Біологічна хімія з біохімічними методами дослідження

Принципи біохімічної діагностики захворювань. Характеристика білків, вуглеводів, ліпідів, ферментів, їх функції і значення в організмі. Обмін речовин і енергії в організмі. Механізм дії гормонів. Водно-сольовий, мінеральний обмін. Система згортання крові.

Рубрика Химия
Вид курс лекций
Язык украинский
Дата добавления 04.04.2014
Размер файла 908,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким чином енергетичний бланс тільки одного циклу окислення дає 17 молекул АТФ. Крім того, утворений ацетил-КоА може окислюватися в циклі Кребсу і дати 12 молекул АТФ.

Таким чином, енергетичний баланс тільки одного циклу окислення дає 17 молекул АТФ, а повністю окислення одної молекули трипальмітину дає 412 молекул АТФ. Це в 10 разів більше, ніж при окисленні однієї молекули глюкози. Таким чином, при ліполізі ТАГ утворюється гліцерин і жирні кислоти, котрі розпадаються з утворенням великої кількості енергії і речовин, що використовується в інших процесах.

Поряд з процесами розпаду ліпідів протікає і синтез триацилгліцеринів і інших ліпідів (літогенез).

В синтезі АТФ можна виділити три етапи:

І. Утворення гліцерину.

ІІ. Синтез жирних кислот.

ІІІ. Взаємодія гліцерину і жирних кислот з утворенням ТАГ.

Біосинтез жирних кислот нагадує їх окислення і заключається в поступовому подовженні ланцюга жирної кислоти на два вуглецевих атоми для одержання потрібної кислоти для даної клітини. Цей процес дуже складний. В ньому приймають участь ацетил-КоА, малоніл-КоА, АТФ, НАДН2, і система ферментів, що об'єднується разом з ацетилпереносячим білком (АПБ) в мультиферментний комплекс, що є стартовою речовиною при синтезі. Він утворюється з ацетил-КоА шляхом приєднання до нього активованої вуглекислоти

Синтетаза жирних кислот складається з 7 ферментів. Схематично цей комплекс нагадує сферичну частину, по периферії якої розташовані ферменти, а центральну частину займає АПБ. Значення цього білку полягає в тому, що до нього приєднуються вихідні речовини для синтезу - ацетил-КоА і малопил-КоА і він переміщає їх від одного ферменту до іншого, забезпечуючи їх перетворення. АПБ можна представити у вигляді часової стрілки, переміщуючись за циферблатом годинника в визначених місцях (де знаходяться ферменти) вона викликає звуковий сигнал (речовини піддаються перетворенням). Наприклад, синтез пальмітинової кислоти проходить в ході 7 циклів.

Утворена кислота відщеплюється від синтетази і включається в інші процеси, а до синтетази знову приєднуються вихідні речовини і починається синтез слідуючої молекули жирної кислоти. Ненасичені жирні кислоти в організмі практично не синтезуються і повинні регулярно поступати з їжею.

3. Обмін фосфоліпідів

В клітинах організму під дією специфічних фосфоліпаз А, В, С, Д гліцерофосфатиди гідролізуються на свої складові компоненти. Послідовність дії фосфоліпаз також, як і при розпаді фосфоліпідів їжі в кишечнику. Але утворений в клітинах лізофосфатид спричиняє при попаданні в кров сильну гемолітичну дію. Такий механізм лежить в основі токсичної дії яду змій, що мають у своєму складі фосфоліпазу А. Потрапляючи в кров, цей фермент проводить до збиткового накопичення в крові лізофосфатидів і розвитку гемолізу еритроцитів.

Перетворення вивільнених при гідролізі фосфоліпідів гліцерину і жирних кислот загально відомі. Фосфорна кислота використовується організмом в незмінному вигляді. Азотиста основа - холін може бути використана для синтезу фосфоліпідів і стати джерелом утворення ацетилхоліну - медіатора нервової системи, серин приймає участь у біосинтезі білку і других перетвореннях.

Поряд йде синтез специфічних фосфоліпідів.

4. Обмін холестерину

Холестерин в організмі можна розділити на холестерин харчових продуктів - екзогенний, він всмоктується клітинами кишечника у складі міцел, утворених парними жовчними кислотами, а потім поступає в лімфу у складі хіломікронів. Ендогенний холестерин синтезується в печінці і транспортується в складі ЛПНГ до органів і тканин.

Значення холестерину для організму дуже велике. Він входить до складу мембран клітин, субклітинних фракцій, в клітинах печінки він перетворюється в жовчні кислоти, в клітинах наднирочників з нього синтезуються стероїдні та статеві гормони, в клітинах шкіри з нього утворюється витамін D. Надлишок холестерину з клітин периферичних тканин в складі ЛПВГ переноситься в печінку, де метаболізується.

Ще недавно основною причиною збиткового накопичення холестерину в крові пов'язували з вживанням продуктів, що багаті холестерином. В наш час встановлено, що гіперхолістеринемія, що супроводжує атеросклероз, пов'язана з підвищеним синтезом ендогенного холестерину .

Тому зараз основна увага направлена на вивчення цього процесу. В організмі холестерин утворюється з ацетил-КоА. 18 молекул ацетил-КоА через ряд проміжних продуктів утворює первинну структуру, котра перетворюється в холестерин. Тому основні дослідження направлені на пошук речовин, що сповільнюють цей процес.

5. Ацетонові та кетонові тіла, біологічна роль в організмі

В ході обмінних процесів в організмі постійно утворюються ацетонові і кетонові тіла, до яких відносяться ацетоуксусна і ?-оксимасляна кислоти, ацетон. Вони утворюються в печінці з ацетил-КоА, а потім поступають до периферичних тканин, де використовуються для обмінних процесів. Так, в м'язах (серцевому м'язі), мозку при голодуванні ацетонові тіла окислюються з утворенням АТФ і приймають участь у мієлонізації нервових волокон, є регулятором вуглеводного і ліпідного обмінів. Вони запобігають гідролізу ТАГ в жировій тканині і попереджують гіперліпемію. Таким чином, вони знижують і використання вуглеводів.

6. Регуляція обміну ліпідів

На регуляцію впливають фактори зовнішнього і внутрішнього середовища.

Зовнішні фактори (харчування, стать, вік, характер роботи, режим дня) впливають на процеси синтезу, запасу, витрачання жирів.

Великий вплив на жировий обмін нервової системи. При збудженні нервової системи підсилюється мобілізація з депо в кров, з якою він попадає в печінку, де окислюється, крім того нервова система контролює діяльність залоз внутрішньої секреції, забезпечуючи злагоджену діяльність гормонів. Інсулін підсилює процеси літогенезу, перетворюючи вуглеводи в жири, подавляє окислення жирних кислот. Контрінсулирні гормони (адреналін, глюкагон, глюкокортикоїди, СТГ) стимулюють розпад жирів. Ось чому зниження синтезу гормонів гіпофізу і статевих гормонів стимулює синтез жирів і гальмує їх розщеплення. В регуляції обміну жирів значення має співвідношення синтезу ТАГ і фосфоліпідів.

