Произврдство в доменой печи и сплавы

Свойства кремния и область применения в производстве. Определение основных параметров печи, ее футеровка, система охлаждения, газоочистка. Состав оборудования и общая характеристика основных ферросплавных цехов и технологии по производству ферросилиция.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 03.06.2008
Размер файла 77,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Константа равновесия суммарной реакции может быть написана в следующем виде:

Кр =

Pщ2 · aSi

,

ac2 · aSiO2

где - парциальное давление СO, ат;

aSi, ac2, aSiO2 - соответствующие индексы активности.

При чистых исходных материалах кремнезем и углерод находятся в свободном состоянии, тогда aSiO2 и ac равны 1 и Кр=PCO2 · aSi , т.е. протекание реакции восстановления кремния определяется парциальным давлением оксида углерода.

В промышленной печи для производства ферросилиция давление на колошнике примерно равно атмосферному, поэтому устанавливающееся в зоне восстановления парциальное давление оксида углерода лишь незначительно превышает атмосферное давление.

При постоянном значении Pщ2 значение константы для 45%-ного ферросилиция мало. Это означает, что выплавка сплава с меньшим содержанием кремния требует более низких температур.

Исследования показали, что кремнезем восстанавливается углеродом и кремнием с образованием промежуточных продуктов - моноокиси кремния и карбида кремния.

В печи также могут протекать процессы испарения и диссоциации кремнезема по следующим возможным схемам:

При высокотемпературном восстановлении, характерном для процесса получения ферросилиция, при атмосферном давлении наиболее вероятным кажется процесс восстановления SiO2 в две стадии:

SiO2 конд + SiFe ж = 2 SiO(2) ,

SiO2 + CT = Si конд + CO2 .

Жидкий кремнистый расплав обтекает кусочки шихты и вызывает интенсивное взаимодействие с образованием газообразной окиси кремния. Углерод довосстанавливает окись кремния. Окись кремния реагирует с углеродом как на внешней поверхности кусков коксика, так и в их толще, проникая в поры и трещины.

Учитывая, что кремнезем, испаряясь, диссоциирует в основном на оксид кремния и кислород, и то, что в печи находится свободный углерод, следует считать основным кремнийсодержащим продуктом испарения кремнезема оксид кремния. Основными составляющими газовой фазы при относительно высоких температурах можно считать СО и SiO. Такие вещества, как CO2 , SiO2 , Si, SiC2 , Si2C и т.д. должны присутствовать в газовой фазе лишь в незначительных количествах. Это следует прежде всего из расчетов равновесия C + CO2 = 2 CO и результатов термодинамического анализа высокотемпературного испарения кремнезема. Присутствие SiC в выплавках из рабочего пространства или из настылей печей, выплавляющих ферросилиций, подтверждается многочисленными исследованиями.

На ход реакции восстановления кремнезема в значительной степени влияет присутствие железа, которое, растворяя кремний, выводит его из зоны реакции, улучшая термодинамические условия ее протекания и снижая потери кремния. Отсутствие в шихте железа приводит к исключению из приходной части теплового баланса процесса тепла растворения кремния в железе, составляющего 2,5-3% прихода тепла. Присутствие железа значительно снижает температуру начала процесса восстановления кремнезема.

Расчетная температура его начала в зависимости от содержания кремния в сплаве составляет:

Содержание кремния в сплаве, % 45

Температура начала восстановления

кремнезема, єС 1400

Благотворное влияние железа также определяется тем, что оно легко разрушает карбид кремния, являющийся одним из промежуточных продуктов восстановления кремнезема, способствуя сдвигу реакции в сторону образования кремния. Ниже приведена температура (К) начала реакций взаимодействия карбида кремния с кремнеземом и монооксидом кремния и испарения (или разложения) его по различным реакциям (числитель), (знаменатель - результаты расчета). Для реакции непосредственного разложения карборунда

SiCT = Si2 + CT

температура колеблется в пределах от 2423 до 3125 К.

SiCT + SiO2(T) = 2 SiO2 + CT ; 2200 / 2079

SiCT + 2 SiO2(T) = 3 SiO(г) + CO2 ; 2000 / 1934

2 SiCT + SiO2(ж) = 3 Siж + 2 CO(г) ; 2353 / 2257

SiCT + CT + SiO2(Т) = 2 Siж + 2 COг ; 1982 / 1968

SiCT + 2 SiO2(ж) = COг + 3 SiOг ; 1998 / 1937

SiCT + SiOг = 2 Siж + COг ; 2403 / 2876

Взаимодействие карбида кремния и железа по реакции

m Fe + n SiC = FemSin + CT + n C

начинается с 1500 К и интенсивно проходит при 1500-1600 К. Продуктом реакции является ферросилиций и графит. Расчеты показывают, что изменение энергии Гиббса реакции разрушения карбида кремния железом в интервале 1100-1700єС имеет отрицательное значение, что и объясняет неустойчивость его в присутствии железа:

Т, К

………..

1400

1600

1800

2000

2200

- ДG, Дж

………..

