Фотосинтез растений

Определение, общее уравнение, основные этапы становления учения о фотосинтезе. Историческое значение работ К.А. Тимирязева. Роль фотосинтеза в процессах энергетического и пластического обмена растительного организма. Космическая роль фотосинтеза.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 07.01.2011
Размер файла 10,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Флоэмные окончания выполняют в листе роль коллекторов, аккумулирующих ассимиляты против градиента концентрации. Ведущая роль в загрузке проводящих элементов ассимилятами принадлежит сопровождающим и паренхимным клеткам флоэмы, а у некоторых видов растений и более специализированным передаточным клеткам. Есть данные о том, что клетки флоэмных окончаний поглощают сахара с участием ионов Н +, которые выкачиваются из клеток благодаря работе энергозависимого Н +-насоса.

При перегрузке тканей листа ассимилятами интенсивность фотосинтеза снижается. Переполнение крахмалом пластид вызывает обратимые, а позднее и необратимые изменения структуры хлоропластов, что значительно ослабляет фотосинтез. Отрицательное действие избытка крахмала на фотосинтез в пластидах может быть объяснено: 1) механическим воздействием на тилакоиды, 2) ухудшением светового режима в хлоропласте, 3) сорбцией ферментов на зернах крахмала, 4) сорбцией ионов, особенно Mg2 + , необходимых для поддержания высокой активности ферментов, 5) ухудшением диффузии С02.

Регуляция процессов фотосинтеза в целом растении.

Реализация фотосинтетической функции в целом растении, с одной стороны, определяется значительной генетической и биохимической автономностью структур низших порядков (хлоропласт, клетка), а с другой -- сложной системой интеграции и кооперативных связей фотосинтеза со всеми функциями растительного организма. Процессы онтогенеза обеспечивают постоянное существование в растительном организме так называемых аттрагирующих (притягивающих питательные вещества) зон. В аттрагирующих центрах происходит либо новообразование и рост структур, либо интенсивный однонаправленный синтез запасных веществ (плоды, клубни, луковицы). В обоих случаях состояние аттрагирующих центров определяет величину «запроса» на фотосинтез. Донор ассимилятов (фотосинтез) и их акцептор (процессы роста и отложения веществ в запас) представляют собой взаимосвязанную систему. Если внешние условия не лимитируют фотосинтез, то ведущая роль в его детерминации принадлежит именно эпигенетическим процессам (появлению и развитию новых органов). Это положение может быть проиллюстрировано многочисленными фактами. Так, удаление молодых початков у кукурузы, плодов у томатов, баклажанов или яблони вызывает значительное и устойчивое снижение фотосинтетической активности листьев. Удаление части листьев растения при сохранении прежней активности аттрагирующих центров обычно сопровождается увеличением фотосинтетической активности оставшихся листьев.

Механизм этих взаимоотношений основан на явлении метаболической репрессии фотосинтеза. Чем мощнее центры, аттрагирующие ассимиляты, тем эффективнее фотосинтезирующий лист освобождается от ассимилятов, что служит необходимым условием интенсивного фотосинтеза.

Во всех этих процессах важнейшую роль играют фитогормоны и эндогенные ингибиторы роста и метаболизма (некоторые полифенолы). Участие фитогормонов в процессах фотосинтеза можно представить в виде следующей схемы, предложенной А. Т. Мокроносовым (1983):

Согласно этой схеме, фитогормоны образуются в разных частях растений, в том числе в хлоропластах, и действуют на процессы фотосинтеза как дистанционно, так и непосредственно на уровне хлоропластов. Дистанционное действие осуществляется благодаря регулирующему влиянию фитогормонов на процессы роста и развития (эпигенез), на отложение веществ в запас, на транспорт ассимилятов, т. е. на формирование и активность аттрагирующих центров. С другой стороны фитогормоны оказывают прямое действие на функциональную активность хлоропластов через изменение состояния мембран, активность ферментов, генерацию трансмембранного потенциала. Доказана также роль фитогормонов, в частности цитокинина, в биогенезе хлоропластов, синтезе хлорофилла и ферментов цикла Кальвина.