Для синтезу ТАГ треба три молекули жирних кислот, а для синтезу фосфоліпідів - дві. ТАГ відкладаються в клітинах, а фосфоліпіди є водорозчинними і виводяться з клітин. Постійне виведення фосфоліпідів з клітин стимулює їх синтез і знижує утворення ТАГ. Але в склад фосфоліпідів, крім гліцерину і жирних кислот входять ще й фосфорна кислота і азотисті основи. Організм не відчуває недостачі фосфорної кислоти, але може не доставати азотистих основ (холіну, серину, етиламіну), необхідних для синтезу фосфоліпідів. Вони називаються ліпотропними факторами. При їх недостатку синтез фосфоліпідів затримується і зростає синтез ТАГ. Це може бути причиною жирової інфільтрації печінки.

Таким чином ліпотропні речовини приймають участь у регуляції ліпідного обміну.

7. Патологія обміну ліпідів

Ліпіди приймають важливу участь в обміні речовин в організмі і активну участь в діяльності органів і тканин організму.

Обмін ліпідів тісно поч.'язаний з перетворенням інших речовин. Ось чому порушення ліпідного обміну можуть проявитися при захворюваннях, причиною яких можуть бути порушення других видів обміну.

Біохімічними симптомами порушення ліпідного обміну є гіперліпемія (підвищення вмісту загальних ліпідів проти норми), гіполіпемія (зниження вмісту загальних ліпідів проти норми), ліпурія (підвищення вмісту ліпідів в сечі). В клініці визначають вміст загальних ліпідів в крові, їх норма складає 4-8 г/л. В поняття загальні ліпіди об'єднується вміст ТАГ, фосфоліпідів, холестерину, жирних кислот, тому великі коливання норми утрудняють широке використання цього показника в клініці. Важко сказати за рахунок якого показника підвищується вміст загальних ліпідів. Гіперліпімія може бути фізіологічною і виникати після їжі, особливо багатої ліпідами. Часто гіперліпімії виникають при захворюваннях, пов'язаних з порушенням енергетичного обміну. Це цукровий діабет, гострі панкреатити, нефрози, гепатити. При цих захворюваннях недостатньо використовуються вуглеводи в процесах обміну і тому в організмі йде посилений процес окислення жирів. Йдуть активні процеси мобілізації жирів з депо організму. Вони поступають в кров, викликаючи гіперліпемію і доставляються до тих органів, які відчувають недостаток енергії. Збільшення вмісту загальних ліпідів відбувається за рахунок збільшення вмісту ТАГ. Гіперліпемії спостерігаються також при отруєннях, недостатній функції ендокринних залоз (щитовидної, статевих залоз, наднирочників).

В сечі в нормі визначаються тільки сліди ліпідів (2 мг/л) за рахунок жиру клітин епітелію сечовивідних шляхів. Підвищення вмісту жиру в сечі - ліпурія, відмічається після їжі. Особливо після прийому риб'ячого жиру і швидко проходить. Патологічне накопичення жиру в сечі пов'язано з цілим рядом причин. Спостерігається при тяжких формах цукрового діабету, туберкульозу, сечокаменевій хворобі, нефрозах, отруєнях. В сечі з'являється велика кількість зруйнованих лейкоцитів і епітеліальних клітин і жирових компонентів. Вони придають сечі молочний вигляд. Ліпурія має місце також при пухлинах підшлункової залози, інфекційних і гнойних процесах.

Гіполіпемія - зниження вмісту жиру в крові - відмічена при цирозі печінки, гіпотеріозі.

В клініці, як правило, визначають ліпідні фракції.

Рівень триацилгліцеринів ТАГ в крові 0,59 -1,77 ммоль/л підвищується при ожирінні, нефрозах, атеросклерозі, гіпофункції щитовидної залози паралельно з вмістом загальних ліпідів.

Рівень фосфоліпідів 1,52-3,62 г/л підвищується в крові при діабеті, нефрозах, глікогенозах, гіпотеріозі. При тяжких враженнях паренхіми печінки (гострий гепатит, жирова інфільтрація) рівень фосфоліпідів знужеється, так як вражаються ті структури, де йде синтез ліпідів.

Вміст холестерину в крові 2,7-7 ммоль/л залежить від віку, статі. Гіперхолестеринемія може бути фізіологічною при емоціональному збудженні, при вагітності і клімаксі.

Патологічна гіперхолестеринемія може бути спадковою і також може розвиватись при захворюваннях ЦНС (менінгіті, пухлинах мозку, епілепсії), захворюваннях нирок (нефрити, нефрози), печінки (механічна жовтяниця, гострий паренхіматозний гепатит).

Гіпорхолестеринемія - зниження вмісту холестерину в крові - має в основі загальні порушення обміну речовин, що розвиваються при різних захворюваннях (бронхопневмонії, подагрі, туберкульозі) і порушеннях функції ендокринних залоз (Базедова хвороба, хвороба Адисона, гіпофункція підшлункової залози).

В лабораторіях досліджують загальний холестерин і його форми (вільну і ефірозв'язану). Холестерин транспортується по крові в складі ліпопротеїдів. В складі ліпопротеїдів низької густини (ЛПНГ) він транспортується до органів і тканин, і вступає в процеси обміну речовин. Надлишок холестерину транспортується в складі ЛПВГ в печінку де метоболізується. Вміст холестерину в крові прямо пропорціональний вмісту ліпопротеїдів. Все це дає основу для використання ліпопротеїдів в діагностиці. Гіперліпопротеінемія (ГЛП) ділиться на декілька типів, позначених римськими цифрами. Для атеросклерозу характерна ГЛП типу ІІ (підвищення ЛПНГ і ЛПВНГ) для діабету і ожиріння тип ІV (збільшення ЛПВНГ).

Зниження активності ферментів в ШКТ або недостатнє надходження в кишечник жовчі викликає порушення перетравлення і всмоктування ліпідів.

До захворювань, основою яких є порушення променевого обміну ліпідів, відноситься ожиріння. При ожиріння підсилюються процеси синтезу жирних кислот і ТАГ, що приводить до накопичення їх в клітинах організму.

Вивчення цієї проблеми має важливе значення в зв'язку з вивченням проблеми довголіття.

Встановлено, що люди з надмірною вагою живуть на 7 років менше і смертність від серцево-судинних хвороб, цукрового діабету, раку в 3-4 рази вище порівняно з людьми, що мають нормальну вагу. Причиною ожиріння можуть бути спадкові хвороби, ендокринні порушення пов'язані з гіпофункцією статевих залоз (ожиріння у кастратів), гіпофізу (гіпофізарне ожиріння). Але найчастіше ожиріння може бути пов'язане з порушенням енергетичного обміну, коли кількість енергії, що поступила в організм, набагато перевищує її витрати. Це може бути при неправильному харчуванні або при гіподинамії.

Порушення обміну холестерину

Порушення обміну холестерину найчастіше спостерігається при атеросклерозі. Причиною атеросклерозу може бути порушення обміну речовин і нервового апарату, що регулює кровообіг і фізіологію судин. При атеросклерозі рівень холестерину збільшується у 2-3 рази (іноді досягає 13 ммоль/л) і підвищується рівень ЛПНГ.

Причиною гіперхолестеринемії є порушення між обміном розщепленого і синтезованого холестерину. З їжею холестерину поступає 0,2-0,5 г/добу. Ця кількість майже не впливає на рівень холестерину в організмі. Тому основна роль належить ендогенному холестерину, якого синтезується за добу 0,8-1,5 г.