12 125

17 266

27 442

35 075

43 000

Рассмотренные данные позволяют наметить следующую приближенную схему протекания процессов в активной зоне (тигле) ферросилициевой печи. На глубине ~ 200 мм шихта претерпевает значительные изменения. Кварцит оплавляется, кокс с поверхности превращается в карбид кремния, из железной стружки образуются капельки сплава, содержащего до 20% Si. Насыщение железа кремнием происходит преимущественно в результате взаимодействий SiO с углеродом и SiC с расплавленным железом, а также за счет паров кремния. У поверхности газовой полости заканчивается преобразование материалов в конденсированных фазах. Кварцит полностью расплавляется, начинается образование нестехиометрического кремнекислородного остатка, кокс преобразован в карбид кремния, постепенно повышается (по-разному для различных марок ферросилиция) содержание кремния в сплаве. В тигле, в зоне наиболее высоких температур появляется SiO, образующийся в результате взаимодействия кремнекислородной жидкости с углеродом и карбидом кремния, а в непосредственной близости к плазменному шнуру, где температура достигает нескольких тысяч градусов, также происходит диссоциация оксидов кремния. В более холодных зонах тигля образуется кремний в результате восстановления SiO.

«Дно» тиглей характеризуется составами, в которых основными фазами являются анортит (CaO · Al2O3 · SiO2), геленит (2 CaO · Al2O3 · SiO2), SiC, силикатное стекло и корольки сплава с переменным содержанием кремния. Ниже уровня «дна» тиглей формируется шлакокарбидная зона, основным компонентами которой являются Al2O3, CaO и SiO2 примерно в таком же соотношении, как и в конечных шлаках, и крупнокристаллический SiC, содержание которого колеблется в пределах от 30 до 60 %.

В зоне медленного схода шихты и в боковом гарнисаже активных восстановительных взаимодействий не происходит и эти зоны играют второстепенную роль в процессах формирования сплава. Гарнисаж стен в основном состоит из кристобалита, реже - тридимита, остатков кокса, чаще - псевдоморфозов SiC по коксу. В зоне мед ленного схода шихты (между электродами) наблюдаются тяжелые ноздреватые конгломераты, пористая агломератовидная масса из преобразованных шихтовых материалов, по химическому составу промежуточных между гарнисажем стен и материалом из стен газовых полостей, шлак и сплав переменного состава. Эти зоны не являются постоянными, их размеры и форма изменяются в зависимости от периода плавки, марки выплавляемого сплава, подводимой мощности, частоты вращения ванны печи и др.

Наряду с восстановлением кремнезема в электропечи происходит частичное восстановление примесей кварцита и золы восстановителей: Al2O3, CaO, MgO и др. до элементов или карбидов, которые могут затем разрушаться железом, кремнием или кремнеземом. Восстановление примесей часто осуществляется за счет кремния.

Восстановление окислов железа, содержащихся в шихтовых материалах, протекает практически полностью. В восстановительных условиях печной плавки значительное количество фосфора из шихты переходит в сплав. Содержащаяся в ней сера в основном удаляется в виде летучих соединений с кремнием: SiS и SiS2.

Производство ферросилиция относится к бесшлаковым процессам, но тем не менее получение сплава всегда сопровождается получением некоторого количества шлака (на 1т ФС 45 получается 25-30 кг шлака). Причиной шлакообразования являются примеси шихтовых материалов, которые по физико-химическим условиям процесса не могут быть полностью восстановлены (глинозем, оксиды кальция, бария, магния и т.п.) и которые ошлаковываются кремнеземом. При недостатке восстановителя шлак обогащается кремнеземом, а также карбидом кремния вследствие разрушения гарнисажа. Результаты анализа шлаков на ЗФЗ и АЗФ приведены в табл.2.5. В шлаках обнаружены следующие собственно шлаковые минеральные фазы: геленит - 2 CaO · Al2O3 · SiO2, анортит - CaO · Al2O3· · 2 SiO2, сарколит - 3 CaO · Al2O3, гексаалюминат кальция - CaO · ·6 Al2O3, корунд - Al2O3, шпинель - MgO · Al2O3, диалюминат кальция - CaO · 2 Al2O3, сульфид кальция - CaS и силикатное стекло.

Таблица 2.5 - Химический состав шлаков на ЗФЗ и АЗФ.

Восстановитель

Влага

рабочая,

%

Состав абсолютно

зола

S

P

лету-чие

SiO2

Al2O3

Fe2O3

CaO

MgO

P

Донбасса

5

9-10

1,8

0,015

1,6-2

34-38

18-27

18-30

2-6

1-3

0,1-0,2

нефтяной

3,1

0,16

0,58

0,005

3,6

12-30

6-20

7-12

2-4

4-6

0,33

Шлаки имеют высокую температуру плавления (1500-1700 єС), характеризуются значительной вязкостью, составляющей 1-5 Па·с, причем их вязкость повышается при повышении содержания кремнезема и карбида кремния (например, при недостатке восстановителя).

