Физиология стресса растений

Рассмотрение и анализ основных групп факторов, способных вызвать стресс у растений. Ознакомление с фазами триады Селье в развитии стресса у растений. Исследование и характеристика физиологии стрессоустойчивости растений с помощью защитных систем.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 17.04.2019
Размер файла 194,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Физиология стресса растений

1.1 Стресс и "Триада" Селье

1.2 Основные группы факторов, способных вызвать стресс у растений

2. Общие представления о стрессе и факторах, вызывающих стресс у растений

2.1 УФ излучение - природный стресс фактор для растений

2.2 Особенности проявления стрессовых реакций у растений

Заключение

Список использованной литературы

Введение

Приспособленность онтогенеза растений к условиям среды является результатом их эволюционного развития (изменчивости, наследственности, отбора). На протяжении филогенеза каждого вида растений в процессе эволюции выработались определенные потребности индивидуума к условиям существования и приспособленность к занимаемой им экологической нише. Жароустойчивость, холодоустойчивость и другие экологические особенности конкретных видов растений сформировались в ходе эволюции в результате длительного действия соответствующих условий. Так, теплолюбивые растения и растения короткого дня характерны для южных широт, менее требовательные к теплу и растения длинного дня - для северных.

В природе в одном географическом регионе каждый вид растений занимает экологическую нишу, соответствующую его биологическим особенностям. Наследственность растений формируется под влиянием определенных условий внешней среды.

В большинстве случаев растения и посевы (посадки) сельскохозяйственных культур, испытывая действие тех или иных неблагоприятных факторов, проявляют устойчивость к ним как результат приспособления к условиям существования, сложившимся исторически, что отмечал еще К.А. Тимирязев.

Все физиологические и биохимические процессы идут лишь в определенных температурных границах, которые обычно лежат в довольно узких пределах. Фактор тепла имеет большое значение и в географическом распределении растений. Составляя существенную часть климатических условий, он тем самым определяет северные и южные границы ареалов, зональную структуру растительного покрова.

Актуальность темы: данная идея ненова, но актуальность ее остается до сих пор, так как на всем протяжении процесса вегетации, растения подвержены действию высоких и низких температур, засухи, засоления, света высокой интенсивности и других стрессовых факторов внешней среды, что приводит к потере продуктивности за счет ингибирования роста и фотосинтеза растений. Из-за ухудшения экологии и изменений климата эта проблема является особенно актуальной и важно разработать эффективные способы усиления защитных механизмов растений при действии стрессоров различного происхождения, прежде всего абиотических. Часто они обусловлены резкими изменениями температуры, дефицитом влаги, а также светом высокой интенсивности. В частности, заметно возросший уровень УФ-радиации и потепление климата привели к большему изучению влияния на растения УФ-радиации, повышенных температур и света высокой интенсивности, а также их сочетания.

Цель работы: выявить механизмы, обеспечивающие формирование устойчивости растений, а также исследование физиологии стрессоустойчивости растений с помощью защитных систем.

Задачи работы:

· изучить понятия стресс и "Триада" Селье;

· определить основные группы факторов, способных вызвать стресс у растений;

· рассмотреть УФ излучение как природный стресс фактор для растений;

· выявить особенности проявления стрессовых реакций у растений.

Структура работы. Данная работа состоит из введения, двух глав, заключения и списка использованной литературы.

1. Физиология стресса растений

1.1 Стресс и "Триада" Селье

Термин стресс (от англ. "stress" - напряжение) был предложен выдающимся канадским ученым-физиологом Гансом Селье в 1936 году для описания реакции организма на любое сильное неблагоприятное воздействие.

В наши дни стрессы стали обычным явлением человеческой жизни. Проблема стресса уже давно вызвала интерес у людей. Но еще больший интерес вызвало то, что стресс может возникать не только в организме животного.

Если первоначально стрессовая реакция рассматривалась как атрибут высших организмов, имеющих нейрогуморальную систему, то последующее развитие теории Селье позволило признать наличие стрессовых реакций у низших животных, а также у растений.