Жирова дистрофія печінки пов'язана з накопиченням в клітинах печінки ТАГ, що приводить до дистрофії клітин печінки і порушення їх функцій. Це перш за все пов'язано з порушенням співвідношення між синтезом ТАГ і фосфоліпідів. Посилення синтезу ТАГ гальмує синтез фосфоліпідів і навпаки. Зниження синтезу фосфоліпідів спостерігається при недостатку ліпотропних факторів (азотистих основ холину, метионіну, атиламіну).

Лекція № 12. ВОДНО-СОЛЬОВИЙ, МІНЕРАЛЬНИЙ ОБМІН

1. Розподіл і обмін води в організмі, регуляція її загального об'єму

Водно-мінеральний обмін включає процеси надходження, всмоктування, розподіл і виділення води і солей з організму. Водно-мінеральний обмін забезпечує постійність іонного складу, кислотно-лужної рівноваги, об'єму рідин внутрішнього середовища організму, осмотичний тиск, тобто основні параметри гомеостазу.

Розподіл води в організмі. 72% Н2О знаходиться в клітинах і називається клітинною, 28-30% знаходиться у міжклітинному просторі, 8-10% знаходиться у вільному стані в біологічних рідинах: плазмі крові, лікворі, в рідинах суглобів. Вона лабільна і має властивості розчинника.

Стан води в організмі. Невелика кількість води (4%) зв'язана з тканинними колоїдами, переважно білками і субклітинними структурами, мембранами. Це іммобілізована вода, або гідратна. Між різними формами води існує зв'язок, вона може переходити із однієї форми в іншу.

Збільшення об'єму міжклітинної води при короткочасній роботі зумовлено переважно приливом крові, а збільшення внутрішньоклітинної рідини при довготривалій роботі м'язів, що зв'язано з підвищення гідратації білків працюючих м'язів.

Біологічна роль води.

1. Універсальний розчинник, в ній розчиняється більшість органічних і неорганічних речовин. Властивості розчинника зумовлені тим, що вода - диполь з високою діелектричною здатністю.

2. Вода грає важливу роль в підтримці унікальної структури і функції клітинних органел.

3. Вода - обов'язковий компонент біохімічних процесів, обмін речовин пов'язаний з гідролізом.

4. Вода підтримує постійність складу внутрішнього середовища організму - гомеостаз.

5. Являється важливим фактором в терморегуляції. Вміст води в організмі як теплоємної речовини сприяє постійності теплового режиму тіла людини.

Потреба у воді організму людини 2,5-3 л в залежності від віку .статі, температури навколишнього середовища. Дитячий організм витрачає більше води, тому що в ньому інтенсивніше протікає обмін речовин і вище гідрофільність білків. Дорослій людині треба 30-50 г води на 1 кг маси тіла, дитині 100-150 г.

Організм людини може прожити без їжі до двох місяців, без води 12-15 днів, Втрата 20-25 % води приводить до загибелі організму.

При зміні обміну води спочатку в фізіологічних умовах змінюється кількість вільної води в біологічних рідинах (плазма, ліквор, лімфа) і міжклітинному просторі, в меншій мірі порушується обмін внутрішньоклітинної води.

При патологіях, пов'язаних з дегідратацією організму (гострі кишкові інфекції, тяжкі опіки) зменшується кількість води в клітинах, що приводить до дегідратації тканинних білків, глибоких порушень їх обміну, функцій і структури.

Основна маса води всмоктується в кишечнику, переважно в товстій кишці, і транспортується в тканини і органи (печінка, м'язи, шкіра), в результаті чого вміст води в них постійний.

Встановлено, що 100 калорій їжі утворює приблизно 12 г води. За добу необхідно 3000-3500 калорій, при цьому виділяється 350-400 г води.

Постійна динамічна рівновага між кількістю води, що поступає в організм і виділилась з нього, являється необхідною умовою життя. Це водний баланс організму. Якщо води виділяється менше, чим поступило в організм, то це - позитивний баланс: спостерігається при набряках, при значному послабленні серцевої діяльності, голодуванні Якщо води виділилось більше, то це негативний баланс. Це спостерігається при порушеннях функції нирок, при захворюваннях гіпофізу.

Найбільша кількість води виділяється з сечею 1200-1500 мл за добу. Значна кількість виділяється з потом, причому тут спостерігають коливання 200-500 мл, через легені виділяється 300-500 мл, з випорожненнями 250-300 мл.

2. Основні функції нирок. Біохімічна характеристика ниркового кліренсу та порогу, їх діагностичне значення

Нирки - основний орган виділення продуктів обміну, регуляції осмотичного тиску, кислотно-лужної рівноваги і водно-електролітного балансу. Основна функція нирок - екскреторна.

Нирки відіграють важливу роль у всіх процесах метаболізму і підтриманні енергетичного балансу. В нирках інтенсивно протікають процеси глюконеогенезу та глюкогенезу. При голодуванні половина всієї глюкози крові забезпечується нирковим глюконеогенезом.

Нирки приймають участь в регуляції ліпідного обміну, при хронічній нирковій недостатності розвивається гіперліпопротеїнурія. В нирках синтезується компоненти біомембран, що мають ліпідну природу (фосфоліпіди), утворюються ТАГ, формується активна форма вітаміну Д.

У нирках здійснюються важливі метаболічні процеси перетворення амінокислот, початковий етап біосинтезу креатину з аргіну та гліцину.

У нирках протікають процеси утилізації проміжних кислих метаболітів (окси- і кетокислот) в глюкозу, синтезується вазоактивний гормон ренін, руйнується інсулін, СТГ, глюкогон, пролактін, 45% екзогенного інсуліну руйнується в нирках.

Нирки виконують важливу роль в підтриманні гомеостазу організму людини, характеризуються великою інтенсивністю обміну речовин, вміст води в нирках біля 83%.

Важлива особливість метаболічних процесів в нирках - висока активність окислювальних процесів і зв'язаного з ним фосфорування. Нирки складають 0,5% маси тіла, а поглинають 10% кисню, що використовується організмом. Інтенсивність обміну зумовлена і підсиленим кровообігом.

У нирках протікають фільтраційно-реабсорбційні процеси, так як кров'ю доставляється необхідний енергетичний матеріал (вуглеводи, ліпіди і кисень), що забезпечує можливість ефективного функціонування нирок. Затрати кисню і інтенсивність тканинного дихання максимальні у корковому шарі.

Енергія для роботи нирок забезпечується в основному за рахунок окислення вуглеводів і ліпідів. В нирках активно протікають процеси окислення ацетооцтової кислоти - важливого проміжного продукту обміну ліпідів.

Завдяки утворенню і виділенню сечі відбувається очищення організму від продуктів обміну і шкідливих речовин. Весь цей процес пов'язаний з функціональними особливостями клубочків нирок, а також проксимальних і дистальних канальців, що характеризує клубочкову фільтрацію - коефіцієнт очищення, або кліренс. Кліренс - це об'єм плазми крові в мілілітрах, яка проходить через нирки за 1 хв. і повністю очищується від тої чи іншої речовини. За добу в нирках утворюється 170 - 180 л. первинної сечі, що відповідає утворенню за 1 хв, 125 мл ультрафільтрату. З 170 л. приблизно 168,5 зворотно всмоктуються в кров. Якщо речовина зворотно всмоктуються, то її кліренс дорівнює 0. Якщо речовина зворотно не всмоктується (креатинін), то кліренс, виражений в мілілітрах дорівнює величині ультрафільтрату, в даному випадку 125мл. Практично кліренс є величиною трохи меншою ніж 125 мл. так як частина речовин зворотно всмоктується в кров у канальцях нирок.