Ряд фитогормонов (индолилуксусная кислота, гиббереллины, абсцизовая кислота), а также некоторые физиологически активные фенолы образуются в тканях листа. Цитокинин же, от которого во многом зависит формирование листа и его структур, поступает из других частей растения, прежде всего из корня. Такая система создает взаимозависимость всех органов, обеспечивая регуляцию функциональной активности в целом растении.

9.Зависимость процесса фотосинтеза от факторов внешней среды

Интенсивность и спектральный состав света. В среднем листья поглощают 80 -- 85% энергии фотосинтетически активных лучей солнечного спектра (400 -- 700 нм) и 25 % энергии инфракрасных лучей, что составляет около 55% от энергии общей радиации. На фотосинтез расходуется 1,5 -- 2% поглощенной энергии (фотосинтетически активная радиация -- ФАР).

Зависимость скорости фотосинтеза интенсивности света имеёт форму логарифмической кривой. Прямая зависимость скорости процесса от притока энергии наблюдается только при низких интенсивностях света. Фотосинтез начинается при очень слабом освещении; Впервые это было показано А. С. Фаминцыным в 1880 г. на установке с искусственным освещением. Света керосиновой лампы оказалось достаточно для начала фотосинтеза и образования крахмала в растительных клетках. У многих светолюбивых растений максимальная (100%) интенсивность фотосинтеза наблюдается при освещенности, достигающей половины от полной солнечной, которая, таким образом, является насыщающей. Дальнейшее возрастание освещенности не увеличивает фотосинтез и затем снижает его.

Анализ световых кривых фотосинтеза позволяет получить информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций и содержание хлорофилла: чем он больше, тем активнее используется световая энергия. Обычно больше он у теневыносливых растений, обитающих под пологом леса, и у глубоководных водорослей. У этих растений, приспособленных к условиям слабого освещения, хорошо развитый пигментный аппарат позволяет активнее использовать низкие интенсивности света.

Активность фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С02 и определяется концентрацией CO2. Чем выше кривая в области насыщения интенсивности света, тем мощнее аппарат поглощения и восстановления С02. У светолюбивых растений насыщение достигается при значительно большей освещенности, чем у теневыносливых. У теневыносливого печеночного мха маршанции световое насыщение фотосинтеза достигается при 1000 лк, у светолюбивых древесных растений -- при 10 -- 40 тыс. лк, а у некоторых высокогорных растений Памира (где освещенность достигает максимальных на Земле значений порядка 180 тыс. лк) -- при 60 тыс. лк и выше. Светолюбивы большинство сельскохозяйственных и древесных растений, а также водоросли мелководий.

У растений, осуществляющих С3-путь фотосинтеза, насыщение происходит при более низкой интенсивности света, чем у растений с С4-путем превращения углерода, высокая фотосинтезирующая активность которых проявляется только при высоком уровне освещенности.

В области светового насыщения интенсивность фотосинтеза значительно выше интенсивности дыхания. При снижении освещенности до определенной величины интенсивности фотосинтеза и дыхания уравниваются. Уровень освещения, при котором поглощение С02 в процессе фотосинтеза уравновешивается выделением С02 в процессе дыхания, называется световым компенсационным пунктом. Его величину определяют при 0,03% С02 и температуре 20 °С. Значение светового компенсационного пункта неодинаково не только у теневыносливых (составляет примерно 1 % от полного света) и светолюбивых растений (около 3 -- 5 % от полного солнечного света), но и у листьев разных ярусов одного и того же растения, оно зависит также от концентрации С02 в воздухе. Чрезмерно высокое освещение резко нарушает процесс биосинтеза пигментов, фотосинтетические реакции и ростовые процессы, что в итоге снижает общую продуктивность растений.

Существенно, что даже кратковременное изменение условий освещенности влияет на интенсивность фотосинтеза. Это важное адаптационное свойство позволяет растениям в фитоценозах полнее использовать свет. Фотосинтетический аппарат «настраивается» на периодические сдвиги освещенности при ветре, на частоту мелькания бликов в доли секунды.