По Селье, стресс - это совокупность всех неспецифических изменений, возникающих в организме животного под влиянием любых сильных воздействий (стрессоров), включающих перестройку защитных сил организма. Эта перестройка сопровождается увеличением в крови адреналина и других гормонов, мобилизующих обмен веществ. Благодаря энтузиазму и трудам автора, а также его учеников и последователей, теория стресса перешла из области медицины в биологию. Селье обратил внимание на то, что изменения защитных сил животного и человека при различных заболеваниях обычно сопровождаются увеличением в крови кортикостероидных гормонов, мобилизирующих обмен веществ. При этом организм, несмотря на изменение своего состояния, приобретает способность сохранять относительную стабильность внутренней среды. Эта реакция была им оценена как адаптивная и названа генерализованным адаптационным синдромом. Согласно Селье, способность к адаптации является наиболее характерной чертой жизни, и приспособление всегда возникает в результате концентрации усилий или напряжение, отсюда и название - стресс.

По Селье кривая ответных реакций на стрессовое воздействие у животных и человека включает три фазы ("триада Селье"): тревоги, адаптации (резистентности) и истощения (рис.1). На протяжении триады формируется неспецифическая резистентность (адаптация), но при увеличении силы эффекта и исчерпании защитных возможностей организма наступает его гибель.

В последние годы жизни Селье ввел понятие эустресс (положительный, стимуляционный стресс) и дистресс - патологический. Граница между ними расплывчата и зависит от дозы воздействия и исходной устойчивости организма.

Физическая трактовка стресса совершенно иная, чем медицинская. В соответствии с законом движения Ньютона, любая сила всегда сопровождается противосилой. Две силы, названные действием и реакцией, являются частями неразделимого целого, известного как стресс. Тело находится в состоянии напряжения, когда подвержено стрессу. Величина стресса - это сила на единицу площади тела, приводящая к изменению его формы или размера. Величина напряжения определяется изменением размера тела (или объема). В физическом понимании стресс - это сила, действующая на тело и вызывающая обратимые или необратимые изменения его размеров, а в биологическом - это внешний фактор, действующий на организм, вызывающий любые физические, химические и др., обратимые (эластичное напряжение) или необратимые (пластичное напряжение) изменения в нем. Поэтому стресс может быть определен как любой фактор окружающей среды, способный индуцировать потенциально вредное напряжение у живых организмов.

1.2 Основные группы факторов, способных вызвать стресс у растений

Понятие стресс перенесено в физиологию растений и существует направление - стресс-физиология растений. Наблюдаемый при стрессе комплекс метаболических перестроек у растений назван фитострессом.

В фитофизиологии термин "стресс" используется в двух разных аспектах. В одних случаях "стресс" служит синонимом слову "воздействие" (стрессовое воздействие, стрессовый фактор, стрессовые нагрузки, индуцированный стресс и т.д.), если стресс отражает количественную сторону раздражителя. В других случаях, когда, например, говорят о водном, солевом или окислительном стрессе, то под стрессом понимают целый комплекс ответных неспецифических и специфических изменений.

Способность к защите от действия неблагоприятных факторов среды - обязательное свойство любого живого организма, включая высшие растения. Эта функция появилась одновременно с возникновением первых живых организмов и в ходе дальнейшей эволюции развивалась и совершенствовалась. стресс растение физиология селье

На каждой стадии развития способность растений к приспособлению к неблагоприятным условиям (низкая температура, засуха, засоление почвы и т.д.) выражена в разной степени. Эта способность растений связана с глубоким изменением обмена и определяется быстротой и глубиной его изменения без нарушения согласованности между отдельными функциями, благодаря чему не нарушается единство организма и среды. Это, в конечном счете, и определяет жизнедеятельность организма и его выносливость.

Для высших растений характерен активный путь адаптации к неблагоприятным факторам среды, например, к неблагоприятным условиям водного режима. Благодаря целому комплексу гидрорегулирующих приспособлений, проявляющихся на любой стадии онтогенеза и отличающихся автоматизмом и динамичностью действия, растения способны противостоять иссушающему действию факторов внешней среды. К таким приспособлениям, всегда направленным на усиление поглощения и снижение испарения воды, относятся усиленный рост корневой системы, возрастание водоудерживающей способности, закрывание устьиц и др.