Вследствие высокой вязкости шлак частично остается в печи и вызывает зарастание ванны, при этом снижается производительность печи, увеличивается удельный расход электроэнергии и сокращается продолжительность кампании. В связи с этим необходимо полностью удалять из печи образовавшийся шлак, что достигается при глубокой и устойчивой посадке электродов и достаточном количестве восстановителя в шихте. Полному удалению шлака способствует вращение ванны печи, обеспечивающее разрушение карбидов и равномерный прогрев подины печи. В некоторых случаях при скоплении шлака его удаляют при помощи извести, задаваемой в печь. Однако введение флюсующих приводит к увеличению количества шлака и повышению удельного расхода электроэнергии. Основные меры борьбы со шлакообразованием при производстве ферросилиция сводятся к строгому контролю за введением в печь достаточного количества восстановителя и применению возможно более чистых материалов.

Производство ферросплавов сопровождается образованием значительного количества отвальных шлаков. Кратность шлака (отношение массы шлака к массе металла) при выплавке ферросилиция составляет 0,05-0,1 (бесшлаковый процесс).

Ферросплавные шлаки содержат корольки готового сплава и невосстановленные оксиды ведущих элементов сплавов. К тому же они обладают прочностью, абразивностью, огнеупорностью. Общий выход ферросплавных шлаков составляет более 5 млн. тонн в год. Перерабатывают около 45% этих шлаков.

Отвальные шлаки при производстве ферросилиция содержат до 30-50% готового металла в виде корольков и до 15% карбида кремния. Эти шлаки успешно используются в составе раскислительных и рафинирующих смесей в сталеплавильном производстве [3-7].

2.6 Технология выплавки

Для выплавки ферросилиция марки ФС 45 используют трехфазные печи различной мощности. Печи выполняют открытыми, закрытыми, герметизированными и с дожиганием газа под сводом, часто с вращением ванны. Такие печи позволяют снизить расход шихтовых материалов и электроэнергии и затраты труда, очищать выбросы в атмосферу и использовать колошниковые газы. Наблюдаемый значительный прирост мощности электропечной установки вызван тем, что при этом сокращаются капитальные и эксплуатационные затраты.

В дипломе рассматривается технология выплавки ферросилиция марки ФС 45 в закрытой трехфазной печи мощностью 24 МВА непрерывным процессом. Производство ферросилиция в закрытой печи непрерывным процессом экономически целесообразно, т.к.:

· снижается расход шихтовых материалов и электроэнергии;

· уменьшаются затраты труда;

· извлечение ведущего элемента достигает 85 - 90 % ;

· закрытая печь решает вопрос защиты окружающей среды от загрязнения и позволяет утилизировать отходящие газы.

Основные задачи правильного обслуживания закрытой печи сводятся к:

· поддержанию необходимого давления под сводом;

· обеспечению равномерного схода шихты

· предотвращению чрезмерного выбивания газа через загрузочные воронки и забивания пылью подсводового пространства и газоходов печи.

Строение ванны закрытой печи при выплавке ферросилиция практически не отличается от строения ванны открытой печи, поэтому характер процессов в горне открытой и закрытой печи одинаков.

Ванны печей для выплавки ферросилиция выполняются круглыми с угольной футеровкой. Футеровка печи для выплавки ферросилиция (ФС 45) мощностью 24 МВА.

Для набивки швов угольной кладки применяют подовую массу.

Высота угольных стен горна печи обычно составляет 1200 - 1900 мм. Для обкладки днища и стенок кожуха используют асбестовый лист толщиной 10-15 мм. Подину и стены выполняют из алюмосиликатного кирпича, подину футеруют насухо (за исключением второго и третьего рядов, выкладываемых на растворе), а стены - на глинисто-мермельном растворе. Между кожухом и футеровкой имеется слой засыпки из алюмо-силикатной крупки (100-150 мм), компенсирующий тепловые расширение кладки и служащий добавочной теплоизоляцией.

Печь работает на самоспекающихся электродах Ш1200 мм и Ш1400 мм. Глубина погружения электродов в шихте ниже загрузочных воронок должна быть не менее 1500 мм для ФС 45.

И.Т. Жердев отмечает, что в закрытой печи шихта на пути к колошнику прогревается в воронках до 350-600 єС и теряет не менее 65% гигроскопической влаги; выделяется значительная часть летучих; диоксид углерода CO2 при повышении температуры образует монооксид СО, на что расходуется углерод шихты. Газовую фазу подсводового пространства характеризует высокое содержание монооксида углерода; при попадании непросушенной шихты скачками повышается содержание H2. Главными составляющими газовой фазы в печи являются CO, SiO2 и конденсаты, выпадающие из газовой смеси, образующиеся в результате или превращения самих составляющих, или их взаимодействия по следующим реакциям:

SiO + CO2 CO + SiO2 ; (2.1)

2 CO C + CO2 ; (2.2)

SiO + CO C + SiO2 ; (2.3)

3 SiO + CO SiC + 2 SiO2 ; (2.4)

2 SiO Si + SiO2 ; (2.5)

Около половины конденсатов являются продуктами реакции (2.4) и ~ 30% получены по реакции (2.5). Состав пыли в подсводовом пространстве изменяется в зависимости от марки выплавляемого сплава. Так, при выплавке ФС 45 в пыли возрастает количество SiC, SiO и продуктов его окисления - лешательерита и кристобалита. Химический состав пыли при выплавке ФС 45 приведен в табл. 2.17.

