Естествознание и окружающий мир

Значение естествознания в формировании профессиональных знаний. Фундаментальные и прикладные проблемы естествознания. Развитие естествознания и антинаучные тенденции. Рациональная и реальная картина мира. Естественно-научные и религиозные знания.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 13.12.2009
Размер файла 68,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Содержание

  • 1. Роль естествознания в формировании профессиональных знаний
    • 2. Естествознание в изменяющемся мире
    • 3. Фундаментальные и прикладные проблемы естествознания
    • 4. Естествознание и математика
    • 5. Развитие естествознания и антинаучные тенденции
    • 6. Естествознание и нравственность
    • 7. Рациональная и реальная картина мира
    • 8. Естественно-научные и религиозные знания
    • Список литературы

1. Роль естествознания в формировании профессиональных знаний

Большое многообразие проявлений окружающего нас мира требует глубокого и комплексного восприятия фундаментальных понятий о материи, пространстве и времени, о добре и зле, о законе и справедливости, о природе поведения человека в обществе. Фундаментальные законы, понятия и закономерности отражают не только объективную реальность материального мира, но и мира социального. К сожалению, уходящий век оставляет немало примеров того, что забвение фундаментальных истин наносило и наносит невосполнимый ущерб природе, живому миру, самому человеку.

Близится рубеж тысячелетий. Завершается XX век, явивший миру черты новой цивилизации. Человек вышел в космос, проник внутрь атомного ядра, освоил новые виды энергии, создал мощные вычислительные системы, разгадал генетическую природу наследственности, научился использовать в невиданных масштабах богатство природы. Однако он гораздо менее преуспел в рациональном и бережном отношении к природе и к богатейшим ее ресурсам.

Что же происходит сейчас, в период интенсивного техногенного развития человечества? По оценкам палеонтологов, за все время эволюции жизни на Земле чередой прошли около 500 млн. живых организмов. Сейчас их насчитывается примерно 2 млн. Только в результате вырубки лесов суммарные потери составляют 4-6 тыс. видов в год. Это приблизительно в 10 тыс. раз больше естественной скорости их вымирания до появления человека. Одновременно наша планета интенсивно пополняется большим множеством различных видов искусственно созданной технической продукции, иногда называемых техногенными видами популяции. Ежегодно производится около 15- 20 млн. различных машин, приборов, устройств, строений и т.п., которые образуют своеобразную техногенную сферу.

Новые технологии земледелия не обходятся без гигантского потока химических веществ. Энергетика стала обязательной спутницей любой развитой страны. Она же является одной из причин нарушения экологического равновесия - глобального потепления, вызванного парниковым эффектом, что подтверждается не только ежегодным повышением средней температуры воздуха, но и ростом уровня Мирового океана на 2-3 мм в год. Разрушается озоновый слой, защищающий все живое от чрезмерного ультрафиолетового излучения; во многих местах нашей планеты выпадают кислотные осадки, приносящие громадный ущерб объектам живой и неживой природы.

Все это - в значительной степени результат активного вмешательства человека в природу и свидетельствует о неудовлетворительном состоянии индустриально-технологической практики, образовательной философии, снижении нравственного и духовного уровней человека. Общество фактически смирилось с существованием людей, имеющих ограниченный кругозор, с подготовкой специалистов узкого профиля. Дифференциация и специализация, вроде бы диктуемые логикой научного процесса, в действительности порождают многие экологические и социальные проблемы. В такой ситуации отдельные представители науки и прогрессивной общественности зачастую оказываются бессильны решить данные проблемы, а также справиться с инстинктом толпы, которой руководит чаще всего желание создать удобный и приятный образ жизни.

Итак, нам представляется, назрела необходимость кардинального пересмотра всей системы знаний о мире, человеке и обществе. При этом необходимо осознанно вернуться, к изучению единого мироустройства, к целостному знанию, но на более высокий виток его развития. Другими словами, возникла объективная необходимость в повышении роли фундаментальной базы образования, построенной на основе органического единства его естественно-научной и гуманитарной составляющих. Человек должен осознанно увидеть свою зависимость от окружающего его мира.

Можно назвать две группы причин, указывающих на необходимость повышения роли фундаментальной базы образования. Первая группа связана с глобальными проблемами цивилизации, нынешний этап развития которой характеризуется наличием признаков экономического, экологического, энергетического, информационного кризисов, а также резким обострением национальных и социальных конфликтов во многих странах мира. Вторая группа причин обусловлена тем, что мировое сообщество в последние десятилетия явно ставит в центр системы образования приоритет человеческой личности. Формирование широкообразованной личности требует решения ряда взаимосвязанных задач. Во-первых, нужно создать оптимальные условия для гармонических связей человека с природой посредством изучения естественно-научных фундаментальных законов природы. Во-вторых, человек живет в обществе, и для его гармонического существования необходимо погружение в культурную среду через освоение истории, права, экономики, философии и других наук.

Концепцию фундаментального образования впервые отчетливо сформулировал в начале XIX в. немецкий филолог и философ Вильгельм Гумбольдт (1767- 1835). По его мнению, предметом такого образования должны служить те фундаментальные знания, которые именно превалируют в фундаментальной науке. Ученый утверждал, что образование должно быть встроено в научные исследования. Эта прогрессивная идея системы образования реализована в лучших университетах мира.

Необходимость перехода к системе образования, в которой повышается роль фундаментальной базы образования, многими специалистами к настоящему времени признана. В этом направлении уже сделаны конкретные шаги. Один из них - введение в общеобразовательный цикл в вузах новой дисциплины - концепции современного естествознания - для обязательного изучения.

Знание концепций современного естествознания поможет будущим специалистам гуманитарных направлений расширить кругозор и познакомиться с конкретными естественно-научными проблемами, тесно связанными с экономическими, социальными и другими задачами, от решений которых зависит уровень жизни каждого из нас.

