразой, а последовательность «-10» (или бокс Прибнова) является тем участком, с которого начинается раскручивание двойной спирали ДНК. В состав этого бокса наиболее часто входят основания ТАТААТ. Такая последовательность оснований чаще всего встречается в промоторах прокариот, ее называют консенсусной. В состав ТАТА-бокса входят аденин и тимин, между которыми имеются только две водородные связи, что облегчает расплетание цепей ДНК в этом районе промотора. В случае замен пар оснований в указанных последовательностях промотора нарушается эффективность и правильное определение точки начала транскрипции, с которой фермент РНК-полимераза начинает синтез РНК. У прокариот наряду с промотором имеются и другие регуляторные участки: это активатор и оператор.

Оператор - участок ДНК, с которым связывается белок-репрессор, мешая РНК-полимеразе начать транскрипцию.

В лактозном опероне левая часть промотора (активатор), связывается с белком-активатором катаболизма (БАК, или САР в английской терминологии, catabolite activator protein), а правая часть -- с РНК-полимеразой. БАК-белок в отличие от белка-репрессора играет позитивную роль, помогая РНК-полимеразе начать транскрипцию.

Возможны различные варианты взаимодействия регуляторных участков с ферментами и регуляторными белками, а последних - с молекулами, называемыми индукторами (эффекторами).

Генетическая информация, закодированная в ДНК с помощью 4-х нуклеотидов (четырехбуквенного алфавита), в процессе биосинтеза белка переводится в последовательность аминокислот белков (двадцатибуквенный алфавит) с помощью молекул-адапторов («переводчиков») тРНК. Каждая из 20 аминокислот, входящих в состав белков, должна присоединится к своей тРНК. Эти реакции протекают в цитозоле и катализируются двадцатью ферментами АРСазами (аминоацил-тРНК-синтетазами). Каждый фермент имеет двойное сродство: к «своей» аминокислоте и к соответствующей ей тРНК (одной или нескольким). Для активации используется энергия АТФ.

Процесс состоит из двух стадий, протекающих в активном центре фермента. На первой стадии в результате взаимодействия аминокислоты и АТФ образуется аминоациладенилат, на второй - аминоацильный остаток переносится на соответствующую тРНК.
Ход реакций:

1.Аминокислота (R) +АТФ + фермент (ER E?) R (аминоацил-аденилат)+ФФН

2.ER (аминоациладенилат) + тРНКR Аминоацил-тРНК + АМФ + E?R
АРСазаR

Суммарное уравнение: 

Аминокислота (R) + тРНКR + АТФ аминоацил-тРНКR + АМФ + ФФН

Эфирная связь между аминоацилом и тРНК является высокоэнергетической, энергия используется в синтезе пептидной связи.

Так образуются в цитоплазме клетки все необходимые для биосинтеза белка активированные аминокислоты, соединенные с соответствующими им адапторами ? разнообразные аминоацил-тРНК (аа-тРНК ).

Терминатор (ДНК) -- последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как сигнал к прекращению синтеза молекулы РНК и диссоциации транскрипционного комплекса.

ген нуклеиновый прокариоты промотор

Стартовый кодон, терминатор

Триплеты UAG, UAA и UGA являются кодонами-терминаторами, на которых синтез белка останавливается. Ни для одного из кодонов- терминаторов не найдено соответствующей тРНК . Это исключает возможность механизма терминации с участием специальной тРНК, которая узнает терминатор для прекращения белкового синтеза. Вместо этого существуют сигнальные белковые факторы, которые вступают в действие как раз в тот момент, когда рибосома доходит до кодона-терминатора. Таким образом, терминирующие кодоны являются знаками пунктуации, механизм действия которых отличается от механизма действия кодонов, детерминирующих аминокислоты.

Кодон терминации обязательно присутствует в конце кодирующей части каждой природной мРНК. Вне рамки считывания триплеты UAA, UAG и UGA в пределах кодирующей последовательности мРНК встречаются часто. Поэтому обычно случайный сдвиг рамки в процессе элонгации не может привести к синтезу очень длинного неправильного полипептида и чаще всего приводит к скорой терминации этой неправильной трансляции. В некодирующих участках мРНК, включая межцистронные участки полицистронных РНК, частота терминирующих триплетов обычно также высока.

Терминирующий триплет в рамке считывания может появиться в кодирующей части мРНК в результате мутации. Например, замена G на A в триптофановом кодоне (UGG) приводит к появлению либо UAG, либо UGA; замена C на U в глютаминовых кодонах (CAA и CAG) приводит к появлению либо UAA, либо UAG. Такие мутации называются "бессмысленными" (nonsense); появление UAG обозначается как " янтарная" мутация , UAA - " охровая ", а UGA - "опал" . Другая мутация, изменяющая антикодон какой-либо тРНК так, что он становится комплементарным nonsense-кодону может привести к супрессии nonsense-мутации .

В митохондриальном генетическом коде кодоны-терминаторы другие.

Заключение

Прокариоты - это организмы, в клетках которых отсутствует оформленное ядро. Его функции выполняет нуклеоид (то есть «подобный ядру»); в отличие от ядра, нуклеоид не имеет собственной оболочки.