На ход световых кривых фотосинтеза влияют изменения других факторов внешней среды. Например, при низких температурах (12 С) повышение интенсивности света становится малоэффективным. Температурный оптимум у растений с C3-типом фотосинтеза лежит в пределах 25-35 С. Повышение концентрации С02 с увеличением освещенности приводит к возрастанию скорости фотосинтеза.

Почему именно красные лучи наиболее эффективны для фотосинтеза? Во-первых, потому, что энергия 1 кванта красного света (176 кДж/моль = 42 ккал/моль) вполне достаточна для перехода молекулы хлорофилла на первый синглетный уровень возбуждения S*. Затем эта энергия целиком может быть использована на фотохимические реакции. Энергия же 1 кванта синего света выше (293 кДж/моль = 70 ккал/моль). Поглотив квант синего света, молекула хлорофилла переходит на более высокий уровень синглетного возбуждения S*, и эта излишняя энергия превращается в теплоту при переходе молекулы в состояние S*. Энергия 1 кванта красного света примерно эквивалентна энергии перехода окислительно-восстановительного потенциала системы от Е'0 = +0,8 В до Е'о = -0,8 В. Энергия 1 кванта инфракрасных лучей уже недостаточна для фотоокисления воды, но у фотосинтезирующих серных бактерий эта энергия вполне обеспечивает фотоокисление H2S в процессе фоторедукции. Поэтому у серных бактерий фотосинтез с участием бактериохлорофилла осуществляется при действии невидимого для человеческого глаза инфракрасного света.

Во-вторых, красный свет всегда присутствует в лучах прямой солнечной радиации. Если солнце находится под углом 90°, то красные лучи составляют примерно 1/4 часть полного солнечного света. Если же солнце стоит низко, красные лучи становятся преобладающими. При стоянии солнца под углом 5 0 красный свет составляет 2/3 от полного.

Растения, выращенные на синем и красном свету, существенно различаются по составу продуктов фотосинтеза. По данным Н. П. Воскресенской (1965), при выравнивании синего и красного света по квантам, т. е. при одинаковых для фотохимической стадии фотосинтеза условиях освещения, синий свет уже через несколько секунд экспозиции активирует включение 14С в неуглеводные продукты -- амино- и органические кислоты, главным образом в аланин, аспартат, малат, цитрат, и в более поздние сроки (через минуты) -- во фракцию белков, а красный свет при коротких экспозициях -- во фракцию растворимых углеводов и при минутных экспозициях -- в крахмал. Таким образом, на синем свету по сравнению с красным светом в листьях дополнительно образуются неуглеводные продукты. Эти различия в метаболизме углерода при действии света разного качества обнаружены у целых растений с С3- и С4-путями ассимиляции С02, у зеленых и красных водорослей они сохраняются при различных концентрациях С02 и неодинаковой интенсивности света. Но у изолированных хлоропластов различий в образовании крахмала на синем и красном свету не обнаружено. Полагают, что фоторецептором, с деятельностью которого связаны изменения в метаболизме углерода на синем свету у зеленых растений, являются флавины. Скорость фотосинтеза быстро и значительно увеличивается при добавке небольшого количества (20% от насыщения красного света) синего света к красному. По-видимому, это связано с тем, что фотохимическая стадия фотосинтеза регулируется синим светом.

Концентрация диоксида углерода. СО2 является основным субстратом фотосинтеза его содержание определяет интенсивность процесса. Концентрация СО2 в атмосфере составляет 0,03%. В слое воздуха высотой 100 м над гектаром пашни содержится 550 кг СО2. Из этого количества за сутки растения поглощают 120 кг СО2. Зависимость фотосинтеза от СО2 выражается логарифмической кривой (рис. 9.1).При концентрации 0,03 % интенсивность фотосинтеза составляет лишь 50 % от максимальной, которая достигается при 0,3% СО2. Это свидетельствует о том, что в эволюции процесс фотосинтеза формировался при большей концентрации СО2 в атмосфере. Кроме того, такой ход зависимости продуктивности фотосинтеза от концентрации С02 указывает на возможность подкормки растений в закрытых помещениях СО2 для получения большего урожая. Такая подкормка СО2 оказывает сильное влияние на урожай растений с С3-типом ассимиляции СО2 и не влияет на растения с С4-типом, у которых существует особый механизм концентрирования СО2.