Любой специалист, вне зависимости от профиля и специфики своей деятельности, так или иначе рано или поздно касается проблем управления. А это означает, что он должен владеть знанием менеджмента. На первый взгляд может показаться, что естествознание - ненужный груз для специалистов управления, экономики, руководителей предприятий и других подобного рода специалистов. Однако на самом деле любой специалист, если он истинный специалист, и прежде всего менеджер или экономист, должен владеть не только законами управления и экономики, но и естественно-научной сущностью объекта, для которого проводится, например, экономический анализ. Без знаний естественно-научной сущности анализируемого объекта и без понимания естественно-научных основ современных технологий менеджеры и экономисты, даже владеющие знаниями менеджмента и экономики, не в состоянии дать квалифицированных рекомендаций по оптимальному решению даже самого простого вопроса, связанного с оценкой, например, экономической эффективности применения различных предлагаемых технологий изготовления какого-либо товара. Ведь каждая технология характеризуется собственной спецификой, влияющей на качество выпускаемого товара, своей материально-технической базой, воздействием на окружающую среду и т.п., а это означает, что поставленный вопрос сопряжен с решением комплекса задач, включающего и экономические, и социальные, и естественно-научные аспекты. Специалисту, владеющему вопросами современного естествознания вместе с теоретическими знаниями управления экономики, не составит труда решить не только простую экономическую задачу (допустим, составить экономически обоснованный бизнес-план), но и любую сколь угодно сложную.

Первую оценку того или иного предложения настоящий руководитель любого ранга обычно производит самостоятельно, до того, как примет окончательное решение о необходимости прибегнуть к услугам специалистов. Вероятность того, что оценка будет объективной, а решение - единственно верным, тем выше, чем шире профессиональный кругозор руководителя, что чрезвычайно важно для принятия особо ответственных решений, связанных, например, со строительством крупных объектов: мощных электростанций, протяженных магистралей и т.п., затрагивающих интересы колоссального числа людей, а нередко государства в целом, иногда и многих государств. Без владения естественно-научными основами современных технологий получения электроэнергии вряд ли возможно принятие решения о строительстве такой электростанции, которая бы наносила минимальный экологический ущерб и производила бы дешевую энергию. Если руководители и работающие вместе с ними специалисты вынесут решение без учета естественно-научных основ энергетики и экологии, то такое некомпетентное решение сделает возможным строительство, например, гидроэлектростанций на равнинных реках, которые, как сейчас всем понятно, производят не самую дешевую энергию, нарушают естественный природный баланс, на восстановление которого потребуется гораздо больше энергии, чем ее производят такие электростанции. Подобные некомпетентные решения могут послужить основой для строительства гигантской мощности атомной электростанции в том регионе, где нет крупных потребителей энергии и где природные условия позволяют строить электростанции совершенно другого типа, например, гелиоэлектростанцию, мощности которой вполне достаточно для местного потребления. При этом не возникает проблемы передачи электроэнергии на большие расстояния другим потребителям, что влечет за собой неизбежные потери полезной энергии. Кроме того, гелиоэлектростанция мало влияет на окружающую среду. Знание естественно-научных основ энергетики и экологии поможет выбрать наиболее оптимальный тип гелиоэлектростанции, которая органически вписывалась бы в живую природу, вырабатывая при этом дешевую энергию.

С проблемами энергетики, экологии вроде бы все понятно - ими должен владеть и инженер, и руководитель, и менеджер, и экономист. А зачем им нужны знания, например, о генной инженерии? Ответ очевиден, если учесть, что без таких знаний невозможно ни вывести высокопродуктивные породы животных, ни внедрить современные передовые технологии в сельскохозяйственное производство.

Практически все руководители в разных отраслях экономики и науки прямо или косвенно участвуют в распределении финансовых ресурсов. Понять, что только при правильном, рациональном распределении таких ресурсов можно ожидать наибольшего экономического, социального, либо другого эффекта. Очевидно, также, что оптимальное распределение финансовых ресурсов способны осуществить специалисты только высокой квалификации, профессиональный уровень которых определяют не только гуманитарные, но и естественно-научные знания.

На современном этапе развития науки, и естествознания в том числе (особенно в России и странах бывшего СССР, где наука, как и экономика в целом, переживает глубокий кризис) распределение финансовых ресурсов для обеспечения научных исследований и образования играет важную роль. При поверхностной, неквалифицированной оценке проблем современной науки выделяемые государством мизерные средства могут расходоваться на проведение исследований ради исследований, на создание многочисленных теорий ради теорий, реальная польза от которых весьма сомнительна, на преждевременное строительство крупных экспериментальных установок, требующих колоссальных материальных затрат и т.п. При таком подходе нередко заслуживающие внимание исследования, чаще всего экспериментальные (носящие не только прикладной, но и фундаментальный характер и отличающиеся новизной и практической значимостью, т.е. приносящие реальную пользу и вносящие весомый вклад в науку) откладываются до лучших времен, что, естественно, будет тормозить развитие не только науки, но и экономики и тем самым сдерживать рост благосостояния народа. Подобный негативный результат несет в себе недостаточное финансирование всей системы образования.

Профессиональная целесообразность знаний основ естествознания касается в одинаковой мере и юристов, и специалистов других профилей. И в этом несложно убедиться, предположив, что руководитель какого-то крупного предприятия привлечен к ответственности за нарушение экологических норм - выброс в атмосферу больших объемов газовых отходов, содержащих соединения серы повышенной концентрации. А соединения серы, как известно, - источник кислотных осадков, губительно влияющих на растения и приводящих к окислению почвы, что в свою очередь влечет за собой резкое снижение урожайности. Степень наказания виновного будет зависеть от того, насколько объективно и квалифицированно сделана правовая оценка его действий, а сама правовая оценка определяется прежде всего профессиональным кругозором лица, дающего оценку. Наряду с правовыми знаниями владение последними достижениями современных технологий, которые позволяют практически исключать выброс многих вредных газов, в том числе и серы, в атмосферу, несомненно поможет юристу объективно оценить степень нарушения и причастность к нему тех или иных конкретных лиц. Профессиональные знания юриста приведут его к правильному решению и будут способствовать тому, чтобы правонарушения не повторялись. В этом случае можно считать, что основная цель высококвалифицированной подготовки и образования достигнута. "Великая цель образования, - как сказал известный английский философ и социолог Герберт Спенсер (1820-1903), - это не знания, а действия".