Таблица 2.17 - Химический состав пыли при выплавке ФС 45.

Сплав

Массовая доля, %

SiO2

Mn

CaO

MgO

Al2O3

FeO

P

C

S

ФС 45

77,8-91,2

0,35-0,6

0,24-0,8

1,52-6,8

1,92-2,0

3,22-6,48

0,05

не опр.

2,95-12,35

Зарастание подсводового пространства конденсатами из колошниковых газов, при прочих равных условиях, является, главным образом, результатом недостатка углерода в ванне печи. Однако избыток восстановителя также приводит к выходу колошниковых газов в большом количестве с более высокой температурой и с повышенным содержанием в них SiO вследствие недостаточного погружения электродов в шихту. Для обеспечения нормального хода восстановительного процесса в закрытой печи необходимо при прочих равных условиях ограничивать поступление в подсводовое пространство газообразных продуктов, способных образовывать конденсаты. Для уменьшения подсоса воздуха загрузочные воронки и течки должны быть заполнены шихтой, а печные бункера - заполнены не менее, чем на половину объема.

Плавку ферросилиция ведут непрерывным процессом, при этом основной задачей является обеспечение нормальной работы колошника и летки. Нормальный ход технологического процесса характеризуется следующими показателями:

1) равномерное выделение в воронках вокруг электродов невысокого и неяркого пламени;

2) равномерный сход шихты вокруг каждого электрода;

3) рыхлая шихта в воронках свободно «прошивается» в любой точке;

4) устойчивая и глубокая (3,0-3,7 м ниже обреза щек) посадка электродов в шихте (при выплавке ФС 45 составляет не менее 1500 мм) при полной и одинаковой электрической нагрузке по фазам при одинаковых фазовых напряжениях;

5) равномерный выход жидкоподвижного шлака при каждом выпуске;

6) появление небольшого язычка пламени в конце выпуска из леточного отверстия.

Вокруг электродов выходит 10-15% колошникового газа с температурой ~ 650 єС. Давление под сводом печи должно составлять9,8 Па, а разность давлений в трех точках под сводом должна быть не более 5 Па; разрежение под сводом не допускается. Температура газа под сводом должна быть 500-600 єС и не выше 700 єС, а в газоходе - не более 200 єС. Разрежение в начале наклонного газохода должно составлять 50-200 Па, перед скруббером 200-400 Па, после трубы Вентури - не менее 16000 Па. Содержание водорода в газе ? 5%, кислорода ? 1% ; постоянное количество отходящих газов.

Процесс плавки в печи происходит, главным образом, у электродов в тиглях.

В верхней части тигля холодная шихта образует своеобразный свод. Стенки и свод тигля непрерывно оплавляются и замещаются новыми порциями поступающей сверху шихты. Таким образом, тигель нельзя рассматривать как застывший сосуд под электродом. Это скорее зона высоких температур, образовавшаяся у конца электрода. При горячем ходе печи нижние части тиглей соединяются, образуя общий тигель. Нижняя часть тигля представляет собой газовую полость. Расстояние между торцом электрода и поверхностью расплава («дном» тигля) составляет 200-400 мм. Шихта, расположенная у стен печи, прогревается настолько слабо, что в этих местах плавления не происходит и шихтовые материалы спекаются в плотный монолит (гарнисаж). Быстрое проплавление шихты возле электрода способствует поддержанию рыхлого столба материалов вокруг него. Поскольку реакции восстановления происходят, главным образом, вокруг электрода, газы, образующиеся внизу возле дуг, нагретые до высокой температуры и, проходя через вышележащие слои шихты, нагревают их. Прохождение горячего газа через более холодную шихту вызывает конденсацию паров кремния. Для равномерного распределения по колошнику выходящих из печи газов, предотвращения спекания колошника и образования «свищей» при выплавке ферросилиция необходимо вращать ванну печи. Наилучшие результаты дает вращение ванны с частотой 1 оборот за 50-70 ч. В этом случае улучшается сход шихты, главным образом, с набегающей стороны электрода, куда и заваливают основную часть шихтовых материалов.

Завалку шихты необходимо проводить непрерывно или небольшими порциями по мере оседания шихты на отдельных участках. В первую очередь шихту заваливают в наиболее горячие участки колошника вокруг электродов. Загрузка лишней шихты недопустима, т.к. увеличение столба материалов вызывает смещение плавильной зоны вверх и нарушение теплового режима в зоне реакции. Недостаточное количество шихты в печи приводит к увеличению потерь тепла с уходящими газами и потерь кремния в улет.

Загрузка шихты в печь производится в воронки вокруг электродов через труботечки на печах с частичным (80-90 %) улавливанием отходящих газов.