Активное избирательное отношение растительного организма к неблагоприятным, стрессовым условиям внешней среды выражается в его способности к саморегуляции, оптимизации протекающих в нем процессов, а также к приспособлению их к факторам внешней среды, с которыми организм находится в непрерывном взаимодействии на протяжении всего онтогенеза. Сюда относится устойчивость к недостатку или избытку воды, низким и высоким температурам, недостатку кислорода, засолению и загазованности среды, ионизирующему излучению, инфекциям и др. Эти неблагоприятные факторы в последнее время часто называют стрессорами, а реакцию организма на любые отклонения от нормы - стрессом.

Вопрос о природе защитных реакций, которые растение способно противопоставить гибельному влиянию перечисленных выше факторов и которые позволяют организму сохранить нормальный ход процессов развития, включая и функцию самовоспроизведения, изучается на протяжении многих десятилетий.

По происхождению и характеру действия все экологические факторы подразделяют на группу абиотических (факторы неживой среды) и группу биотических (связанных с влиянием живых существ). Это разделение условно, поскольку многие абиотические факторы испытывают сильное влияние жизнедеятельности живых организмов.

По ряду экологических классификаций абиотические факторы делят на:

1. Климатические - свет, тепло, воздух (его состав и движение), влага (включая осадки в разных формах, влажность почвы, влажность воздуха).

2. Эдафические (или почвенно-грунтовые) - механический и химический состав почв, их физические свойства и т.д.

3. Топографические условия рельефа.

Эта классификация абиотических факторов относится в основном к наземным растениям. На водные растения влияет иной комплекс факторов, определяемый свойствами воды как среды обитания; например для них весьма существенны факторы гидрофизические и гидрохимические.

Биотические факторы:

1. Фитогенные - влияние растений - сообитателей как прямое (механические контакты, симбиоз, паразитизм, поселение эпифитов), так и косвенное (фитогенные изменения среды обитания для растений);

2. Зоогенные - влияние животных (поедание, вытаптывание и прочие механические воздействия, опыление, распространение зачатков, косвенное влияние на среду).

В группу биотических факторов входит и влияние на растения микроорганизмов (микробогенные факторы) и грибов (микогенные факторы).

Сильно действующий фактор внешней среды, способный вызвать в организме повреждение или даже привести к гибели, называют стрессовым фактором или стрессором. Если повреждающее действие стрессора превосходит защитные возможности организма, то происходит его гибель.

В этом случае можно говорить об экстремальном факторе. Интенсивность или доза стрессора, вызывающая гибель организма, называется летальной и характеризуется ЛД50, т.е. интенсивностью действующего фактора, при котором погибает половина растений.

Факторы, способные вызвать стресс у растений, можно разделить на 3 группы (рис. 2):

Рис. 2. Классификация факторов, способных вызвать стресс у растений

К физическим стрессорам относятся: высокая и низкая температура, освещенность, недостаток или избыток влаги, повышенный уровень радиации, механические воздействия. Среди химических факторов, способных вызвать стресс, наиболее распространенными являются: соли, ксенобиотики (газы, пестициды, промышленные отходы, тяжелые металлы). Биологические стрессоры, как правило, представлены возбудителями болезней: грибами, бактериями, вирусами и т.д. Не все растения в равной степени страдают от неблагоприятных условий среды. Одни оказываются в отношении того или иного фактора более устойчивыми, другие - менее устойчивыми. В связи с этим различают морозоустойчивые, зимоустойчивые, засухоустойчивые, жароустойчивые, солеустойчивые культуры и сорта.

Устойчивость к неблагоприятным факторам среды определяется способностью растения сохранять такой ход физиологических процессов, который не вызывает существенного нарушения в их согласованности. Растения несут в себе способность успешно осуществлять жизнедеятельность в определенной норме колебаний внешней среды. Всякое отклонение от допустимого предела приводит к изменению физиологической деятельности растения, согласованность между отдельными процессами при этом нарушается и, как следствие этого, выявляется та или иная степень страдания. Оно тем больше, чем сильнее отклонение. Чувствительность растений к этим отклонениям в онтогенезе неодинакова, т.к. выносливость к неблагоприятным почвенно-климатическим условиям определяется стадийным состоянием растения.

Наиболее распространенными неблагоприятными для растений факторами являются засуха, высокие и низкие температуры (экстремальные для растений), избыток воды и солей в почве, недостаток кислорода (гипоксия), очень высокая или низкая освещенность, присутствие в атмосфере вредных веществ, ультрафиолетовая радиация, ионы тяжелых металлов.