Современная, удивительно многообразная, техника - плод естествознания, которое и по сей день является основной базой для развития многочисленных перспективных направлений - от наноэлектроники до сложнейшей космической техники, и это очевидно для многих. Но как связать современное естествознание с философией? Философы всех времен опирались на новейшие достижения науки и, в первую очередь, естествознания. Достижения последнего столетия в физике, химии, биологии и в других науках позволили по-новому взглянуть на сложившиеся веками философские представления. Многие философские идеи рождались в недрах естествознания, а естествознание в свою очередь в начале развития носило натурфилософский характер. О такой философии можно сказать словами немецкого философа Артура Шопенгауэра (1788-1860): "Моя философия не дала мне совершенно никаких доходов, но она избавила меня от очень многих трат".

Знание концепций современного естествознания поможет многим, вне зависимости от их профессии, понять и представить, каких материальных и интеллектуальных затрат стоят современные исследования, позволяющие проникнуть внутрь микромира и освоить внеземное пространство, какой ценой дается высокое качество изображения современного телевизора, каковы реальные пути совершенствования персональных компьютеров и как чрезвычайно важна проблема сохранения природы, которая, как справедливо заметил римский философ и писатель Сенека (около 4 до н.э. - 65 н. э), дает достаточно, чтобы удовлетворить потребности человека.

Человек, обладающий хотя бы общими и в то же время концептуальными естественно-научными знаниями, т.е. знаниями о природе, будет производить свои действия непременно так, чтобы польза как результат его действий всегда сочеталась с бережным отношением к природе и с ее сохранением не только для нынешнего, но и для грядущих поколений. И только в этом случае каждый из нас сможет осознанно с благоговением и восторгом повторить замечательные слова Николая Карамзина (1766-1826): "Нежная матерь Природа! Слава тебе!"

Известный чешский мыслитель и педагог, один из основателей дидактики Ян Коменский еще в XVII веке написал "Великую дидактику", выступая с лозунгом "Обучать всех, всему, всесторонне" и таким образом теоретически обосновал принцип демократизма, энциклопедизма и профессионализма в образовании, в котором скрыты многие ценнейшие, плоды будущих богатых урожаев.

Продолжая данную мысль, можно уверенно утверждать: только всестороннее познание естественнонаучной истины делает человека свободным, свободным в широком, философском смысле этого слова, свободным от некомпетентных решений и действий и, наконец, свободным в выборе пути своей благородной и созидательной деятельности.

2. Естествознание в изменяющемся мире

Многочисленные товары массового потребления - от простейших предметов домашнего обихода до современных персональных компьютеров, сложнейшие технические средства эксперимента: мощные лазерные установки, синхрофазотроны, устройства для наблюдения структуры молекул и др. - уникальная космическая техника, самолеты, автомобили и многое другое - все это продукты достигших высокого совершенства наукоемких технологий. Чем выше уровень технологий, тем выше качество выпускаемой продукции и тем она совершеннее. В основе любой передовой технологии лежат важнейшие достижения естествознания и прежде всего естественно-научные открытия последних десятилетий XX века.

Повышение качества производимых товаров, совершенствование технологий и, следовательно, развитие естествознания стимулирует свободный рынок. Но вместе с развитием наукоемких технологий человек все активнее вторгается в природу, нарушает естественное состояние окружающей среды. Свободный рынок, к сожалению, не может предотвратить такое вторжение, не может запретить разрушающие природу испытания ядерного оружия, не может защитить диких животных от безудержных охотников, не может спасти биосферу от кислотных осадков и, наконец, защитить живую природу от нерадивых туристов и отдыхающих. Такую сложную и многогранную проблему могут решить и решают представители власти, правительства государств, которые обязаны принимать законы, стимулирующие обеспечение рынка всем тем, что нужно человеку, без разрушения среды его обитания. Но представители власти не в состоянии установить разумные законы без знаний современных естественно-научных достижений и без взаимодействия с учеными-естествоиспытателями. Только на основе глубокого естественно-научного анализа материальных и энергетических ресурсов возможно их рациональное распределение и сохранение окружающей среды.

Многие государства, проводя дальновидную политику, развивают наукоемкую технологическую базу экономики и вместе с тем принимают законы, направленные на сохранение естественного состояния природы. Так, периодически подписываются соглашения между государствами об ограничении и запрете ядерных испытаний, организовываются экологические службы, и, например, в одной из стран Африки успешно работает государственная военизированная служба по защите слонов от их истребления браконьерами.

Рациональное государственное управление на любом уровне невозможно без естественно-научных знаний, которые не только определяют уровень развития технологий и, следовательно, экономики, но и являются основой для сохранения окружающей среды - с помощью самых современных естественнонаучных, и в первую очередь физических методов и высокочувствительных приборов, можно следить за толщиной и однородностью озонового слоя, защищающего живой мир от чрезмерного ультрафиолетового облучения, можно контролировать уровень различных загрязнений и прогнозировать последствия их воздействия, можно найти эффективные средства лечения многих заболеваний и т.п.