При ведении технологического процесса могут наблюдаться отклонения от нормального хода печи:

1. Недостаток восстановителя ведет к неустойчивой посадке электродов и колебаниям нагрузки, за электродами тянутся длинные кварцевые нити, тигли сужаются, происходит сильное спекание шихты, на колошнике наблюдаются частые «свищи», летка сильно «газит», из летки выходит густой шлак (или, при длительной работе с недостатком восстановителя, выход шлака прекращается), рабочие концы электродов сильно утоньшаются и быстро укорачиваются. Температура в печи на глубине 500-600 мм от поверхности колошника при выплавке ФС 45 повышается до 1800-2000єС, что приводит к усиленному испарению и потерям в улет не только монооксида кремния, но и восстановленного кремния. Работу с недостатком восстановителя называют закварцеванием печи. В случае длительной работы печи с недостатком восстановителя наблюдается расстройство работы летки - летка закрывается с трудом или вообще не закрывается, наблюдается просачивание металла в любом месте арочки и даже прорыв футеровки печи сплавом. Для исправления хода печи следует добавить восстановитель в шихту, давать коксик в виде добавок, усилить обслуживание колошника. Если эти меры не дают положительного результата, то следует несколько проплавить тигель электрода над леткой и при выключенной печи дать в тигель 150-500 кг коксика.

2. Избыток восстановителя, при котором посадка электрода становится высокой, из-под самих электродов бьют «свищи», тигли сужаются, слышна работа дуг (характерный гул), шихта круто обваливается у электродов, из печи прекращается выход шлака, выход сплава уменьшается и его температура снижается. Длительная работа с избытком восстановителя в шихте приводит к замораживанию колошника печи и зарастанию печи шлаком при резком снижении производительности. Для исправления хода печи необходимо уменьшить количество восстановителя в печи, дать в печь несколько калош шихты с резко пониженным количеством восстановителя («тяжелые» калоши) или некоторое количество чистого кварцита и улучшить обслуживание печи.

3. Работа на коротких электродах как по внешним признакам, так и по результатам подобна работе с избытком восстановителя.

4. Работа с чрезмерно длинными электродами при высокой их посадке вызывает увеличение потерь электроэнергии в самих электродах, а при глубокой посадке электродов часто приводит к тому, что электроды «садятся» в шлак, теряется дуговой режим работы печи, печь «не принимает шихту». При скоплении в печи шлака и его нерегулярном выходе в печь даются добавки извести.

При неравномерном выходе металла и отсутствии выхода шлака необходимо:

· проверить точность дозирования шихтовых материалов;

· дать дополнительные порции коксика и откорректировать навеску восстановителя;

· обеспечить устойчивую глубокую посадку электродов.

5. Зависание шихты в воронках характеризуется повышением температуры газа под сводом на данном участке колошника и воды в воронках, а также слабым выделением газа на участке, где зависла шихта. Это может привести к раскрытию колошника, чрезмерному нагреву свода и воронок, забиванию подсводового пространства и прогару воронок, свода и т.д. Для исправления хода печей необходимо прошить шихту в воронках, чтобы обвалить ее в местах подвисания и давать в воронки небольшими порциями кокс.

6. При недостатке восстановителя повышаются запыленность газов под сводом (содержание осадка в воде после газоочистки > см3/л) и температура газа под сводом. При длительной работе с недостатком восстановителя забивается устье газохода, возрастает давление газа под сводом, что в дальнейшем приводит к забиванию подсводового пространства. Для снижения давления под сводом необходимо прочистить устье газохода и подсводовое пространство. Для исправления положения необходимо увеличить навеску восстановителя.

7. Забивание пылью стакана и наклонного газохода вызвано недостатком восстановителя в печи и подсосом воздуха в подсводовое пространство, или засорением отверстий в форсунках, или понижением давления воды, орошающей наклонный газоход. При забивании газохода увеличивается перепад давления в газоходе ( >2000 Па ). В этом случае необходимо прочистить стакан и наклонный газоход и проверить исправность форсунок.

8. Увеличение содержания водорода в подсводовом пространстве свидетельствует о повышении влажности шихты или о наличии течи воды из воронок или секций свода, причем в случае течи воды содержание водорода в газе повышается (?13% в чистом газе). В этом случае необходимо отключить печь и устранить течь.

Система газоотвода и газоочистки (для открытых печей - сухие газоочистки, для закрытых - мокрые) состоит из двух параллельных ниток, работающих попеременно. Газ их стакана на своде поступает в наклонный орошаемый водой газоход и в скруббер, где происходит предварительная очистка его от пыли. Затем газ направляется в трубу Вентури (тонкая очистка газа). В каплеотделителе от него отделяется влага. Чистый газ поступает потребителю. Необходимое разрежение в системе создается турбогазодувкой. Шлам, выделяющийся в системе, идет в шламонакопитель. Давление под сводом составляет 2,0-5,0 Па, а температура газа 500-600єС. Газ закрытой печи содержит 0,01-0,1 кг/м3 пыли. После очистки количество пыли в нем уменьшается до 0,01-0,03 г/м3.

При возрастании разряжения необходимо:

· проверить разрежение во всех точках газового тракта;

· произвести при необходимости чистку подсводового пространства наклонного газохода.

Чистка подсводового пространства производится на отключенной печи через взрывные клапаны и крышку запасного стакана. Одновременно чистится наклонный газоход.