Рис. 10.1

Интенсивность ассимиляции С02 зависит от скорости его поступления из атмосферы в хлоропласты, которая определяется скоростью диффузии С02 через устьица, межклетники и в цитоплазме клеток мезофилла листа. В открытом состоянии устьица занимают лишь 1--2% площади листа, остальная поверхность покрыта плохо проницаемой для газов кутикулой. Однако при наличии кутикулы С02 входит в лист через устьица за единицу времени в таком же количестве, как и без нее. Объясняется это законом Стефана, согласно которому скорость перемещения молекул газа через малые отверстия пропорциональна их окружности, а не площади. Чем меньше отверстие, тем больше отношение окружности к площади. А у края отверстия молекулы в меньшей степени сталкиваются друг с другом и быстрее диффундируют. Поэтому через устьице с апертурой (открытостью) порядка 10 мкм молекулы газа перемещаются с большой скоростью. На процессы открывания и закрывания устьиц влияют С02, насыщенность тканей водой, свет, фитогормоны.

Температура. Первичные фотофизические процессы фотосинтеза (поглощение и миграция энергии, возбужденные состояния) не зависят от температуры. Очень чувствительны к температуре процессы фотосинтетического фосфорилирования. Скорость комплекса энзиматических реакций, сопряженных с восстановлением углерода, при повышении температуры на 10 °С возрастает в 2 -- 3 раза (Q10 = 2 -- 3).Общая зависимость фотосинтеза от температуры выражается одновершинной кривой (рис. 9.2). Кривая имеет три основные (кардинальные) температурные точки: минимальную, при которой начинается фотосинтез, оптимальную и максимальную. Интенсивность фотосинтеза при супероптимальных температурах зависит от продолжительности их воздействия на растения. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах --15 °С (сосна, ель)... --0,5 °С, а у тропических растений -- в зоне низких положительных температур 4 -- 8 °С. У растений умеренного пояса в интервале 20 -- 25 °С достигается максимальная интенсивность фотосинтеза, а дальнейшее повышение температуры до 40 °С приводит к быстрому ингибированию процесса (при 45 °С растения погибают). Некоторые растения пустынь способны осуществлять фотосинтез при 58 °С. Температурные границы фотосинтеза можно раздвинуть предварительным закаливанием, адаптацией растений к градиенту температур. Наиболее чувствительны к действию температуры реакции карбоксилирования, превращения фруктозо-6-фосфата в сахарозу и крахмал, а также транспорт сахарозы из листьев в другие органы. Необходимо отметить, что влияние на фотосинтез света, концентрации С02 и температуры осуществляется в сложном взаимодействии. Особенно тесно взаимосвязаны свет, действующий на скорость фотохимических реакций, и температура, контролирующая скорость энзиматических реакций. В условиях высокой интенсивности! света и низких температур (5-- 10 °С), когда главным фактором, лимитирующим скорость всего процесса, являются ферментативные реакции, контролируемые температурой значения Q10 могут быть > 4. При более высоких температурах Q10 снижается до 2. При низких интенсивностях света Q10 = 1, т. е. фотосинтез относительно независим от температуры, так как его скорость в данном случае ограничивается фотохимическими реакциями.

Рис. 10.2

Водный режим. Вода непосредственно участвует в фотосинтезе как субстрат окисления и источник кислорода. Другой аспект влияния содержания воды на фотосинтез состоит в том, что величина оводненности листьев определяет степень открывания устьиц и, следовательно, поступления С02 в лист. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. В условиях засухи чрезмерная потеря воды листом также вызывает закрывание устьиц под влиянием увеличения содержания в листьях абсцизовой кислоты в ответ на недостаток влаги. Длительный водный дефицит в тканях листа при засухе приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования и к снижению величины отношения ATP/NADPH за счет большего торможения образования АТР. Максимальный фотосинтез наблюдается при небольшом водном дефиците листа (порядка 5 -- 20% от полного насыщения) при открытых устьицах.