2. Общие представления о стрессе и факторах, вызывающих стресс у растений

2.1 УФ излучение - природный стресс фактор для растений

Термин "стресс" перенесен в фитофизиологию из медицинской науки и основательно закрепился в лексике тех, кто занимается экофизиологическими проблемами растений. Под стрессом понимают "напряженное" состояние организма во время развития в нем универсальной защитной реакции на всевозможные воздействия. Реакция растительных клеток и организмов зависит от его дозы. Под дозой подразумевается произведение величины фактора на время его действия. Реакция живых объектов на возрастание дозы стресс-фактора не является монотонной. Считают, что общий характер ответа живой системы передают либо двухфазные (правило Арндта-Шульца), либо трехфазные (парадоксальная зависимость) дозовые кривые. Двухфазная кривая указывает на то, что с ростом дозы агента последний сначала действует как фактор, активизирующий жизнедеятельность биообъекта, а затем как повреждающий, вызывая угнетение жизненных функций и смерть. Стимулирующие дозы часто благоприятно сказываются на росте и развитии растений (явление гормезиса); их принято называть малыми. Трехфазная кривая реагирования означает, что при дозах, меньше стимулирующих (малых), возможно и повреждение системы.

Изучение адаптационных механизмов к различного рода стресс-факторам является в настоящее время одним из приоритетных направлений экофизиологии. Усиление антропогенной нагрузки на биосферу может привести не только к появлению "искусственно" созданных стресс-факторов, но и к существенному увеличению дозы естественных, после чего они могут оказать стрессовое воздействие на организм. Одна из таких негативных тенденций обусловлена истощением озонового слоя, что существенно повысит дозу УФ радиации и этот естественный фактор может стать стрессовым для всех живых объектов, в том числе и для растений.

Как было отмечено ранее УФ радиация в зоне 280 - 320 нм для многих растений является стрессовым фактором. Поэтому даже при незначительном уменьшении стратосферного озонового слоя можно ожидать относительно большого биологического эффекта УФ излучения, выраженного в изменении видового состава и продуктивности растений. УФ радиация может изменить характер сложившихся конкурентных отношений между растениями. Виды менее чувствительные к УФ излучению могут становиться доминантами и существенно изменять структуру наземных экосистем.

В настоящее время продолжается разрушение озонового слоя под действием антропогенного фактора. В этой связи изучение влияния ультрафиолетовой радиации на живые организмы, в том числе и растительные, является весьма актуальным как с теоретической, так и с практической точек зрения.

2.2 Особенности проявления стрессовых реакций у растений

Перенос теории стресса в том виде, как это изложено выше, на растительные объекты кажется на первый взгляд дискуссионным. У растений нет ни нервной системы, ни тех гормонов, которые участвую в стрессовых реакциях у животных. Однако если рассматривать не частности, а суть теории стресса, как неспецифической реакции клетки и организма в целом на экстремальные воздействия, то этот вопрос в физиологии растений заслуживает самого пристального внимания, хотя и требует определенных корректив.

При сопоставлении фаз триады у растений и животных наибольшее сомнение возникало в идентичности первой фазы. Судя по доминирующим в ней реакциям, она не могла быть названа фазой тревоги. Ее называют первичной индуктивной стрессовой реакцией. Вторая фаза - фаза адаптации и третья - истощения ресурсов надежности.

Что происходит во время первой фазы у растений? Увеличивается проницаемость мембран в результате изменения молекулярного состава их компонентов. Это приводит к обратимому выходу ионов калия из клетки и входу ионов кальция из клеточной стенки, вакуоли, ЭПР, митохондрий. Происходит деполяризация мембран. Увеличение проницаемости мембран и торможение H+-АТФ-азы ведут к закислению цитоплазмы. Снижение рН цитоплазмы способствует активации гидролаз, большинство которых имеет оптимум рН в кислой среде. В результате усиливаются процессы распада полимеров.