Сегодня общество находится на такой стадии развития, когда все большее число людей осознает необходимость защиты природы. Такому осознанию способствуют ставшие явными последствия активного вторжения техногенной сферы в повседневную жизнь и прогнозы некоторых ученых, предсказывающих невозможность дальнейшего развития экономики в ближайшее время при сохранении нынешних темпов потребления природных ресурсов и интенсивном загрязнении среды нашего обитания.

Проблема сохранения природы приобретает государственные, а в ряде случаев и межгосударственные масштабы. Ее решение во многом прямо или косвенно зависит от степени внедрения достижений естествознания, которое отражает в значительной мере потребности практиков и в то же время финансируется в прямой зависимости от периодически меняющейся политики государства и общественности. Такая зависимость может привести не только к процветанию науки (и естествознания в том числе), но, к сожалению, к ее кризису, который переживают в последнее время страны бывшего СССР. Кризис науки, экономический кризис - основные источники скептицизма по отношению к науке. Но даже в кризисной ситуации остается непоколебимой одна из важнейших особенностей научных знаний - они оказывали и оказывают огромное влияние на окружающий постоянно изменяющийся мир и направлены на пользу человечеству. Вряд ли осмелится кто-либо отрицать те многочисленные блага, которые принесли человечеству естественно-научные знания.

Вместе с никем не опровергнутыми положительными качествами естествознания следует назвать и те, которые обусловлены природой самого знания и ограниченностью человека познавать мир. Например, еще в XIX в. были предложены математические модели, противоречащие представлениям мыслителей прошлого: оказалось, случайные хаотические процессы можно описать вполне определенными математическими уравнениями. Однако результаты решений многих подобного ряда уравнений очень чувствительны к изменениям начальных условий, что, естественно, затрудняет точное предсказание поведения рассматриваемой системы даже в ближайшем будущем. Стоит ли тогда спорить о том, детерминистична ли Вселенная, представляющая собой довольно сложную систему, если вполне определенные математические модели дают всего лишь вероятностные результаты.

Можно привести и другой пример, связанный с прогнозом погоды. Погодные условия во многом зависят от состояния атмосферы - ее температуры, давления, влажности, - которое сравнительно неплохо описывается математическими уравнениями. Незначительные изменения начальных условий сильно влияют на конечный результат решений уравнений. Поэтому сделать достаточно точный прогноз погоды (уж не говоря о долгосрочном прогнозе) практически невозможно. Изменение погоды - вероятностный процесс. В этой связи никакое уточнение уравнений, увеличение массива данных, повышение точности определения параметров, определяющих погодные условия, не могут принципиально изменить сложнейшую математическую процедуру прогнозирования.

Естественно-научные принципы лежат в основе разведки полезных ископаемых, нефтяных и газовых месторождений. Прогнозирование запасов природных ресурсов - чрезвычайно сложный процесс. Поэтому произведенные разными специалистами оценки запасов весьма приближенны и не совпадают. Они различаются даже для одного итого же вида ископаемого, несмотря на то, что ученые пытаются добросовестно выполнить операцию прогнозирования. Представители власти и общественности, как правило, не пытаются указать геологам, как нужно разведывать и прогнозировать, но они выбирают ту оценку, которая ближе всего соответствует их политической цели. При этом следует иметь в виду, что в средствах массовой информации проблема истощения природных ресурсов в ближайшее время носит в значительной степени политический характер. Самые строгие естественно-научные оценки показывают, что на ближайшие десятилетия природных ресурсов хватит, и для их добычи не понадобятся новые технологии. Однако это не означает, что следует их безрассудно расходовать, ведь речь идет только о ближайших десятилетиях. Конечно же, объемы полезных ископаемых разведанных месторождений с каждым годом растут, и по-прежнему остаются неразведанными огромные площади морских шельфов. Тем не менее, цены на природное сырье и особенно на различные виды топлива постоянно растут и будут расти. На рост цен влияют не столько технологии добычи сырья, сколько различные политические факторы.

Приведем характерный пример того, как рекомендации ученых и решения представителей власти не могут повлиять на привычные действия людей. Многим известно, что при сжигании нефтепродуктов, угля образуется чрезмерно большое количество углекислого газа и не менее опасные соединения серы, приводящие к кислотным осадкам. Последствия кислотных осадков ужасны - окисляется почва, деградирует растительный и животный мир, разрушаются металлические конструкции, строения и т.д. Основной источник кислотных осадков - автомобильные выхлопные газы, объем которых становится сравнительно большим при чрезмерно большой скорости движения автотранспорта на магистралях. Ограничение скорости привело бы к существенному уменьшению объема вредных газов. Однако население выступило против ограничения скорости - таков результат недавно проведенного референдума в Германии. Автомобилями пользуются простые граждане, и правительство идет им навстречу, игнорируя рекомендации ученых. А такое пренебрежение равносильно незнанию, которое, как заметил Сенека, - плохое средство избавиться от беды.

Один из возможных способов решения подобного рода проблем заключается в целенаправленном воспитании молодого поколения, в смене обыденного мышления и привычных действий: необходимо понимание того, что важно не только обладание автомобилем и возможность ездить с высокой скоростью, но и рациональное пользование им, не только наличие кондиционера в жилище, но и применение его в случае необходимости.

Что же касается ученых-естествоиспытателей, то они уже предлагают перспективные технологии, позволяющие экономно расходовать материальные ресурсы, тепло и энергию. Решению рассматриваемых проблем способствует и государственная политика, которая часто сводится к повышению цен на материальные ресурсы, энергию.

Некоторые ученые считают, что промышленные предприятия должны добровольно снизить потребление энергии, внедряя передовые технологии в производство и тщательно контролируя качество выпускаемой продукции, чтобы резко сократить бесполезные затраты сырья и энергии на выпуск брака. В этом заключается одно из важнейших направлений развития рациональной промышленной политики.