Таким образом, для нормального технологического процесса в закрытой печи особое значение имеет устойчивая работа системы отбора и очистки газа, которая должна обеспечить удаление газа и пыли из подсводового пространства печи и устройств газоотвода и предупредить их забивание.

Ферросилиций выпускают из печи периодически по мере его накопления.

ФС 45 выпускают в ковш, футерированный шамотным кирпичом или графитовой плиткой, а затем разливают в слитки, в чугунные изложницы или в чушки на разливочной машине конвейерного типа.

При увеличении температуры сплава, о чем свидетельствует размывание гарнисажа ковшей, в целях предупреждения их прогара принимаются следующие меры:

· удлиняются электроды;

· под выпуск устанавливаются ковши с гарнисажами;

· производится непрерывный выпуск сплава [1-4, 6, 12-14].

2.7 Технология разливки

Выпуск ферросилиция из печи производится периодически по мере его накопления. Слишком частые выпуски сплава приводят к большим потерям тепла и понижению температуры в районе выпускного отверстия, что затрудняет выход сплава и шлака, а также к увеличению потерь сплава при выпуске и разливке его. При слишком редких выпусках замедляется процесс восстановления кремнезема, уменьшается глубина посадки электродов в шихте и увеличиваются потери кремния в улет.

При выплавке ФС 45 производят 6-8 выпусков в смену через равные промежутки времени. Вскрытие летки производится простреливанием ее из специального ружья, прожигом электрической дугой или кислородом, пробиванием железным прутом или при помощи бура.

Продолжительность операции выпуска составляет 15-25 мин. Летка должна быть открыта широко и периодически прошуровываться железным прутом для того, чтобы обеспечить полный выход шлака из печи.

Для обеспечения нормального выхода металла и шлака необходимо:

· поддерживать летку все время в нормальном рабочем состоянии, т.е. диаметр не должен превышать 120 мм;

· в случае увеличения диаметра летки более 120 мм ее необходимо забить электродной массой, после этого через 2-3 выпуска летку довести до нормального диаметра. Забивка летки электродной массой производится по указанию старшего плавильщика;

· летка должна быть не ошлакована. При ошлаковании летки перед ее заделкой очко летки разжигается графитовой свечой. Заделка зашлакованной летки не допускается;

· своевременно устанавливать сводик из электродной массы. Установка сводика производится через 8-12 дней, толщина сводика должна быть не более250 мм;

· перед установкой сводика летка должна быть обязательно забита массой и очищена от шлака. Остатки старого сводика также выбиваются.

Во время выпуска берут пробу металла для анализа, подставляя под струю графитовый стаканчик. По окончании выпуска очко летки закрывают возможно глубже конической пробкой из смеси глины, мягкой консистенции. В глину добавляется 20-30% мелкой электродной массы.

Нормально работающая летка должна закрываться 2-3 конусами, так чтобы наружная часть канала летки была свободной на 100-150 мм. Мелко закрытая летка вызывает разогрев гарнисажа передней стенки печи, что приводит к нарушению нормальной работы летки разъеданию футеровки печи в районе летки. Ферросилиций выпускают в ковш, футерованный шамотным кирпичом или графитовой плиткой, и затем разливают в слитки, в чугунные изложницы или в чушки на разливочной машине конвейерного типа. Ковш, установленный на стенде, наклоняется с помощью гидравлического устройства и через промежуточный желоб выдает металл на горизонтальную разливочную машину конвейерного типа. Изложницы разливочной машины обрызгивают известковым молоком. Максимальная производительность такой машины обеспечивается при толщине слитка 70-80 мм и составляет для ФС 45 ~ 80 т/сут. Температура сплава перед разливкой должна составлять ~ 1400 єС. Потери при разливке на машине составляют 3%.

Слитки (чушки) сплава передают в остывочное отделение, где после остывания и проверки химического состава их, при необходимости, дробят и сплав упаковывают в деревянную или металлическую тару. Разливка слитков должна быть механизирована. Цехи должны быть оборудованы установками для дробления и грохочения сплава, чтобы обеспечить выполнение заказов на ферросилиций в куске заданных размеров и массы.

ФС 45 изготовляют в дробленном виде в кусках массой не более 25 кг, а также в чушках массой не более 45 кг.

Качество выпускаемого из печи сплава контролируют по содержанию кремния. По результатам экспресс-анализа производят корректировку навески железной стружки в калоше.

Запорожский ферросплавный завод для снижения содержания алюминия с 1,2 до 0,8 % продувает сплав в ковше воздухом, а на поверхности металла заводит окислительный шлак из песка, железной руды, известняка и шпата. Пии этом методе наряду с содержанием алюминия уменьшается содержание кремния (на 1-2 %) [2-4, 6, 12, 13].

4 Экономика и организация производства

Основой производственной деятельности ферросплавного завода ("ЗЗФ") является техпромфинплан предприятия, представляющий собой комплексный текущий (годовой) план производственной технологической и финансовой деятельности, а также социального развития коллектива предприятия, конкретизирующий показатели пятилетнего плана и предусматривающий выполнение государственных плановых заданий с наибольшей эффективностью.