Значне зниження клубочкової фільтрації спостерігається при запальних процесах в нирках (нефрити), що супроводжується зменшенням виділення кінцевих продуктів обміну.

3. Електролітний склад організму. Біологічна роль основних катіонів та аніонів Nа, К

Роль солей і окремих хімічних елементів досить важлива. Як пластичний матеріал вони входить до складу різних тканин тіла (кістки, м'язи, шкіра), є компонентами багатьох білків і нуклеїнових кислот, знаходяться у вільному стані. Вони необхідні для процесу обміну речовин, як активатори і коферменти багатьох ферментів, В організмі людини знайдено 70 хімічних елементів, з них 47 хімічних елементів присутні постійно і називаються біогенними. Загальна кількість мінеральних речовин 0,8-1% від маси тіла. У залежності від кількості вмісту біогенних хімічних елементів їх розділяють на макро-, мікро і ультрамікроелементи. До макроелементів відносяться елементи вміст яких 10-2% (Nа, К, Са. Р, СL, S).

До мікроелементів відносяться елементи, вміст яких складає 10-3-10-5% (Вг, F, Fе, Сu, АІ, Мn, Со, Sr, Li). Елементи вміст яких складає 10-5-10-9% називаються ультрамікроелементами (Нg, Аu, Сг, Sі, Nі, Ті).

Білки, нуклеїнові кислоти, що мають властивості іонів, можуть вступати в реакції з різними катіонами. Це відіграє важливу роль у формуванні структури цих біополімерів і органел клітин, особливо клітинних мембран. Са2+, Мg2+ необхідні для підтримки нормальної структури рибосом.

Натрій (Nа) - основний катіон міжклітинної рідини. Норма Nа в плазмі крові 135-155 ммоль/л. Солі натрію в організмі знаходяться в іонізованому стані в плазмі лімфі, жовчі, травних соках, Nа - головний катіон міжклітинної рідини, в ній знаходиться 50% від всієї кількості Nа. Накопичується в кістках, в кістковій тканині знаходиться 44% від всієї кількості Nа; 6% локалізується внутрішньоклітинно.

Біологічні функції Nа - підтримка осмотичного тиску, участь у підтримці кислотно-лужної рівноваги, входить в склад буферних систем крові, приймає участь у передачі збудження по нервовому волокну.

Баланс Nа регулюється ЦНС, ендокринною системою та нирками, реабсорбує Nа гормон альдостерон.

Гіпонатріємія розвивається при недостатньому синтезу альдостерону, введенні в організм великої кількості рідини.

Гіпернатріємія спостерігається при гіперпродукції альдостерону, значних втратах рідини без втрати солей, при хронічних нефритах, гепатитах, цирозі печінки, менінгітах, енцефалітах.

Калій (К) - головний внутрішньоклітинний елемент, загальна кількість в організмі 160 г, внутрішньоклітинно К знаходиться до 90%, у міжклітинній рідині 2,5%, в тканинах м'язів до 8%. М'язова тканина - депо калію. Норма К 3,5-5,3 ммоль/л, в еритроцитах 79,9-99,3 ммоль/л.

Біологічна роль калію: приймає участь у підтримці осмотичного тиску і кислотно-лужної рівноваги в клітинах, разом з Nа створює різницю потенціалів по обидві сторони клітинної мембрани, що забезпечує енергією фізіологічні процеси, що протікають у мембранах, приймає участь у процесах біосинтезу білку, глікогену, АТФ, креатин-фосфату, ацетилхоліну, приймає участь у передачі збудження по нервовому волокну. Добова потреба - 75 ммоль/л, поступає у складі їжі.

Виводиться з організму нирками, калій сприяє діурезу і краще виводиться з організму ніж Nа.

У регуляції рівня К грає роль ЦНС: калій-чутливі рецептори розташовані в судинах печінки, нирок, тонкого кишечнику. Впливають на рівень К+ альдостерон та інсулін. Альдостерон підсилює секрецію К в ниркових канальцях, сприяє зниженню концентрації в організмі. Інсулін, навпаки, зменшує втрату калію нирками і полегшує його транспорт у клітини.

Гіпокаліємія. Спостерігається при підвищеній продукції альдостерону і нестачі інсуліну, при нестачі калію в їжі, поліуріях, пов'язаних з нирковою недостатністю, прийомі діуретиків. Гіпокаліємія проявляється затримкою проведення нервового збудження в м'язовій тканині і в міокарді. Виникає недостатність серцевого м'яза, аж до паралічу і зупинки серця.

Гіперкаліємія виникає при надлишку надходження калію з лікарськими препаратами, при підсиленому виході калію з клітин в результаті травм, опіків, гемолізу еритроцитів, при порушенні виділення калію. Основні зміни спостерігаються при цьому в серцевому м'язі.

4. Біологічна роль та обмін кальцію, магнію, кобальту, молібдену, цинку, йоду

Кальцій (Са) - міститься в організмі в основному в кістках, дентині, емалі зубів - 99% загальної кількості кальцію знаходяться у міжклітинній рідині. У плазмі знаходиться у слідуючих формах: іонізований, неіонізований, білковозв'язаний. Біологічно активний тільки іонізований, його 50% від загального вмісту.

Біологічна роль Са: приймає участь у регуляції процесів нервово-м'язової збудженості, як антагоніст калію, в процесі зсідання крові, забезпечує цілісність клітинних мембран, так як сприяє стабілізації структури білків. Необхідний для секреторної активності практично всіх залоз внутрішньої секреції і є вторинним посередником при передачі мембранного сигналу, активатор 40 ферментів. Являється основним компонентом у побудові кісткового скелету.

Добова потреба складає 30 ммоль/л. Виводиться з організму в складі сечі, слинними залозами, в складі шлункового та кишкового секретів.

Регулюється обмін гормонами паращитовидної залози - паратиріном, щитовидної залози - кольцитоніном, у регуляції приймає участь вітамін Д. Паратирін реабсорбує Са у ниркових канальцях, кальцитонін знижує його реабсорбцію в ниркових канальцях і підсалює фіксацію у кістках.

Гіпокальціємія зустрічається при гіпотеріозі, що супроводжується судомами, спостерігається також при механічній жовтяниці.

Цинк (Zn) є одним з незамінних мікроелементів, входить в склад тканинних білків, ДНК, ферментів, інсуліну. Іони цинку необхідні для функціонування дипепсидаз, лужної фосфатази, РНК- і ДНК-полімераз, багатьох дегідрогеназ, зокрема алкогольдегідрогенази.

Мікроелемент активує велику групу ферментів. У ферментах іони цинку можуть бути замінені іонами марганцю, або кобальту без зниження активності ферменту, з цинком конкурує мідь і дуже токсичний кадмій.

Цинк активує деякі гормони: статеві, тіреотропний, гонадотропний, вазопресин, подовжує гіпоглікемічний ефект інсуліну.

Марганець (Мn) являється необхідним компонентом організму. Зустрічається в двох і трьох валентній формах.