Тело прокариот, как правило, состоит из одной клетки. Однако при неполном расхождении делящихся клеток возникают нитчатые, колониальные и полинуклеоидные формы (бактероиды). В прокариотических клетках отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы - складки плазматической мембраны. В цитоплазме фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами.

Специфическим веществом клеточной стенки прокариот является муреин, однако у некоторых прокариот муреин отсутствует. Поверх клеточной стенки часто имеется слизистая капсула. Пространство между мембраной и клеточной стенкой служит резервуаром протонов при фотосинтезе и аэробном дыхании.

Размеры прокариотических клеток изменяются от 0,1-0,15 мкм (микоплазмы) до 30 мкм и более. Большинство бактерий имеет размеры 0,2-10 мкм. У подвижных бактерий имеются жгутики, основой которых служит белки флагеллины.

Главная количественная особенность генетического материала эукариот - наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coli и В. subtilis составляет свыше 1 мм, то в такой хромо-соме могут разместиться около 3 тысяч генов.

Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК.

Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК - экзонов). В то же время размер генома человека 3Ч109(три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК.

Существует значительное число видов, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть не-однозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хро-мосом данного вида.

Список литературы:

1. Авраменко И.Ф. Микробиология. М. :Колос.- 1979.-176 с.

2. Мишустин Е.Н., Емцев В.Т. Микробиология. М.:Агропромиздат.- 1987.-336 с.

3. Бакулина Н.А. Микробиология. М.:Медицина.-1976.-325 с.

4. Сингер М., Берг П. Гены и геномы в 2-х т. Т 2. М.: Мир.- 1988.-391 с.

5. Коничев А.С. Молекулярная биология. М.: Издательский центр Академия.-2005-400 с.

6. Блохина И.Н. Геносистематика бактерий. М.: Наука.- 1976.-151 с.

7. Граммов Б.В. Строение бактерий. Л.: Издательство ЛГУ.- 1985.-190 с.

8. Пехов А.П. Генетика бактерий. М.:Медицина.-1977.-407 с.

9. Стент Г.С. Молекулярная генетика. М.:Мир.-1981.-646 с.

10. Рис Э., Стернберг М. Введение в молекулярную биологию: От клеток к атомам. М.: Мир.- 2002.-142 с.

11. Сергеева Г.М., Пашкова Е.И. Руководство для самостоятельной работы студентов по молекулярной биологии. Петропавловск: СКГУ им. М.Козыбаева.-2008.-234 с.

12. Хесин Р.Б. Непостоянство генома. М.:Наука.-1984.-472 с.

13. Под ред. Й. Ленглера, Г. Древса, Г. Шлегеля. Современная микробиология. Прокариоты. М.: Мир.- 2005.-469 с.

14. Ю.П.Алтухова. Современное естествознание. Энциклопедия. М.: Магистр-Пресс.- 2000.-343 с.

Размещено на Allbest.ru


Подобные документы

  • Механизмы регуляции экспрессии генов у прокариот и эукариот. Регуляция содержания РНК в процессе биосинтеза. Согласованная регуляция экспрессии прокариотических родственных генов. Репрессия триптофанового оперона. Суммарный эффект аттенуации и репрессии.

    лекция [24,2 K], добавлен 21.07.2009

  • Дифференциальная экспрессия генов и ее значение в жизнедеятельности организмов. Особенности регуляции активности генов у эукариот и их характеристики. Индуцибельные и репрессибельные опероны. Уровни и механизмы регуляции экспрессии генов у прокариот.

    лекция [2,8 M], добавлен 31.10.2016

  • Транскрипция и основные ферменты, которые осуществляют транскрипцию, ДНК-зависимые РНК-полимеразы. Структурные и функциональные домены больших субъединиц эукариотической РНК-полимеразы. Регуляция экспрессии генов на уровне транскрипции у прокариот.

    реферат [373,5 K], добавлен 29.09.2009

  • Одноклеточные живые организмы, не обладающие оформленным клеточным ядром. Строение и размножение прокариот. Основные группы прокариот: фототрофы, хемоавтотрофы, органотрофы и бактерии-паразиты. Сравнительная характеристика прокариот и эукариот.

    презентация [748,9 K], добавлен 01.02.2011

  • Транскрипция – процесс переноса генетической информации от ДНК к РНК. Природа информационной связи между ДНК и белками. Строение и организация единиц транскрипции у прокариот и эукариот. Синтез РНК - выделение стадий инициации, элонгации и терминации.

    лекция [27,1 K], добавлен 21.07.2009

  • Трансляция – синтез белка на матрице-РНК. Различие в рибосомах про- и эукариот. Процесс образования аминоацил-тРНК. Этапы трансляции, их сущность и краткая характеристика. Сопряженность с транскрипцией в прокариотических и эукариотических клетках.

    презентация [832,8 K], добавлен 05.12.2012

  • Организация наследственного материала прокариот. Химический состав эукариот. Общая морфология митотических хромосом. Структура, ДНК, химия и основные белки хроматина. Уровни компактизации ДНК. Методика дифференцированного окрашивания препаратов хромосом.

    презентация [7,4 M], добавлен 07.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.