Тормозится синтез белка, изменяется конформация белковых молекул. Происходит дезинтеграция полисом, информационные РНК "дострессовых" белков гидролизируются или взаимодействуют с особыми белками, образуя "стрессовые гранулы" в цитоплазме. Тормозятся процессы транскрипции и репликации. Вместе с тем на этом этапе происходят экспрессия репрессированных генов и синтез ряда стрессовых белков. Активируется сборка элементов цитоскелета, что приводит к увеличению вязкости цитоплазмы. Тормозится интенсивность фотосинтеза вследствие изменений структуры белков и липидов тилакоидных мембран. Дыхание вначале активируется, однако затем ингибируется, как и фотосинтез, снижается уровень АТФ. Имеются данные о перераспределении углерода из СО2, усвоенного в процессе фотосинтеза: уменьшается включение метки в высокополимерные соединения (белки, крахмал) и сахарозу и увеличивается включение в аланин, малат, аспартат. Активируются свободно-радикальные процессы.

В этот период преобладающими становятся процессы катаболизма, т.е. накапливаются продукты распада. Их роль многообразна:

1. Во-первых, они могут играть роль корректирующего фактора, поскольку в ходе деструкции обеспечивается устранение полимеров с ошибочной или нарушенной структурой.

2. Во-вторых, мономерные соединения могут служить субстратом для синтеза стрессовых белков, фитогормонов и др.

3. В-третьих, мономеры используются в качестве субстратов дыхания, с чем связывают их энергетическую роль.

4. В-четвертых, такие мономеры, как моно - и олигосахариды, аминокислоты, прежде всего пролин, бетаин, связывают воду, что особенно важно для сохранения внутриклеточной воды при повышении проницаемости мембран и облегчении выхода воды из клетки.

5. Имеется информация о том, что продукты деградации белков и липидов обладают свойствами активаторов и ингибиторов процессов метаболизма, оказывая влияние на рост и морфогенез растений.

В 1991 г. академиком Тарчевским выдвинута концепция о сигнальных свойствах олигомерных промежуточных продуктов катаболизма, реализуемых путем воздействия на транскрипцию, трансляцию или на активность ранее образованных молекул ферментов. Эти так называемые стрессовые метаболиты, подобно гормонам животных, оказываются способны выполнять регуляторную функцию в последующей перестройке обмена клеток и организма в целом на новый режим в экстремальных условиях существования.

В первую фазу стресса происходят сдвиг и в гормональном балансе. Возрастает интенсивность синтеза этилена и ингибиторов роста - абсцизовой и жасмоновой кислот. Количество гормонов, стимулирующих рост и развитие - ауксина, цитокинина, гиббереллинов, значительно уменьшается. Это ведет к торможению деления и роста клеток, а также роста всего растения. Таким образом, на первом этапе триады Селье у растений, в отличие от животных, происходит н активация, а торможение гормонального обмена.

Во второй фазе триады Селье - фазе адаптации - у растений на основании изменений, произошедших во время первой фазы, включаются главные механизмы адаптации. Они характеризуются снижением активности гидролитических и катаболических реакций и усилением процессов синтеза. При этом образовавшиеся в начале воздействия продукты распада способствуют "готовности" обмена к перестройке. Так, накопленный пролин взаимодействует с поверхностными гидрофильными остатками белков и увеличивает их растворимость, защищая от денатурации. В результате клетка удерживает больше воды, что повышает жизнеспособность растений в условиях засухи, засоления, высокой температуры. Осмофильными свойствами обладает также осмотин. Продукты деградации гемицеллюлоз, пектиновых веществ - олигогликозиды индуцируют синтез фитоалексинов, выполняющих защитную функцию при инфекционном поражении растений. Образующиеся при распаде органических азотистых соединений полиамины способствуют снижению проницаемости мембран, ингибированию протеазной активности, снижению процессов перекисного окисления липидов, регуляции рН.

Происходит стабилизация мембран, в результате чего восстанавливается ионный транспорт. Повышаются активность функционирования митохондрий, хлоропластов и уровень энергообеспечения. Снижается генерация активных форм кислорода. Возрастает роль компенсаторных шунтовых механизмов, например, усиливается активность пентозофосфатного пути дыхания.

Что происходит на уровне целого организма? Механизмы адаптации, свойственные клетке, дополняются новыми реакциями. Они основываются на конкурентных отношениях между органами за физиологически активные и питательные вещества и построены по принципу аттрагирующих центров. Такой механизм позволяет растению формировать в условиях стресса минимальное количество генеративных органов, которые могут быть обеспечены необходимыми веществами для созревания. Благодаря переброске питательных веществ из нижних листьев сохраняются жизнеспособными более молодые - верхние.