Рыночная экономика строится на прибыли. Фирмы, не прошедшие испытания рынком, исчезают. Иногда бывает, если нет прибыли от экологически чистого производства, то в жертву приносится природа: загрязняется воздух и вода, заражается почва. Конечно, всем понятно, что подобная рыночная экономика работает во вред человеку, чего допускать никак нельзя. Цивилизованному обществу нужен такой механизм промышленного производства и рыночных отношений, который способен обеспечить выпуск высококачественной продукции и сохранить при этом природу, неотъемлемой частью которой является сам человек. Природа - чрезвычайно сложная, легко ранимая живая система.

"Не то, что мните вы, природа:

Не слепок, не бездушный лик -

В ней есть душа, в ней есть свобода,

В ней есть любовь, в ней есть язык..."

Ф. Тютчев

Эти замечательные слова великого русского поэта Ф. Тютчева (1803-1873) полезно помнить всем и особенно тем, кто собирается посвятить свою деятельность не только изучению природы, но и ее преобразованию.

3. Фундаментальные и прикладные проблемы естествознания

"Наука - самое важное, самое прекрасное и нужное в жизни человека" - так выразительно и кратко оценил практическую значимость науки великий русский писатель А. Чехов (1860-1904). Однако такое однозначное представление о науке не всегда находит понимание в обществе в повседневной жизни. Отношение общества к науке, и особенно к естествознанию, определяется в основном тем пониманием ценности науки, сформированным в данный момент времени. Часто ценность науки представляется в двух смыслах, которые можно кратко выразить в виде двух вопросов. Что наука дает людям для улучшения их жизни? Что она дает небольшой группе людей, изучающих природу и желающих знать, как устроен окружающий нас мир? Один из существенных признаков разделения проблем естествознания на прикладные и фундаментальные основывается на ответах на данные два вопроса: первый из них характеризует прикладную науку, а второй - фундаментальную.

Приведем мнение о пользе науки крупнейшего математика, физика и философа Анри Пуанкаре (1854-1912): "Я не говорю: наука полезна потому, что она научила нас создавать машины; я говорю: машины полезны потому, что, работая на нас, они некогда оставят нам больше времени для занятия наукой". Разумеется, те, кто финансирует науку, имеют несколько иную точку зрения. Для них главное - все-таки машины. В их понимании основная функция ученых должна состоять не в том, чтобы искать естественно-научную истину, а в том, чтобы находить вполне определенные, конкретные решения тех или иных научных задач.

Многие представители власти понимают, что в большинстве случаев фундаментальные исследования - это работа на будущее. Нежелание остаться без будущего в науке и приводит к осознанной необходимости финансировать фундаментальные исследования. При решении вопроса о финансировании как раз и возникает серьезная проблема отделения тех исследований, которые не требуют финансирования, и могут обходиться немедленной реализацией собственного продукта, от тех, которые все-таки требуют финансирования. Другими словами, как отличить прикладные исследования от фундаментальных? Ведь иногда некоторые исследования, прикладные по существу, но никуда на самом деле "не прикладываемые", могут рядиться в одежды фундаментальные, и исследователи при этом могут требовать ничем не оправданных вложений.

Приведенный выше признак разделения проблем естествознания на прикладные и фундаментальные нельзя считать критерием для финансовых органов. Недостаток его - расплывчатость и неконкретность. Задача разделения усложняется еще и тем, что нередко прикладные и фундаментальные исследования переплетаются между собой. Например, исследователь, изучающий ударную волну, производимую сверхзвуковым самолетом, может считать, что познает гармонию мира, а ученый, открывший новое физическое явление, может тут же найти ему практическое применение.

Для решения данной задачи еще в 1950-х годах в США был образован специальный комитет, который составил сводку характеристик фундаментальных исследований. Вот они:

исследование, которое не соотнесено ни с каким конечным результатом;

бесполезное решительно для всех;

исследование, направленное на поиск нового знания;

предпринимаемое только по желанию исследователя;

не нуждающееся в ограничениях секретности;

проводимое исследователем, который не в состоянии объяснить цель своих исследований;

новое исследование, не имеющее практического значения.

Данные характеристики также расплывчаты. Все это говорит о чрезвычайной сложности разделения естественно-научных проблем на прикладные и фундаментальные. Поэтому иногда такое разделение производят по чисто формальному признаку: проблемы, которые ставятся перед учеными извне, т.е. заказчиком, относят к прикладным, а проблемы, возникшие внутри самой науки, - к фундаментальным.

Слово "фундаментальный" не следует смешивать со словами "важный", "большой" и т.п. Прикладное исследование может иметь очень большое значение и для самой науки, в то время как фундаментальное исследование может быть незначительным.

Существует мнение, что достаточно предъявить высокие требования к уровню фундаментальных исследований для достижения желаемой цели, и выполненные на высоком уровне исследования рано или поздно найдут применение. В обосновании такого мнения приводится пример: древние греки изучали казавшиеся бесполезными в те времена конические сечения, которые примерно через 17 веков нашли неожиданное применение в теории Кеплера.

Результаты многих фундаментальных исследований, к сожалению, никогда не найдут применения. В обоснование такого утверждения можно назвать три причины. Первую из них можно пояснить на примере тех же конических сечений. В течение примерно двадцати веков было использовано лишь несколько теорем о конических сечениях, хотя в древности их было доказано свыше ста. Если в ближайшее время или через несколько веков понадобятся подобного рода теоремы, то их быстро, без особых усилий, докажут заново, не тратя времени на поиски исторических реликвий. Вторая причина - фундаментальные исследования проводятся с большим превышением потребностей общества и науки прежде всего. Рождаются теории, от которых потом целиком отказываются (например, теория эпициклов). В последнее время в естествознании стали преобладать не экспериментальные, а теоретические работы, хотя всем понятно, что эксперимент составляет основу естествознания. Такое положение обусловливается объективными и субъективными факторами. Объективные факторы - современный эксперимент сопряжен с использованием сложного дорогостоящего оборудования. Субъективные - стремление исследователей любой ценой получить новые результаты. В результате рождаются многочисленные теории ради теорий, которыми переполнены научно-технические журналы, особенно отечественные. Вместе с тем возникают целые школы, открываются институты теоретических исследований, претендующие на финансирование своих "фундаментальных исследований".