Общие особенности техпромфинплана состоят в том, что он основывается на прогрессивных технико-экономических нормах и нормативах использования сырья, материалов, основных производственных фондов, трудовых и денежных ресурсов. Техпромфинплан предусматривает внедрение достижений научно-технического прогресса в производство ферросплавов (в том числе и для ФС 45), мобилизацию всех имеющихся резервов, осуществление режимов экономии минерально-сырьевых и энергетических ресурсов, использование хозрасчета, создание и внедрение малоотходной технологии, повышение фондоотдачи в целях максимального увеличения производительности электропечи, улучшения технико-экономических показателей, повышения качества ферросплавов и решения природоохранных задач электроферросплавной промышленности.

Вся деятельность ферросплавного завода ("ЗЗФ") происходит в условиях хозяйственного расчета. Сущность хозрасчета состоит в том, что завод в денежной форме соизмеряет затраты и результаты своей хозяйственной деятельности, покрывает свои расходы денежными доходами от реализации продукции и обеспечивает рентабельность производства.

Хозрасчет основан на использовании товарно-денежных отношений, в частности, таких категорий, как цена, прибыль и себестоимость продукции.

Цена - денежное выражение стоимости товара (ферросплава). Существуют оптовые и розничные цены. Оптовые цены на ферросплавы составляются и утверждаются на базовые тонны, представляющие собой натуральную массу сплава, приведенную к базе, т.е. установленный для той или иной марки ферросплава среднего процентного содержания ведущего элемента. Так, для ферросилиция марки ФС 45 с пределами по концентрации кремния 41-47 % базовым содержанием кремния принято 45%.

Себестоимость ферросплавной продукции - это часть общественных издержек производства, т.е. часть стоимости, отражающая затраты предприятия на изготовление и реализацию продукции.

Себестоимость включает экономические элементы затрат, которые отражают стоимость израсходованных средств производства и необходимого продукта, идущего на оплату труда. Элементы затрат включают стоимость сырья, вспомогательных материалов, топлива, электроэнергии, заработную плату, отчисления на социальное страхование.

Все расходы предприятия, связанные с получением ферросплава (ФС 45), в совокупности образуют цеховую и заводскую себестоимость продукции. Добавление внепроизводственных расходов к заводской себестоимости образует полную себестоимость.

Составляют плановую и отчетную (фактическую) себестоимость ферросплава (ФС 45) по итога относимые на м производственной деятельности завода ("ЗЗФ") за месяц, квартал, год. При составлении плановой и отчетной калькуляций, в том числе на небольшие партии новых видов ферросплавной продукции, производят калькуляцию, т.е. исчисление себестоимости ферросплава (ФС 45).

Калькуляция - это один из основных показателей плана и отчета по себестоимости, характеризующей затраты завода в денежной форме на производство и реализацию 1т ферросплава в натуральном и базовом исчислении.

Порядок составления калькуляции себестоимости.

Калькуляция себестоимости состоит из таблицы затрат, которые исчисляются по следующим статьям:

I Сырые и основные материалы.

Все затраты завода, связанные с приобретением сырья и основных материалов, доставкой и выгрузкой на складах предприятия, исчисляются по ценам франко - вагон отправления.

II Отходы производства.

К отходам относят скрап ферросплава, образующийся при разливке, дроблении, а также нестандартный металл, не принятый ОТК как годный из-за несоответствия требованиям ГОСТ. Исчисление затрат производится по твердым ценам.

III Брак.

В калькуляции брак не планируется, т.к. технология ферросплава должна обеспечить выход только товарной продукции, отвечающей требованиям стандартов. Однако в реальных условиях ферросплавного производства по причинам изменения качества сырья (например, содержание фосфора, серы, ведущего элемента), отклонения параметров технологии от заданных и других получается продукция, которая называется браком и обычно возвращается в производство в качестве компонента шихты.

IV Расходы по переделу, относимые на данный ферросплав (т.е. на ФС 45).

Это затраты на переработку сырья и основных материалов. Выделяют расходы, непосредственно относящиеся к получению сплава, и расходы общецеховые. В расходы по переделу, относимые по прямому назначению, включают электроэнергию технологическую, электродную массу, основную заработную плату рабочих, занятых выплавкой, расход технологического инструмента и приспособлений целевого назначения.

V Расходы по переделу, общие для всех сплавов, общезаводские расходы.

К ним относят общецеховые энергетические затраты, заработную плату (кроме учитываемой по статье IV), отчисления на социальное страхование, расходы на текущие ремонты и содержание основных средств и прочие расходы по цеху.

Структура себестоимости ферросплавов, получаемых углеродо-, силико- и алюминотермическими способами, имеет существенные различия вследствие различных оптовых цен на рудноминеральное сырье, удельного расхода сырья, восстановителя, электроэнергии, а также расходов по переделу.

Для себестоимости ФС 45, полученного углеродотермическим способом, доля расходов на сырьевые материалы составляет 22%, восстановитель (кокс) - 17,8%, электроэнергию - 39,5%, а расходов по переделу - 18,1%; общезаводские расходы не превышают 0,2%.