Біологічна роль марганцю полягає в тому, що він приймає участь в ферментативних процесах, входить в склад металзалежних ферментів і регулює їх активність. У марганці мають потребу велика кількість ферментів: піруваткарбоксилаза, глутамінсинтетаза, фосфатази, транскетолаза. Марганець підвищує діяльність гормонів гіпофізу, статевих гормонів, інсуліну, сприяє процесу кровотворення, підвищує катаболізм білків, попереджує відкладення холестерину в стінках судин. Знайдена залежність між обміном марганцю і вітамінами А, В, С, Д, Е.

Кобальт (Со) в організмі входить в склад вітаміну В12 цианкобаламіну, метилкобаламіну, приймає участь в обміні білків, синтезі РНК, ДНК, еритропоезі, сприяє використанню депонованого заліза для синтезу гему, підвищує синтез гормонів щитовидної залози, вітамінів - пірідоксину, тіаміну, стимулює накопичення в організмі вітамінів А, В, С, К, нікотинової кислоти.

Молібден (Мо) широко розповсюджений у природі, його можна знайти в любому організмі. Молібден приймає участь в азотистому, пуриновому обмінах, активує ряд окисно-відновних ферментів, входить в склад молібдензалежних ферментів. Ці ферменти містять по два атоми молібдену. Ксантинооксидаза приймає участь в окисленні ксантину і гіпоксантину до сечової кислоти - кінцевого продукту пуринового, обміну.

Активність ферменту знаходиться в прямій залежності від вмісту мікроелементу. Є твердження про активацію іонами молібдену лужної фосфатази. В організм людини молібден поступає з водою, рослинною і тваринною їжею. Найбільш багаті цим елементом зернові, бобові культури, печінка, нирки.

Надлишок молібдену в організмі викликає токсикози, порушення обміну речовин, затримку росту кісток, порушення обміну міді та фосфору, молібденову падагру в результаті підвищення активності ксантинооксидази і збільшення в 3 рази і більше вмісту сечової кислоти.

Йод (І) - життєвоважливий елемент, що входить в структуру гормону щитовидної залози - тироксину. Щитовидна залоза найбільш багата іонами йоду, який активно поступає з плазми крові і накопичується в щитовидній залозі. Йод впливає на синтез білків та жирів.

У організм йод поступає з продуктами харчування (багато його в морських продуктах), водою. Всмоктується він а тонкому кишечнику досить швидко, поступає з печінку, де на деякий час затримається.

Недостатнє надходження елементу з водою і продуктами харчування приводить до порушення гормональної функції щитовидної залози і розвитку ендемічного зобу. Захворювання проявляється збільшенням щитовидної залози і зниженням її гормональної функції.

Зменшення концентрації йоду спостерігається при гіпопротеінеміях, нефротичному синдромі, дистрофії, ендемічному зобі, кретинізмі, мікседемі.

Підвищення концентрації йоду в крові спостерігається при гіперфункції щитовидної залози, лейкеміях.

5. Характеристика гомеостазу: осмотичний тиск, реакція середовища

Осмотичний тиск любої біологічної рідини (крові, лімфи) визначається молярною концентрацією розчинних в ній речовин, що називаються осмотичноактивними. До них відносяться неелектроліти (білки, сечовина, глюкоза), а також різні солі - електроліти (хлорид натрію, хлорид магнію, дигідрофосфат натрію). Останні в більшій мірі, ніж електроліти впливають на величину осмотичного тиску, що визначається дисоціацією солей на осмотичноактивні іони. Сумарний осмотичний тиск, що створюється в біологічних рідинах неелектролітами і електоолітами при 37?С складає 7,7-8,1 атм.

Осмотичний тиск має важливе фізіологічне значення, так як нормальна його величина в крові і лімфі, що омивають всі клітини людського організму, визначає їх форму і функції (проникливість мембран). Постійність осмотичного тиску підтримується діяльністю ендокринних залоз, нирок і іншими регуляторними механізмами.

Вивчення складу речовин, що визначають осмотичний тиск, має важливе значення в клініці при розробці складу фізіологічних розчинів, що вводяться в організм при втратах рідини, викликаних крововиливами, сильними опіками, втратами шлункового та кишкового вмісту, при інфекційних захворюваннях.

Ці розчини мають осмотичний тиск, що відповідає осмотичному тиску плазми крові і містить в необхідній кількості глюкозу, хлористий натрій, хлористий калій, вуглекислий натрій. Такі розчини називаються ізотонічними. При різних захворюваннях використовуються розчини з підвищеним або зниженим осмотичним тиском (гіпотонічні і гіпертонічні).

Складовою частиною осмотичного тиску є онкотичний або колоїдно-осмотичний тиск, що створюється білками, який має важливе фізіологічне значення для утримування води у циркулярному руслі крові. Тому при гіпопротеїнемії виникає різниця між онкотичним тиском крові і тканинних рідин, і вода направляється в сторону більш високого осмотичного тиску, тобто в тканини, частіше всього у підшкірну клітковину, де накопичується і викликає набряки.

Реакція середовища визначається показником рН крові - водневим показником, що представляє собою десятинний логарифм концентратів іонів водню.

Величина рН крові відрізняється постійністю і знаходиться в межах 7,3-7,4, незважаючи на різні речовини кислого або основного характеру, що регулярно поступають з їжею або утворюються в результаті процесів обміну.

Зсув рН в кислу сторону називається ацидозом, в лужну сторону - алкалозом. В організмі підтримка рівноваги кислот, основ, а відповідно і рН крові забезпечується буферними системами, до яких відноситься білкова, фосфатна, гідрокарбонатна і гемоглобінова. Загальні уявлення про механізм дії буферних систем можна розглянути на прикладі бікарбонатного буферу.

Буферна система складається з двох компонентів: слабкої кислоти і її солі, що утворена сильною основою. В даному випадку слабка кислота Н2СО3, а її сіль NаНСО3. При накопиченні в організмі кислих продуктів, наприклад, соляної кислоти, вони вступають в реакцію нейтралізації з NаНСО3 з утворенням хлориду натрію і вугільної кислоти.

NаНСО3 + НС1 = NаСІ + Н2О + СО2

Утворюється вода і вуглекислий газ. Вуглекислий газ за допомогою гемоглобінової буферної системи переноситься в легені і видихається. Вода приймає участь у процесах обміну речовин і виводиться з сечею. NаС1 виводиться теж через нирки з сечею і рН крові залишається незмінною. При накопиченні в крові основних компонентів (наприклад NаОН) вони зв'язуються з вугільною кислотою

Н2СО3 + NаОН = NаНСО3 + Н2О

і NаНСО3 поповнює бікарбонатну буферну систему, а вода виводиться з сечею.

Діяльність фосфатного буферу пов'язана з діяльністю нирок.

6. Регуляція водно-мінерального обміну

Регуляція водно-мінерального обміну направлена на підтримку нормальної величини осмотичного тиску, в забезпеченні якого важливе значення належить натрію (позаклітинний елемент), калію (внутрішньоклітинний елемент), а також аніонам. Ці мінеральні речовини тісно пов'язані з обміном води. При збільшенні в плазмі натрію і хлору зростає приток води в кров з тканин, що забезпечує підтримку нормального рівня осмотичного тиску. Зменшення в плазмі крові натрію приводить до зневоднення організму.

Натрій і калій тісно пов'язані в своєму обміні. Підвищення концентрації натрію в крові приводить до зниження в ній калію. Крім того, в нирках надлишок калію та іонів водню секретується і виводиться з організму з сечею, тоді як іони натрію реабсорбуються.