На популяционном уровне адаптация выражается в сохранении только тех индивидуумов, которые обладают широким диапазоном реакций на экстремальный фактор и, оказавшись генетически более успешными, способны дать потомство. В стрессовую реакцию включается естественный отбор, в результате которого появляются более приспособленные организмы и новые виды.

В период третьей фазы (фазы истощения) в условиях возрастания силы эффекта и постепенного исчерпания возможностей защиты организма также доминируют неспецифические реакции. При действии различных агентов разрушаются клеточные структуры. Наблюдается деструкция ядра, в хлоропластах происходит распад гран, в митохондриях уменьшается количество крист. Появляются дополнительные вакуоли, где обезвреживаются токсические вещества, образующиеся в результате изменений обмена в стрессовых условиях. Нарушение ультраструктуры основных энергетических генераторов - митохондрий и хлоропластов приводит к энергетическому истощению клетки, это влечет за собой сдвиги физико-химического состояния цитоплазмы. Эти сдвиги свидетельствуют о сильных, часто необратимых повреждениях клетки.

Некоторые исследователи предлагают дополнить триаду Селье еще одной фазой - назвав ее фазой регенерации (реституции), наступление которой возможно после удаления стрессора. Однако данный этап не может быть повторением второй фазы, поскольку к этому времени организм оказывается слишком ослабленным.

Необходимо отметить, что обычно стрессоры действуют не по одному, а в комплексе. Так, повышенная температура и интенсивная инсоляция сопровождаются засухой; при затоплении проявляется не только кислородная недостаточность, но и интоксикация ядовитыми соединениями; низкой температуре сопутствует слабая освещенность и избыток влаги и т.д.

К стрессу нельзя отнести такие обычные ритмические сдвиги метаболизма, как изменение скорости фотосинтеза, дыхания или транспирации при смене режимов освещения или других условий. Не относятся к стрессу и метаболические сдвиги во время цветения или плодоношения, а также при старении, хотя изменения обмена веществ в конце онтогенеза очень напоминают отмечающиеся при стрессе.

Заключение

Удивительная гармония живой природы, ее совершенство создаются самой природой: борьбой за выживание. Формы приспособлений у растений бесконечно разнообразны. Весь растительный мир со времени своего появления совершенствуется по пути целесообразных приспособлений к условиям обитания.

Растения - пойкилотермные организмы. Повреждения начинаются на молекулярном уровне с нарушений функций белков и нуклеиновых кислот. Температура - это фактор, серьезно влияющий на морфологию и физиологию растений, требующий изменений в самом растении, которые могли бы приспособить его. Адаптации растений к разным температурным условиям даже в пределах одного вида различны.

При высоких температурах выявлены такие адаптации, как густое опушение листьев, блестящая поверхность, уменьшение поверхности, поглощающей радиацию, изменение положения по отношению к источнику тепла, усиление транспирации, высокое содержание защитных веществ, сдвиг температурного оптимума активности важнейших ферментов, переход в состояние анабиоза, защищенных от инсоляции и перегрева, сдвиг вегетации на сезон с более благоприятными тепловыми условиями.

Поставленные задачи требуют и новых подходов как в теоретическом, так и в экспериментальном планах. Для понимания и прогнозирования характера роста, развития и продуктивности растений необходимо целостное восприятие растения. Например, продуктивность фотосинтеза зависит от формирования оптимальной листовой поверхности и всех элементов аппарата фотосинтеза, от условий водного, температурного режимов и минерального питания.

Растительные организмы играют ключевую роль в биосфере, ежегодно накапливая огромные массы органического вещества и продуцируя кислород. Человечество использует растения как главный источник питания, а также в качестве технического сырья и строительных материалов в промышленности, топлива для энергетики; из растений получают лекарственные препараты. Рост народонаселения и уменьшение пахотных угодий из-за разрастания городов и промышленности вызывает необходимость новых подходов для получения всех этих продуктов. Для этого имеется несколько путей. Современное растениеводство во все большей степени переходит на интенсивную технологию выращивания сельскохозяйственных культур, что предполагает строгое соблюдение научно обоснованных приемов возделывания и защиты растений, использования наиболее продуктивных сортов для каждой почвенно-климатической зоны.