Оценка экономических показателей разработки (ФС 45) в сравнении с базовым вариантом (ФС 65)

В таблице 4.1 приводится калькуляция себестоимости 1т ФС 45 в сравнении с базовым вариантом (ФС 65).

Таблица 4.1 - Калькуляция себестоимости.

Наименование

статей

затрат

Базовый вариант

Разработанный

вариант

Эффективность

разработки технологии,

грн.

Цена,

грн.

ФС 65

Цена,

грн.

ФС 45

Кол-во

Сумма,

грн.

Кол-во

Сумма,

грн.

1. Сырье и основ-ные материалы:

- кварцит , т

30,0

1,60

48,0

30,0

1,05

31,50

+ 16,5

- коксик (сухой), т

500,0

0,750

375,0

500,0

0,475

237,50

+ 137,5

- железная стру-ж-ка, т

200,0

0,370

74,0

200,0

0,56

112,0

- 38,0

Всего задано, грн.

497,0

381,0

+ 116

2. Расходы по производству:

- электроэнергия технологическая, тыс. кВт·ч/т

32,5

7,1

230,75

32,5

4,80

156,0

+ 74,75

- самообжигающиеся электроды, т

1200

0,040

48,0

1200

0,029

34,8

+ 13,2

- прямые расходы на оплату труда, грн.

23,6

23,6

- сменное оборудование, грн.

100,0

100,0

- вспомогательные материалы

22,5

82,5

общие по производству, грн.

484,85

396,9

+ 87,95

3. Общехозяйственные расходы, грн.

72,4

72,4

Всего задано, грн.

1054,25

850,3

+ 203,95

Расход сырья, материалов, электроэнергии и цены на них приняты на основе данных ОАО "ЗЗФ" [4, 8, 18].

Выводы: из таблицы калькуляции себестоимости видно, что разработанный вариант технологии производства ФС 45 экономически выгоден (экономия составляет на 1т ФС 45 203,95 грн.) по сравнению с базовым вариантом (ФС 65).

Также при разработанном варианте снижается расход электроэнергии на 74,75 грн./т ФС 45. Снижается расход материалов на 116 грн./т за счет усовершенствования технологии производства ферросилиция марки ФС 45 по сравнению с базовым вариантом (ФС 65).

Расход материалов при базовом варианте (ФС 65) равен 497 грн./т , а при разработанном - 381 грн./т , следовательно, разработанная технология экономически целесообразна.


Подобные документы

  • Составление материального баланса печи для сжигания серы, материальный баланс хлоратора в производстве хлорбензола и производства окиси этилена прямым каталитическим окислением этилена воздухом, печи окислительного обжига в производстве ванадата натрия.

    контрольная работа [22,1 K], добавлен 22.12.2013

  • Основные физические и химические свойства, технологии получения бериллия, его нахождение в природе и сферы практического применения. Соединения бериллия, их получение и производство. Биологическая роль данного элемента. Сплавы бериллия, их свойства.

    реферат [905,6 K], добавлен 30.04.2011

  • Автоматизация вращающейся печи. Разрежение в горячей головке вращающейся печи. Построение и описание функциональной схемы автоматизации отборного устройства. Подбор приборов для системы автоматического контроля. Применение аналогового регулятора.

    контрольная работа [102,0 K], добавлен 09.01.2013

  • Общая характеристика и свойства меди. Рассмотрение основных методов получения меди из руд и минералов. Определение понятия сплавов. Изучение внешних характеристик, а также основных особенностей латуни, бронзы, медно-никелевых сплавов, мельхиора.

    презентация [577,5 K], добавлен 14.04.2015

  • Обзор руднотермических печей, применяемых при производстве кремния. Пересчет химического состава сырья и углеродистых восстановителей, применяемых при производстве кремния в мольные количества химических элементов с учетом загрузочных коэффициентов.

    курсовая работа [516,0 K], добавлен 12.04.2015

  • Распространение меди в природе. Физические и химические свойства меди. Характеристики основных физико-механических свойств. Отношение меди к галогенам и другим неметаллам. Качественные реакции на ионы меди. Двойные и многокомпонентные медные сплавы.

    реферат [68,0 K], добавлен 16.12.2010

  • Строение атома кремния, его основные химические и физические свойства. Распространение силикатов и кремнезема в природе, использование кристаллов кварца в промышленности. Методы получения чистого и особо чистого кремния для полупроводниковой техники.

    реферат [243,5 K], добавлен 25.12.2014

  • Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

    реферат [76,2 K], добавлен 18.05.2006

  • История получения алюминия, его физические и химические свойства, химический состав, нахождение в природе и производство. Применение в качестве восстановителя, в ювелирных изделиях, стекловарении. Сплавы на основе алюминия, алюминий как добавка в сплавы.

    реферат [33,6 K], добавлен 03.05.2010

  • Физические и химические свойства серной кислоты, методы ее получения. Сырьевые источники для сернокислотного производства. Технологический расчет печи обжига колчедана, котла-утилизатора и контактного аппарата. Техника безопасности на производстве.

    дипломная работа [9,5 M], добавлен 25.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.