Минеральное питание. Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Два основных процесса питания растительного организма - воздушный и корневой -- тесно взаимосвязаны. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов электронтранспортной цепи, каталитических систем хлоропластов, структурных и транспортных белков), а также для его обновления и функционирования.

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТРу влияет на активность реакций карбоксилирования и восстановления NADP+. Вследствие этого его недостаток нарушает процесс фотосинтеза.

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Дефицит железа резко нарушает функционирование циклического и нециклического фотофосфорилирования, синтез пигментов и изменяет структуру хлоропластов.

Необходимость; марганца для зеленых растений связана с его ролью в фотоокислении воды. Поэтому недостаточность питания по марганцу отрицательно сказывается на интенсивности фотосинтеза. В реакциях фотоокисления воды необходим также хлор.

Медь входит в состав пластоцианина, поэтому у растений дефицит меди вызывает снижение интенсивности фотосинтеза.

Недостаток азота сильно сказывается на формировании пигментных систем, структур хлоропласта и его общей активности. Концентрация азота определяет количество и активность РДФ-карбоксилазы.

В условиях недостатка фосфора нарушаются фотохимические и темновые реакции фотосинтеза. Особенно резко дефицит фосфора проявляется при высокой интенсивности света, при этом более чувствительными оказываются темновые реакции. Однако при уменьшении содержания фосфора в два раза интенсивность фотосинтеза снижается в меньшей степени, чем ростовые процессы и общая продуктивность растений. Избыток фосфора также тормозит скорость фотосинтеза, по-видимому, вследствие изменения проницаемости мембран.

Уменьшение содержания калия в тканях сопровождается значительным снижением интенсивности фотосинтеза и нарушениями других процессов в растении. В хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, нарушаются все процессы фотосинтеза. Это свидетельствует о полифункциональной роли калия в ионной регуляции фотосинтеза.

Кислород. Процесс фотосинтеза обычно осуществляется в аэробных а условиях при концентрации кислорода 21 %.Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.

Обычная концентрация 02 превышает оптимальную для фотосинтеза величину. У растений с высоким уровнем фотодыхания (бобы и др.) уменьшение концентрации кислорода с 21 до 3% усиливало фотосинтез, а у растений кукурузы (с низким уровнем фотодыхания) такого рода изменение не влияло на интенсивность фотосинтеза.

Высокие концентрации 02 (25 - 30%) снижают фотосинтез («эффект Варбурга»). Предложены следующие объяснения этого явления. Повышение парциального давления 02 и уменьшение концентрации С02 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы. Наконец О2 может окислять первичные восстановленные продукты фотосинтеза.

Суточные и сезонные ритмы фотосинтеза. Исследования фотосинтеза растений естественных наземных экосистем были начаты в первой четверти XX в. работами В. Н. Любименко, С. П. Костычева и др. Факторы внешней среды, рассмотренные ранее, действуют совместно и в различных сочетаниях. Однако решающую роль играют свет, температура и водный режим.

С восходом солнца интенсивность фотосинтеза возрастает вместе с освещенностью, достигая максимальных значений в 9--12 ч. Дальнейший характер процесса определяется степенью оводненности листьев, температурой воздуха и интенсивностью солнечного света. В полуденные часы интенсивность фотосинтеза не увеличивается: она может оставаться примерно на уровне утреннего максимума (в нежаркие, облачные дни) или несколько снижаться, но тогда к 16 -- 17 ч наблюдается повторное усиление процесса. Интенсивность фотосинтеза падает после 22 ч с заходом солнца.

Дневная депрессия фотосинтеза (если имеет место) связана с нарушениями в деятельности фотосинтетического аппарата и оттока ассимилятов при перегреве, поскольку температура листьев в этот период может превышать температуру воздуха на 5--10°С. Если потери воды тканями велики и наблюдается усиление фотодыхания, то устьица в это время закрываются.