Регуляція водно-мінерального обміну контролюється нервовою та гормональною системами.

Вазопресин (гормон задньої долі гіпофізу) має антидіуретичігу дію, тобто сприяє реабсорбції води в ниркових канальцях. В клініці його називають антидіуретичним гормоном. Секреція вазопресину контролюється величиною осмотичного тиску, підвищення якого підсилює синтез гормону. В результаті чого підсилюється реабсорбція води в ниркових канальцях, концентрація осмотично активних речовин знижується і тиск нормалізується. При цьому виділяється невелика кількість сильно концентрованої сечі.

При зниженні осмотичного тиску активується вироблення альдостерону (гормону коркової речовини наднирочників), який підсилює реабсорбцію натрію в нирках. Рівень натрію в крові підвищується і осмотичний тиск приходить в норму.

Таким чином вазопресин і альдостерон регулюють осмотичний тиск: при його зниженні активується вироблення альдостерону, а вазопресину - гальмується. Підвищення осмотичного тиску характеризується активацією синтезу вазопресину і пригніченням синтезу альдостерону.

Паратгормон синтезується паращитовидною залозою, підвищує реабсорбцію кальцію у ниркових канальцях і гальмує реабсорбцію фосфатів.

Кальцитонін - гормон С-клітин щитовидної залози забезпечує депонування кальцію у кістковій тканині і прискорює виділення кальцію з сечею.

7. Роль нирок у регуляції гомеостазу

Виділення води та солей з організму здійснюється не тільки нирками, але їм належить у цьому процесі основна роль. Сеча утворюється у функціональних одиницях нирки - нефронах. Об'єм профільтрованої первинної сечі складає 180 л на добу. Відповідно вся рідина організму фільтрується чотири рази. Об'єм вторинної сечі складає від одного до двох літрів за добу. Таким шляхом забезпечується зберігання об'єму міжклітинної рідини, виведення кінцевих продуктів та солей для підтримки нормального осмотичного тиску.

Осмотичний тиск і об'єм міжклітинної рідини контролюється гормонами, для яких орган-мішень - нирки: вазопресин, альдостерон, ренін.

Кислотно-лужна рівновага підтримується завдяки буферним системам організму, що в значній мірі контролюються нирками. Це відбувається завдяки здатності нирок змінювати вміст іонів водню у сечі (рН сечі може змінюватися від 4,6 до 8,0). Іони водню виділяються у вигляді недисоційованих кислот або солей амонію. Нирки служать джерелом надходження невеликої кількості бікарбонатів, що утворюються за рахунок окислення метаболітів киснем.

Нормальний рН артеріальної крові складає 7,35-7,43, венозної - 7,26-7,35, тобто кров має слаболужне середовище.

Якщо зсув концентрації настільки значний, що він супроводжується зміною рН, це свідчить про декомпенсаційний ацидоз та алкалоз.

У відповідності до патогенезу виникнення цих порушень розрізняють респіраторні (порушення дихання) та метаболічні ацидози та алкалози.

Респіраторний ацидоз виникає при затримці виділення вуглекислого газу в зв'язку з порушенням функції легень (альвеолярна гіповентиляція):

- обструктивних змінах у легенях;

- важких формах пневмонії, набряку легень;

- пригніченні дихального центру (барбітурати, морфін, алкоголь).

Метаболічний ацидоз пов'язаний з надмірною продукцією і надходженням у кров або порушенням виведення Н-іонів, а також з витратою основ. Може протікати в залежності від походження у таких випадках:

- підвищення за рахунок синтезу ацетонових і кетонових тіл при цукровому діабеті;

- підвищений синтез молочної кислоти, що відбувається при шоку, гіпоксії, цукровому діабеті, при захворюваннях печінки;

- кишковий ацидоз, що супроводжується втратою солей (бікарбонатів) при діареї, гострих кишкових інфекціях, фістулах шлунково-кишкового тракту;

- порушення фільтрації Н-іонів при глумерулонефритах.

Респіраторний алкалоз викликається підвищеним виділенням вуглекислого газу при видиху (гіпервентиляція легень, що приводить до зниження концентрації СО2 у крові). Спостерігається при психічному перезбудженні, лихоманці, наркозі.

Метаболічний алкалоз може виникнути в зв'язку з великими витратами шлункового соку, що супроводжується блюванням (гастрити, стенози), підвищенням виділення Н-іонів при гіпокаліємії.

Лекція № 13. ВЗАЄМОЗВ'ЯЗОК ПРОЦЕСІВ ОБМІНУ БІЛКІВ, ЖИРІВ ТА ВУГЛЕВОДІВ. БІОХІМІЯ ПЕЧІНКИ

1. Взаємозв'язок обміну білків, жирів, вуглеводів

В організмі процеси обміну різних речовин дуже тісно пов'язані між собою, що просліджується на різних станах їх перетворень. Так, при розпаді різних поживних речовин утворюється невелика кількість проміжних продуктів однакової структури, які складають єдиний резерв і потім використовуються для синтезу специфічних для даного організму білків, жирів і вуглеводів.

Взаємозв'язок процесу обміну речовин можна досліджувати на прикладі використання організмом кінцевих продуктів всіх обмінних процесів - води, вуглекислого газу, аміаку. Кожна з цих речовин, незалежно від джерела утворення, активно включається в подальший метаболізм. Вода необхідна для життєдіяльності кожної клітини і більшості біохімічних реакцій: цикл Кребсу, окислення жирних кислот, синтез нуклеїнових кислот та глюкози. Вуглекислий газ утворюється при декарбоксилюванні амінокислот, жирів і вуглеводів, широко використовується для синтезу холестерину, нуклеїнових, жирних кислот, жовчних кислот, входить в склад карбонатної буферної системи і виводиться з організму легенями та з сечовиною в складі сечі.

Аміак, що накопичується в організмі при дезамінування амінокислот, також активно метаболізується і використовується як джерело азоту в організмі для синтезу азотовмісних сполук (замінних амінокислот, нуклеїнових кислот, креатину, холіну.) Невикористаний аміак виводиться з організму в складі сечовини або амонійних солей.

2. Ацетил - КОА, глюкоза-6-фосфат і піруват як загальні метаболіти процесів обміну речовин

Слідуючим фактором, що зв'язують воєдино обмін різних речовин, є енергія. Незалежно від структури речовини, що розпалась, вона накопичується однаково - в формі молекули АТФ. Відмінність між обмінами пов'язана тільки з її кількістю, так жири дають в 2 рази більше енергії ніж вуглеводи і білки.

Взаємозв'язок обмінів різних речовин в організмі найбільше виражений на рівні проміжних продуктів, серед яких центральне значення займає ацетил - КОА, глюкозо-6-фосфат, піруват.

Ацетил - КОА утворюється при обміні білків (розпад глікогенних амінокислот), ліпідів (окислення жирних кислот) і вуглеводів (декарбоксилування піровиноградної кислоти). Потім він використовується в циклі Кребсу, а також служить похідним субстратом для синтезу жирних кислот, ацетонових і кетонових тіл, холестерину, стероїдних гормонів, жовчних кислот.

Активований глюкозо-6-фосфат може бути утворений з різних поживних речовин: глікогену і глюкози, білків, гліцерину.

Таким чином глюкозо-6-фосфат, утворений з різних джерел, складає загальний резерв в клітині і по мірі необхідності витрачається.