И, наконец, третья причина - исследователи всегда стремились к ничем не оправданному обобщательству. Речь идет не о мысленном переходе от единичного к более общему, то есть обобщении - одном из важнейших процессов естественно-научного познания, а об обобщательстве - переформулировании на более общем и абстрактном языке с применением новой терминологии того, что было известно и раньше, но излагалось на более простом и доступном языке. Обобщательством страдают в первую очередь гуманитарные работы. Не составляют исключения математические и естественно-научные статьи, которые обычно не связаны с новыми идеями, хотя и направлены якобы на развитие и совершенствование идей. Конечно же, подобного рода публикации не способствуют развитию ни фундаментальной, ни прикладной науки, а наоборот, сдерживают его.

К настоящему времени, к сожалению, нет точного критерия определения фундаментальных и прикладных проблем, нет ясных правил отделения полезных исследований от бесполезных, и поэтому общество вынуждено идти на издержки.

Ценность фундаментальных исследований заключается не только в возможной выгоде от них завтра, но и в том, что они позволяют поддержать высокий научный уровень прикладных исследований. Сравнительно невысокий уровень исследований в отраслевых институтах часто объясняется отсутствием в них работ, посвященных фундаментальным проблемам.

Взаимоотношения между наукой и государством не ограничиваются только товарно-денежными. Государство часто вмешивается во внутренние дела науки, а наука - во внутренние дела государства. Вмешательство государства часто приводит к отрицательным последствиям, и это можно пояснить на примере неудачи создания атомной бомбы в Германии, для правителей которой политические убеждения ученого были важнее его научных достижений. Объявление кибернетики лженаукой, гонения ученых-генетиков - все это примеры грубых вмешательств погруженных в невежество представителей власти, приведших ко всем известным печальным последствиям. Часто бывает: чем авторитетнее ученый, тем более независим он во взглядах. Подвергая их гонениям или устраняя их, обладатели власти искусственно нарушают нормальный ритм работы огромного организма, сложнейшей системы - науки. Подобная проблема существует с давних времен. Еще в свое время выдающийся ученый Галилей в письме к герцогине Тосканской Христине писал, что вмешательство в дела ученых "означало бы, что им приказывают не видеть того, что они видят, не понимать того, что они понимают, и, когда они ищут, находить противоположное тому, что они встречают..."

Вмешательство науки в дела государственные и общественные гораздо сложнее и тоньше. Ни одно сколько-нибудь серьезное решение для общества не принимается без участия ученых. Поэтому правительства обрастают всякого рода научными комитетами, комиссиями, советниками, консультантами и т.п. "Отношения на всех уровнях иерархии при такой системе строятся по "оперной" схеме: политики, избранники народа распевают на правах солистов о благе народа, а ученые - мозговые придатки политиков - потрясают на правах статистов алебардами доходчивости и устрашения", - так писал известный американский физик И.А. Раби (1898-1988), лауреат Нобелевской премии. Иногда политики не понимают смысла объяснений советников. Из истории науки известно: когда Карл Х посетил политехническую школу, профессор пытался объяснить ему, что гиперболоид состоит из одних прямых. Исчерпав все аргументы, профессор воскликнул: "Государь, даю Вам честное слово, что это так!"

Политики вынуждены доверять советникам. А это означает, что демократическая власть, реализуемая посредством своих избранников, подменяется властью научно-технической элиты. И таким положением вряд ли можно восхищаться: демократия становится своеобразной ширмой, и советы ученых иногда носят субъективный характер.

Сложнейшие взаимоотношения государства, общественности и ученых должны основываться не только на представлении о сущности фундаментальных и прикладных проблем науки, но и на тех достижениях естествознания и гуманитарных наук, которые способствуют развитию и совершенствованию таких взаимоотношений.

4. Естествознание и математика

Вряд ли вызывает сомнение утверждение: математика нужна всем вне зависимости от рода занятий и профессии. Однако разным людям необходима и различная математика: для продавца, может быть, достаточно знаний простейших арифметических операций, а для истинного естествоиспытателя обязательно нужны глубокие знания современной математики - только на их основе возможно открытие законов природы и познание ее гармонического развития. Потребность изучения математики в большинстве случаев обусловливается практической деятельностью и стремлением человека познать окружающий мир. Иногда к познанию математики влекут и субъективные побуждения. Об одном из них Луций Анней Сенека (4 в. до н. э), римский писатель и философ, писал: "Александр, царь Македонский, принялся изучать геометрию, - несчастный! - только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве".

Возникает вопрос: может ли серьезный естествоиспытатель обойтись без глубокого познания премудростей математики? Ответ несколько неожиданный: да, может. Однако к нему следует добавить: только в исключительном случае. И вот подтверждающий пример. Чарлз Дарвин, обобщая результаты собственных наблюдений и достижения современной ему биологии, вскрыл основные факторы эволюции органического мира. Причем он сделал это, не опираясь на хорошо разработанный к тому времени математический аппарат, хотя и высоко ценил математику:

"... В последние годы я глубоко сожалел, что не успел ознакомиться с математикой, по крайней мере настолько, чтобы понимать что-либо в ее великих руководящих началах; так, усвоившие их производят впечатление людей, обладающих одним органом чувств более, чем простые смертные".

Кто знает - может быть, обладание математическим чувством позволило бы Дарвину внести еще больший вклад в познание гармонии природы.