Сезонные изменения фотосинтеза, изученные О. В. Заленским у растений пустынь и в условиях Арктики, показали, что у пустынных растений они зависят от особенностей онтогенеза, а у эфемеров с коротким вегетационным периодом максимальные интенсивности фотосинтеза наблюдаются в конце марта -- середине апреля и совпадают с началом плодо ношения. У растений, заканчивающих активную вегетацию в начале лета, сезонный максимум фотосинтеза отмечается перед наступлением летнего покоя. У длительно вегетирующих деревьев и кустарников сезонный максимум регистрируется в самом начале жаркого и сухого периода. К осени интенсивность фотосинтеза постепенно снижается. У арктических растений сезонные изменения фотосинтеза проявляются в снижении его интенсивности в начале и в конце периода вегетации, когда растения часто подвержены действию заморозков. Максимум фотосинтеза отмечается в наиболее благоприятный период полярного лета.

10.Список использованной литературы

1. Полевой В.В. Физиология растений, М.: “Высшая школа”, 1989 . - 0с.

2. Якушкина Н.И. Физиология растений, М.: Просвещение, 1993. - 335с.

3. Клейтон Р. Фотосинтез. Физические механизмы и химические модели. М., 1984.

4. Физиология фотосинтеза. М.,1982.

5. Кретович В. Л. Биохимия растений. М., 1986.

6. http://www.library.timacad.ru/sources/electr_izd/kovalev/1_organiz.htm


Подобные документы

  • Фотосинтез как процесс синтеза органических веществ за счет энергии света. Специальные структуры и комплексы химических веществ растений, которые позволяют улавливать энергию солнечного света. Масштабы фотосинтеза. Роль хлоропластов в фотосинтезе.

    презентация [627,3 K], добавлен 18.04.2012

  • Процесс превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. История открытия фотосинтеза и его уравнение. Связывание углекислого газа с пятиуглеродным сахаром рибулезодифосфатом. Значение фотосинтеза.

    презентация [206,5 K], добавлен 08.12.2013

  • История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.

    презентация [1,4 M], добавлен 23.10.2010

  • Изучение фотосинтеза с момента его открытия Д. Пристли. Краткая хронология открытий ХХ в. в области фотосинтеза. Идея Тимирязева о непосредственном участии хлорофилла в акте фотосинтеза, обратимые окислительно-восстановительные превращения пигмента.

    реферат [21,3 K], добавлен 08.03.2011

  • Свойства живого организма, основные положения клеточной теории. Осмотические активные вещества растительной клетки. Темновая стадия фотосинтеза, роль дыхания в обмене веществ растительного организма. Химическая природа и характер действия дегидрогеназ.

    контрольная работа [58,0 K], добавлен 01.12.2011

  • Значение фотосинтеза и причины его дневных изменений. Факторы, влияющие на образование хлорофилла. Механизм фотосинтеза и световые его реакции. Поглощение двуокиси углерода фотосинтезирующими тканями. Общий фотосинтез и характер его сезонных изменений.

    реферат [866,4 K], добавлен 05.06.2010

  • Фотосинтез - основа энергетики биосферы: понятие и роль. Структурная организация фотосинтетического аппарата. Пигменты хлоропластов. Световая и темновая фаза фотосинтеза. Фотодыхание и его значение. Зависимость процесса фотосинтеза от внешней среды.

    реферат [4,2 M], добавлен 07.01.2011

  • Фотосинтез как уникальный процесс, протекающий на Земле в листьях зеленых растений и в клетках некоторых бактерий, схема и этапы реализации данного процесса, физическое и биологическое обоснование. Оценка роли фотосинтеза в биосферных процессах.

    презентация [231,1 K], добавлен 17.12.2013

  • Исследование процесса образования органических веществ из углекислого газа и воды за счет энергии света. Особенности световой и темновой фаз фотосинтеза. Реакции пластического и энергетического обменов. Фотоавтотрофный и хемоавтотрофный типы питания.

    презентация [1,9 M], добавлен 16.04.2015

  • Сущность процесса фотосинтеза – процесса превращения углекислого газа и воды в углеводы и кислород под действием энергии солнечного света. Зелёный пигмент – хлорофилл, и органы растений его содержащие – хлоропласты. Световая и темновая фазы фотосинтеза.

    презентация [298,6 K], добавлен 30.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.