Глюкозо-6-фосфат має енергетичне значення, в ході його розпаду утворюється 2 молекули піровинограної кислоти, а потім ацетил-КОА, який окислюється до вуглекислого газу і води з виділенням 36-38 молекул АТФ.

Не менше значення має глюкозо-6-фосфат для синтезу глікогену, для якого він є основним субстратом.

Глюкозо-6-фосфат, розпадаючись в клітинах печінки під дією глюкозо-6-фосфатази, поставляє в кров вільну глюкозу. Тим самим забезпечує глюкозою органи і тканини,. в тому числі мозок, для якого вона в нормі є єдиним джерелом енергії.

Глюкозо-6-фосфат в ході своїх перетворень утворює речовини, які є стартовими для синтезу багатьох замінних амінокислот (аланіна, серину, цистеїну). Крім того він поставляє ацетил-КОА, з якого утворюються жирні кислоти. Він також є похідним для синтезу гліцерину.

Таким чином глюкозо-6-фосфат є основною для утворення ліпідів, триацетилгліцеридів, гліцерофосфатів. Таким шляхом при синтезі жирів використовується надлишок глюкозо-6-фосфату.

Піровіноградна кислота є проміжним продуктом розпаду вуглеводів, жирів, деяких амінокислот (аланіну, цистеїну, гліцину). В свою чергу, піруват використовується для синтезу вуглеводів (глюкози), ліпідів і замінних амінокислот, має значення в процесі утворення ацетил-КОА.

Таким чином, розглянуті три сполуки ацетил-КОА, глюкозо-6-фосфат і піруват об'єднують обміни різних речовин в організмі і тому названі ключовими субстратами.

3. Функції печінки

Печінка - найкрупніший з внутрішніх органів (1,2 кг у дорослої людини).

1. Печінка приймає і розподіляє майже всі речовини, що потрапляють в організм людини з шлунково-кишкового тракту по ворітній вені, що розгалужується на вузькі канальці, по яким кров повільно тече, омиваючи клітини печінки.

2. Служить місцем утворення жовчі, що забезпечує участь печінки в перетравленні їжі.

3. Здійснює біосинтез речовин, які вступають в процеси обміну в вигляді субстратів в других органах і клітинах.

4. Забезпечує знезараження токсичних продуктів метаболізму, а також продуктів гниття білку в кишечнику.

5. Печінка - місце інактивації багатьох гормонів.

6. Приймає участь у метаболізмі лікарських препаратів.

7. Приймає участь у виділенні деяких продуктів метаболізму в кишечнику.

а) Роль печінки в обміні вуглеводів.

Печінка відіграє основну роль у підтриманні фізіологічної концентрації глюкози в крові. З загальної кількості глюкози клітини печінки при нормальній течії використовують більшу її кількість: 1) на синтез глікогену не більше 10-15%; 2) на окислення більше 60%; 3) на синтез жирних кислот 30%.

В печінці протікають процеси глюконеогенезу. Основні попередники глюкози - лактат і аланін - поступають з м'язів, гліцерол - з жирової тканини, глікоген амінокислот з їжею.

Надлишкове надходження глюкози з їжею збільшує її розпад з утворенням пірувату. Цей процес гальмує окислення жирів у циклі Кребсу.

Таким чином, між жирами і глюкозою в процесі окислення може виникнути конкуренція.

б) Участь печінки в обміні ліпідів.

Печінка як орган, відповідальний за синтез компонентів жовчі, перш за все приймає участь в перетравленні та всмоктуванні ліпідів. Тут синтезуються жовчні кислоти - емульгатори жовчі і активатори панкриатичної ліпази в тонкому кишечнику, холестерин, утворюються фосфоліпіди плазми, кетонові тіла та ліпопротеіди. Печінка контролює обмін ліпідів всього організму. ТАГ складають 1% маси печінки, але вона контролює процеси синтезу і транспорту жирних кислот. Це пов'язано з тим, що жирні кислоти необхідні для синтезу ТАГ і фосфоліпідів. ТАГ здатні відкладатися в клітках печінки прозапас, а ФЛ є гідрофільними сполуками і виводяться з печінки, доставляються до органів і тканин. Цей процес стимулює синтез ФЛ і гальмує синтез ТАГ. В організмі достатньо фосфорної кислоти і гліцерину, але може бути недостатньо азотистих основ холіну, серину, етаноланіну, метіоніну. Їх називають ліпотропними факторами. При їх недостатку синтез ФЛ знижується і зростає синтез ТАГ, що проводить до ожиріння печінки.

в) Участь печінки в обміні білків.

У печінці активно протікає синтез і розпад білків, що мають важливе значення для організму. В печінці синтезується 13-18 г білків за добу. Альбуміни, фібриноген, протромбін синтезується тільки в печінці. Тут синтезується до 90% глобулінів і 50% ?-глобулінів. В зв'язку з цим, при захворюванні печінки знижується синтез білків і це приводить до зменшення їх кількості в крові, або утворення білків з зміненими фізико-хімічними властивостями, в результаті чого знижується колоїдна стійкість білків крові і вони швидше випадають в осад, ніж звичайні білки під дією солей лужних і лужноземельних металів, а також тимолу, сулеми. Знайти зменшення кількості білків або зміну їх властивостей можливо за допомогою проб на колоїдостійкість білків, серед яких використовують пробу Вельтмана, Тимолову пробу.

Печінка - основне місце синтезу білків системи згортання крові (фібриноген, протромбін). Порушення їх синтезу, як і недостатність вітаміну К, що розвивається внаслідок порушення жовчовиділення, приводить до гемарогічних діатезів.

Активно протікають в печінці процеси перетворення амінокислот (пере амінування, дезамінування, декарбоксилювання) і при таких враженнях печінці процеси суттєво змінюються. В крові зростає концентрація вільних амінокислот і виділеннях їх з сечею. В сечі навіть можуть бути кристали лейцину тирозину.

В печінці проходить синтез сечовини і порушення функцій гепатоцитів приводить до зростання кількості вільного аміаку в крові, що негативно впливає на весь організм і може проявитися печінковою комою, що може привести до загибелі хворого.

Обмінні процеси, що протікають в печінці, каталізуюються різними ферментами, які при захворюваннях виходять в кров і поступають в сечу. Причиною є порушення проникливості клітинних мембран, що має місце на початку захворювання. Тому підвищення активності ферментів є одним з найважливіших показників в доклінічний період. Наприклад, при хворобі Боткіна зростає активність АLТ і АSТ при холестазі зростає активність лужної фосфатази.

Печінка виконує дуже важливу антитоксичну функцію. В ній знезаражуються індол, скатол, фенол, кадаверін, що є продуктами загнивання білків в кишечнику, білірубін, продукти обміну стероїдних гормонів. При цьому утворюються кон'юговані з глюкуроновою кислотою сполуки, що виводяться з сечею.

4. Детоксикація токсичних речовин

Детоксикаційні процеси здійснюється шляхом їх хімічної модифікації, яка включає дві групи перетворень:

- окислення, відновлення або гідроліз з утворенням груп - ОН, - СООН, - SН, - NН;

- приєднання до цих груп глюкуронової або сірчаної кислоти, гліцину, глютаміну або ацетильного залишку (кон'югація). Знезараження може відбуватись за допомогою одного або двох перетворень.

Реакції першої групи забезпечуються гідроксилазами мікросом (мікросомальна фракція - це обривки мембран єндоплазматичної мережі).