Известно, что еще в древние времена математике придавалось большое значение. Девиз первой академии - платоновской Академии - "Не знающие математики сюда не входят" - ярко свидетельствует о том, насколько высоко ценили математику на заре развития науки, хотя в те времена основным предметом науки была философия. Академия Платона (428/427- 348/347 до н. э), одного из основоположников древнегреческой философии, - первая философская школа, имевшая на первый взгляд весьма косвенное отношение к математике.

Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания. "Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является", - утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564-1642). В своем произведении "Пробирных дел мастер" (1623) он аргументировано противопоставлял произвольные "философские" рассуждения единственно истинной натуральной философии, доступной лишь знающим математику: "Философия написана в величественной книге (я имею ввиду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана она на языке математики, и знаки ее - треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту".

Каково же мнение по этому вопросу философов? Ограничимся лишь высказыванием выдающегося немецкого философа Иммануила Канта (1724-1804). Развивая философскую мысль Галилея в "Метафизических началах естествознания", он сказал: "В любом частном учении о природе можно найти науку в собственном смысле лишь столько, сколько имеется в ней математики... Чистая философия природы вообще, т.е. такая, которая исследует лишь то, что составляет понятие природы вообще, хотя и возможна без математики, но чистое учение о природе, касающееся определенных природных вещей (учение о телах и учение о душе), возможно лишь посредством математики; и так как во всяком учении о природе имеется науки в собственном смысле лишь столько, сколько имеется в ней априорного познания, то учение будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в ней математика".

Большинство теорий различных отраслей современного естествознания основаны на математическом описании строгой логической структурой. Рассмотрим характерный пример анализа логической структуры доказательства, позволяющего сделать правильный вывод, даже не обращаясь к эксперименту как необходимому элементу естественно-научной истины. Доказательство касается того, что все тела падают с одинаковой скоростью. Оно изложено Галилеем в книге "Беседы и математические доказательства, касающиеся новых отраслей науки" (1638). Опровергая утверждение Аристотеля о том, что более тяжелые тела падают с большей скоростью, чем легкие (что в то время было актом огромного мужества), Галилей приводит следующее рассуждение. Допустим, Аристотель прав, и более тяжелое тело падает быстрее. Скрепим два тела - легкое и тяжелое. Тяжелое тело, стремясь падать быстрей, будет ускорять легкое, а легкое, стремясь двигаться медленнее тяжелого, будет его тормозить. Поэтому скрепленное тело будет двигаться с промежуточной скоростью. Но оно тяжелее, чем каждая из его частей, и должно двигаться не с промежуточной скоростью, а со скоростью большей, чем скорость более тяжелой его части. Возникло противоречие, и, значит, исходное предположение неверно.

Приведенный пример иллюстрирует, насколько сильна логика рассуждений, присущая, как правило, математическому доказательству. Однако это не означает, что следует ограничиваться только подобного рода доказательствами.

Выдающийся английский физик, создатель классической электродинамики и один из основоположников статистической физики Джеймс Клерк Максвелл (1831-1879) считал, что "следуя (только) математическому методу, мы совершенно теряем из виду объясняемые явления, и поэтому не можем прийти к более широкому представлению об их внутренней связи, хотя и можем предвычислить следствия из данных законов. С другой стороны, останавливаясь на физической гипотезе, мы уже смотрим на явление как бы через цветные очки и становимся склонными к той слепоте по отношению к фактам и поспешности в допущениях, которые способствуют односторонним объяснениям".

При этом он подчеркивал важность физического образа того или иного явления: "Мы должны найти такой прием исследования, при котором мы могли бы сопровождать каждый свой шаг ясным физическим изображением явления, не связывая себя в то же время какой-нибудь определенной теорией, из которой заимствован этот образ... Для составления физических представлений следует освоиться с физическими аналогиями, под которыми я разумею то частное сходство между законами в двух каких-нибудь областях явлений, благодаря которому одна область является иллюстрацией для другой".

Приведенные высказывания Максвелла убеждают: только при всестороннем глубоком изучении объектов и явлений возможно познание гармонии природы, породившей человеческий разум. Однако существует ли гармония вне разума? Однозначный ответ на данный философский вопрос дал известный ученый Анри Пуанкаре, профессионально владеющий не только философией, но и математикой и физикой, что придает его высказыванию особую ценность, и тем более, что речь идет о таком неисчерпаемом предмете рассуждений, как гармония природы в математическом понимании. Как бы ни относились рьяные материалисты к высказыванию авторитетного мыслителя Пуанкаре, вряд ли им удастся аргументировано опровергнуть наделенные глубокой мыслью его слова: "Но та гармония, которую человеческий разум полагает открыть в природе, существует ли она вне человеческого разума? Без сомнения - нет; невозможна реальность, которая была бы полностью не зависима от ума, постигающего ее, видящего, чувствующего ее. Такой внешний мир, если бы даже он и существовал, никогда не был бы нам доступен. Но то, что мы называем объективной реальностью, в конечном счете, есть то, что общо нескольким мыслящим существам и могло бы быть общо всем. Этой общею стороной, как мы увидим, может быть только гармония, выражающаяся математическими законами. Следовательно, именно эта гармония и есть объективная реальность, единственная истина, которой мы можем достигнуть; а если я прибавлю, что универсальная гармония мира есть источник всякой красоты, то будет понятно, как мы должны ценить те медленные и тяжелые шаги вперед, которые мало-помалу открывают ее нам...

Нам скажут, что наука есть лишь классификация и что классификация не может быть верною, а только удобною. Но это верно, что она удобна; верно, что она является такой не только для меня, но и для всех людей; верно, что это не может быть плодом случайности.

В итоге единственной объективной реальностью являются отношения вещей, отношения, из которых вытекает мировая гармония. Без сомнения, эти отношения, эта гармония не могли бы быть восприняты вне связи с умом, который их воспринимает или чувствует. Тем не менее, они объективны, потому что общие и останутся общими для всех мыслящих существ".