Список использованной литературы

1. Александров В.Я. Клетки, макромолекулы и температура. Л.: Наука, 1975 г. 328 с.

2. Вознесенский В.Л., Рейнус Р.М. Температура ассимилирующих органов пустынных растений // Бот. журн., 1977; т. 62. N 6

3. Володько И.К. "Микроэлементы и устойчивость растений к неблагоприятным условиям”, Минск, Наука и техника, 1983 г.

4. Генкель П.А. Физиология жаро- и засухоустойчивости растений М., 1982. 280 с.

5. Гродзинский Д.М. Надежность растительных систем. Киев, 366 с.

6. Горышина Т.К. Ранневесенние эфемероиды лесостепных дубрав. Л., Изд-во Ленингр. ун-та. 1969

7. Горышина Т.Н. Экология растений уч. Пособие для ВУЗов, Москва, В. школа, 1979 г. 63-102 с.

8. Деверолл Б. Дж. Защитные механизмы растений. М. 1980.12

9. Колупаев Ю.Е., Карпец Ю.В. 2009. Активные формы кислорода при адаптации растений к стрессовым температурам. Физиология и биохимия культурных растений. 41 (2): 95-108.

10. Кузнецов Вл. В, Шевякова H. H. 1999. Пролин при стрессе: биологическая роль, метаболизм, регуляция. Физиология растений. 46: 391-336.

11. Культиасов И.М. Экология растений М.: Изд-во московского ун-та, 1982 33-89с.

12. Лархер В. Экология растений М.: Мир 1978 г.283-324c.

13. Максимов Н.А. Избранные работы по засухоустойчивости и зимостойкости растений М.: Изд-во АН-СССР. - 1952 т.1-2

14. Метлицкий Л.В., Озерецковская О.Л. Как растения защищаю от болезней. М, 1985.190 с.

15. Механизмы радиоустойчивости растений. Киев, 1976.167 с.

16. Николаевский В.С. Биологические свойства газоустойчивых растений. Новосибирск, 1979.278 с.

17. Рубин Б.А., Арциховская Е.В., Аксенова В.А. Биохш и физиология иммунитета растений. М., 1975.320 с.

18. Полевой В.В. Физиология растений 1978г.414-424с.

Размещено на Allbest.ru


Подобные документы

  • Экологические группы растений: гидатофиты, гидрофиты, гигрофиты, мезофиты и ксерофиты. Общая характеристика ультрафиолетового излучения и его роль в эволюции живого. Влияние УФ-радиации на содержание фотосинтетических пигментов. Понятие стресса растений.

    курсовая работа [43,1 K], добавлен 07.11.2015

  • Характеристика основных групп растений по отношению к воде. Анатомо-морфологические приспособления растений к водному режиму. Физиологические адаптации растений, приуроченных к местообитаниям разной увлажненности.

    курсовая работа [20,2 K], добавлен 01.03.2002

  • Закономерности жизнедеятельности растительных организмов. Рациональное размещение растений в почвенно-климатических условиях. Механизмы онкопрофилактического действия фитостеринов. Физические и химические компоненты физиологии растений, фотосинтез.

    реферат [42,6 K], добавлен 15.12.2009

  • Исследование основных жизненных форм растений. Описание тела низших растений. Характеристика функций вегетативных и генеративных органов. Группы растительных тканей. Морфология и физиология корня. Видоизменения листа. Строение почек. Ветвление побегов.

    презентация [21,1 M], добавлен 18.11.2014

  • Определение понятий "засуха" и "засухоустойчивость". Рассмотрение реакции растений на засуху. Изучение типов растений по отношению к водному режиму: ксерофитов, гигрофитов и мезофитов. Описание механизма приспособления растений к условиям внешней среды.

    реферат [998,2 K], добавлен 07.05.2015

  • Закаливание растений. Сущность закаливания растений и его фазы. Закалка семян. Закаливание рассады. Реакция адаптации корневых систем, воздействуя на них температурами закаливания. Холодостойкость растений. Морозоустойчивость растений.

    курсовая работа [43,4 K], добавлен 02.05.2005

  • Понятие жизненной формы в отношении растений, роль внешней среды в ее становлении. Габитус групп растений, возникающий в результате роста и развития в определенных условиях. Отличительные черты дерева, кустарника, цветковых и травянистых растений.

    реферат [18,9 K], добавлен 07.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.