З реакції кон'югації переважає приєднання глюкуронової кислоти. Цей процес каталізує глюкуронілтрансфераза - інтегральний білок (ГТ) ендоплаз-матичного ретикулуму.

В реакціях кон'югації з сірчаною кислотою донором є ацетил-КоА. Ці утворення приводять до підвищення гідрофільності знезаражуючих продуктів, що полегшуює процес виведення їх з організму.

Знезараження нормальних метаболітів - білірубіну і аміаку.

Знезараження білірубіну відбувається шляхом кон'югації з одною або двома молекулами глюкуронової кислоти і в меншій мірі з сірчаною кислотою, що виводяться з жовчю в кишечник. Аміак знезаражується в орнитиновому циклі і входить в склад молекули сечовини, яка поступаючи в кров, виводиться з сечею.

Інактивація гормонів в печінці, в залежності від їх природи, протікає різними шляхами.

Пептидні гормони гідролізуються протеазами. Молекула інсуліну інактивується в два етапи: відновлення дисульфідних зв'язків з вивільненням поліпептидних ланцюгів і їх гідроліз інсуліназою. Процес протікає швидко, при однократному проходженні крові через печінку руйнується 80% гормону.

Катехоламіни (адреналін, норадреналін) в гепатоцитах піддаються окислювальному дезамінуванню і коньюгуються з сірчаною та глюнуроновою кислотою. Продукти катаболізму виводяться сечою.

Стероїдні гормони в мікросомальній фракції гідролізуються при участі гідроксилаз, коньюгуються з глюнуроновою або сірчаною кислотою і також виводяться з сечею.

Знезараження продуктів гниття амінокислот, що утворюються під дією мікрофлори кишечнику, відбувається слідуючим чином. Трупні яди (кадаверин та путресин) - виводяться з сечею в незмінному вигляді, крезол та фенол, що утворюються при розпаді тирозину, скатол і індол при розпаді триптофану, всмоктуються в кровообіг і затримується в печінці, утворюючи кон'югати з глюнуроновою і сірчаною кислотою, а скатол деметилюється, перетворюючись в індол, який коньюгується і виділяється у вигляді калієвої солі (тваринний індикан). Інтенсивність цього процесу пропорційна інтенсивності процесів гниття в кишечнику і швидкості знезараження в печінці. Тому вміст індикану служить показником функціонального стану печінки.

Метаболізм лікарських препаратів включає окислення, що каталізується мікросомальними оксидазами. Вони представляють собою ферментні комплекси, що вимагають молекулярного кисню та НАДФ*Н2.

Ферментні системи, що каталізують знезараження лікарських препаратів і других сполук, що проникають з зовнішнього середовища, не були сформовані в організмі в еволюційному процесі. Здатність до знезараження в організмі набута. З віком ця властивість у печінки зростає.

Активність оксидаз може бути підсилена індукторами, що представлють собою різні хімічні агенти і лікарські сполуки (гормони, лікарські препарати, інсектициди, канцерогени).

Відомі сполуки, що гальмують активність мікросомальних систем окислення - інгібітори.

Класичний приклад - фенобарбітал. При його введенні кількість цитохромму Р450 збільшується в 3-4 рази. Це супроводжується інактивацією етилморфіну, антипіріну, кумаринових препаратів. Після відміни фенобарбіталу індукція гальмується, що викликає підсилення ефекту інших лікарських препаратів. Наприклад, доза кумаринових препаратів на фоні відміни фенобарбіталу, може бути токсична. Другий приклад - етанол. Його перетворення в ацетальальдегід протікає з участю оксидаз мікросом. У людей, що споживають великі дози алкоголю, концентрація цитохрому Р450 підвищена. Тому у алкоголіків в тверезому стані виведення барбітуріатів підсилене і вони не дають терапевтичного ефекту. Напроти, епізодичний прийом алкоголю гальмує інактивацію барбітуратів тому, що етанол конкурує з ними за фермент. До угнітаючої дії етанолу приєднується дія барбітуратів, що може привести до смерті.


Подобные документы

  • Загальна характеристика білків, жирів та вуглеводів як компонентів їжі. Розгляд ролі даних речовин для енергетичних, пластичних, будівельних функцій організму. Значення вітамінів, води і мінеральних речовин для здоров'я. Кодифікування харчових добавок.

    презентация [6,3 M], добавлен 10.01.2016

  • Поширення вуглеводів у організмі та їх ферментативне розщеплення у харчовому тракті людини. Процеси перетворення вуглеводів на клітинному рівні. Дихання (аеробний розпад вуглеводів). Енергетичні ефекти процесів. Анаеробний розпад глюкози (гліколіз).

    лекция [39,4 K], добавлен 19.02.2009

  • Обмін ліпідів– багатоступеневий процес який складається з процесів травлення в харчовому тракті. Окислення гліцерину та вищих жирних кислот. Обмін кетонових тіл. Синтез мевалонової кислоти. Біосинтез стероїдних гормонів, вищих жирних кислот та гліцерину.

    контрольная работа [43,4 K], добавлен 19.02.2009

  • Класифікація реакцій внутрішнього обміну за напрямками їх протікання та характером кінцевих продуктів. Передумова створення та сутність перекисної теорії Шенбайн–Баха. Сучасна теорія біологічного окислення. Макроергічні зв'язки та макроергічні сполуки.

    учебное пособие [40,0 K], добавлен 19.02.2009

  • Хімічний елемент селен: історія відкриття, поширеність, фізичні та хімічні властивості, методи одержання. Біологічна роль. Надлишок і нестача селену у організмі людини. Харчові джерела, добова норма. Дефіцит селену і захворювання крові, органів дихання.

    контрольная работа [144,0 K], добавлен 08.03.2015

  • Біологічна, фізико-хімічна та структурна класифікація ліпідів. Попередники і похідні ліпідів. Жирні кислоти, гліцерол, стероїди, кетонові тіла, жиророзчинні вітаміни і гормони. Складні ефіри стеринів і вищих жирних кислот. Одноатомні циклічні спирти.

    презентация [1,9 M], добавлен 25.04.2013

  • Емульсія фосфоліпідів яєчного жовтка - модель пероксидного окиснення ліпідів. Механізм залізоініційованого окиснення вуглеводів. Антиоксидантний захист біологічних об’єктів. Регуляторні системи пероксидного окиснення ліпідів. Дія природних антиоксидантів.

    магистерская работа [2,0 M], добавлен 05.09.2010

  • Загальні властивості міді як хімічного елементу, історія його відкриття, походження, головні фізичні та хімічні властивості. Мідь у сполуках, її якісні реакції. Біологічна роль в організмі людини. Характеристика малахіту, його властивості та значення.

    курсовая работа [555,8 K], добавлен 15.06.2014

  • Загальна характеристика, поширення в організмі та види вуглеводів. Класифікація і хімічні властивості моносахаридів. Будова і властивості дисахаридів й полісахаридів. Реакції окислення, відновлення, утворення простих та складних ефірів альдоз та кетоз.

    реферат [25,7 K], добавлен 19.02.2009

  • Зміст металів у компонентах крові здорової людини. Значення S-елементів для організму людини: натрій, калій, магній, кальцій. З'єднання марганцю в біологічних системах. Роль D-елементів у фізіологічних і патологічних процесах в організмі людини.

    реферат [30,9 K], добавлен 04.09.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.