5. Развитие естествознания и антинаучные тенденции

Темпы развития.

С течением времени и особенно в конце последнего столетия наблюдается изменение функций науки, и в первую очередь - естествознания. Если раньше основная функция науки заключалась в описании, систематизации и объяснении исследуемых объектов, то сейчас наука становится неотъемлемой частью производственной деятельности человека, в результате чего современное производство - будь то выпуск сложнейшей космической техники, современных супер - и персональных компьютеров или высококачественной аудио - и видеоаппаратуры - приобретает наукоемкий характер. Происходит сращивание научной и производственно-технической деятельности. Появляются крупные научно-производственные объединения - межотраслевые научно-технические комплексы "наука - техника - производство", в которых науке принадлежит ведущая роль. Именно в таких комплексах были созданы первые космические системы, первые атомные электростанции и многое другое, что составляет наивысшие достижения науки и техники.

В последнее время многие ученые считают, что наука - производительная сила; при этом имеется в виду прежде всего естествознание. Хотя наука и не производит непосредственно материальную продукцию, но всем понятно, что в основе производства любой продукции лежат научные разработки. Поэтому, когда говорят о науке как о производительной силе, принимают во внимание не конечную продукцию того или иного производства, а ту научную информацию - своего рода продукцию, - на базе которой организуется и реализуется производство материальных ценностей.

Учитывая такой важный показатель, как количество научной информации, можно сделать не только качественную, но и количественную оценку временного изменения данного показателя и таким образом определить закономерность развития науки.

Результаты количественного анализа показывали, что темп развития науки, как в целом, так и для таких отраслей естествознания, как физика, биология и т.п., а также для математики характеризуется приростом научной продукции на 5-7% в год на протяжении последних 300 лет. При анализе учитывались конкретные показатели: число научных статей, изобретений и т.д. Такой темп развития науки можно охарактеризовать и по-другому. За каждые 15 лет (половина средней разницы в возрасте между родителями и детьми) объем научной продукции возрастает в е раз (е =2,72 - основание натуральных логарифмов). Это утверждение составляет сущность закономерности экспоненциального развития науки.

Из данной закономерности вытекают следующие выводы. За каждые 60 лет научная продукция увеличивается примерно в 50 раз. За последние 30 лет такой продукции создано приблизительно в 6,4 раза больше, чем за всю историю человечества. В этой связи к многочисленным характеристикам XX в. вполне оправдано можно добавить еще одну - "век науки".

Что касается развития отечественной науки, то представляют интерес следующие цифры. В 1913г. в России было не более 12 тыс. научных сотрудников.

К 1976 г. их численность в СССР составила около 1,2 млн., т.е. за 63 года выросла в 100 раз.

Большое внимание развитию науки уделял академик В.И. Вернадский (1863-1945), выдающийся ученый, автор многих основополагающих работ в различных отраслях естествознания, а также известных трудов по философии естествознания. В своей книге "Научная мысль как планетное учение" он писал: "Материальная, реально непрерывная связанность человечества, его культура неуклонно и быстро углубляется и усиливается. Общение становится все интенсивнее и разнообразнее и постояннее... Увеличение вселенскости, спаянности всех человеческих обществ непрерывно растет и становится заметным в немногие годы, чуть не ежегодно. Научная мысль - единая для всех, и та же научная методика, единая для всех, сейчас охватила все человечество, распространилось во всей биосфере, превращает ее в ноосферу. Это новое явление, которое придает особое значение наблюдаемому сейчас росту науки, взрыву научного творчества... В XX веке оно под влиянием интенсивного роста научной мысли выдвинуло на первое место прикладное значение науки как в общежитии, так и на каждом шагу: в частной, в личной и коллективной жизни. Государственная жизнь во всем ее проявлении охватывается научным мышлением в небывалой раньше степени. Наука ее захватывает все больше и больше".


Подобные документы

  • Наука и антинаучные тенденции. Антинаучные тенденции развития мира. Главные потребители продукции антинауки. Естествознание и нравственность. Рациональная и реальная картина мира в формировании мировоззрения. Обработка ощущений. Целостное восприятие.

    реферат [35,5 K], добавлен 05.01.2009

  • Предмет и задачи естествознания как системы научных знаний. Характеристика этапов развития естествознания. Научная картина мира как одно из основополагающих понятий в естествознании — особая форма систематизации знаний, синтез различных научных теорий.

    презентация [1001,9 K], добавлен 28.09.2014

  • Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат [36,3 K], добавлен 27.12.2016

  • Принципы разделения естественно-научных проблем на прикладные и фундаментальные. Сущность проблем, которые ставятся перед учеными, возникших внутри самой науки. Характеристика современных экспериментов сопряженных с использованием сложного оборудования.

    презентация [3,3 M], добавлен 02.04.2015

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

  • История естествознания: древнегреческий период. Черты научного знания на эллинистическом этапе. Древнеримский период античной натурфилософии. Вклад арабского мира в ее формирование. Развитие знаний в средневековой Европе. Сущность научной революции.

    презентация [1,4 M], добавлен 10.11.2014

  • Систематизация знаний в отдельные науки. Возникновение и развитие естествознания, основные понятия и цели. Связь научных знаний о природе с производственной и трудовой деятельностью человека. Взаимосвязь и взаимозависимость естествознания и общества.

    контрольная работа [25,7 K], добавлен 04.04.2009

  • Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие [49,9 K], добавлен 27.01.2010

  • Определение понятия естествознания. Естествознание подразделяется на фундаментальные, прикладные, естественные, технические науки, социальные и гуманитарные науки. История развития науки и её зарождение. Естествознание в античности и в средние века.

    реферат [26,4 K], добавлен 12.12.2010

  • Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.

    реферат [21,3 K], добавлен 29.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.