Исторический очерк биохимии

Физиологическая химия. Общая характеристика витамина А. Биохимические функции. Авитаминоз. Роль АТФ. Глюкоза. Формула глюкозы. Энергетика обмена. Функции липидов: структурная, энергетическая, резервная, защитная, регуляторная.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 27.09.2006
Размер файла 28,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования и науки Республики Казахстан

Павлодарский государственный университет им. С. Торайгырова

Факультет биолого - химический.

Кафедра Генетики и Биотехнологии.

КОНТРОЛЬНАЯ РАБОТА

К.Р. 050503.2003.01.05.30.

По дисциплине Биохимия.

Тема: Исторический очерк биохимии.

__________

(оценка) Руководитель:

ст.пр.магистр биологических наук

(должность, учёная степень)

Жагипарова М.Е.

(фамилия, инициалы)

______________ _______

(подпись) (дата)

Студент:

(инициалы, фамилия)

______________ _______

(подпись) (дата)

ЗП - 12

(группа)

2005

Содержание.

1 Исторический очерк биохимии.

2 Общая характеристика витамина А. Биохимические функции. Авитаминоз.

3 Роль АТФ.

4 Глюкоза. Формула глюкозы.

5 Энергетика обмена.

6 Функции липидов.

Исторический очерк биохимии.

Как самостоятельная наука биохимия сформировалась на рубеже XIX - XX веков. До середины XIX века биохимия существовала как раздел физиологии и называлась физиологическая химия. Однако накопление фактического материала в области строения биологических структур, а также идентификация простейших метаболических процессов сыграли значительную роль в становлении биохимии как самостоятельной науки.

Бурное развитие органической химии в первой трети XIX века оказало огромное влияние на формирование структурной биохимии. Точкой отсчёта можно считать 1826 год, когда Ф. Вёллер сообщил о первом синтезе органического вещества - мочевины из аммиака и циановой кислоты. Спустя 70 лет Э. Бухнер показал, что экстракты дрожжевых клеток переваривают крахмал, так же эффективно, как и живые дрожжевые клетки. Обе эти работы нанесли существенный удар по витализму - учению, согласно которому химические вещества живой природы синтезируются только с помощью особой жизненной силы, и дали мощный импульс дальнейшему развитию биохимии. Так, в 50 - х годах XIX века М. Бертло удалось синтезировать целый ряд органических соединений, свойственных живой природе. М. Шеврель заложил основы химии липидов, а Ф. Мишер открыл нуклеиновые кислоты, положив начало изучению этого класса веществ. Однако наибольший вклад в развитие структурной биохимии внёс Э. Фишер своими блестящими работами по анализу аминокислот, жиров и липидов.

Исследования процессов метаболизма также началось на рубеже XIX века. На основе открытого М.В. Ломоносовым закона сохранения материи и накопившихся к концу XVIII века экспериментальных данных французского учённого А. Лавуазье количественно исследовавший и объяснивший сущность дыхания, отметив роль кислорода в этом процессе. Работы Лавуазье стимулировали исследования по энергетике метаболизма и уже в начале XIX века были определены количество теплоты при сгорании 1 г. жиров, белков и углеводов. Примерно в это же время, работали Дж. Присли и Я. Ингенхуза был открыт процесс фотосинтеза. Из живых объектов К. Шесле выделил ряд органических кислот, Д. Руэль - мочевину, Ф. Конради - холестерин.

В XX веке большое число открытий привело к подлинному рассвету биохимии. Фундаментальные исследования в области энзимологии, химии белков, липидов, углеводов, идентификация молекулярных механизмов основных обменных процессов, а также структур и функций генома, вывели биохимию на уровень основной количественной биологической науки. Велика роль российских учёных в становлении и развитии биохимии. Приоритетные исследования белков и аминокислот (А.Я. Данилевский, С.С. Салазкин, М.В. Ненцкий и другие); витаминов (Н.И. Лунин, К.А. Сосик, В.В. Пашутин); тканевого дыхания (А.Н.Бах, В.И. Палладин); трансаминирования аминокислот (А.Е. Браунштейн) ; механизмов механохимического сопряжения (В.А. Энгельчардт) ; химии нуклеиновых кислот и механизмов биосинтеза белка (А.Н. Белозёрский, А.С. Спирин) ; биоэнергетике (В.П. Скулачёв); структуры и функции генома (Г.П. Георгиев) и работы других российских учёных внесли огромный вклад в современную биохимию.

Биологическая биохимия изучает различные структуры, свойственных живым организмам, и химические реакции, протекающие на клеточном и организменном уровнях. Основой жизни является совокупность химических реакций, обеспечивающих обмен веществ. Таким образом, биохимию можно считать основным языком всех биологических наук. В настоящее время как биологические структуры, так и обменные процессы, благодаря применению эффективных методов, изучены достаточно хорошо. Многие разделы биохимии в последние годы развивались столь интенсивно, что выросли в самостоятельные научные направления и дисциплины. Прежде всего можно отметить биотехнологию, генную инженерию, биохимическую генетику, экологическую биохимию, квантовую и космическую биохимию и так далее. Велика роль биохимии в понимании сути патологических процессов и молекулярных механизмов действия лекарственных веществ.

Общая характеристика витамина А. Биохимические функции. Авитаминоз.

Витамин А был открыт Н. Друшмандом в 1916 году. Этому открытию предшествовали наблюдения о наличии жирорастворимого фактора в пище, необходимого для нормального развития сельскохозяйственных животных. В дальнейшем было установлено, что имеется три витамина группы А: ретинол, или витамин А1, неоретинол - стереоизомер А1 и А2. Этот витамин необходим не только животным, но и человеку, и при его дефиците у человека появляются заболевания глаз - ксерофтальмия и гемералопия. Витамин группы А содержится только в животных продуктах, таких, как печень, рыбий жир, сливочное масло и других. В растительной пищи содержаться поратинойды, способные предупреждать А - авитаминоз. При поступлении в организм человека или животных они под влиянием фермента каротиназы превращаются в витамин А1. Ретинол представляет собой непредельный одноатомный спирт, состоящий из бета - ионного кольца, а также боковой цепи, содержащей два остатка изопрена и первичную спиртовую группу:

Витамин А - ретинол.

Витамин А2 отличается от ретинола наличием дополнительной двойной связью в бета - ионном кольце. Потребность человека в витамине А составляет 1,5 мг.

Витамин А и соответствующие провитамины - каротиноиды широко распространены в природе и находятся в основном в животных организмах.

Витамин А поступая в организм как в свободном, так и в эстерифицированном виде. Свободный ретинол сорбируется слизистой кишечника, а его эфиры сначала гидролизуются при помощи фермента гидролазы эфиров карбоновых кислот. На внутренней поверхности ворсинок кишечника происходит ресинтез эфиров ретинола, которые затем поступают в кровь или лимфу. В лимфе более 90 % витамина А находится в эстерифицированном состоянии. В крови витамин А связывается со специфическим ретинолом - связывающим белком, а затем депонируется в печени. Благодаря этому концентрация витамина А в сыворотке крови более или менее постоянна даже при некотором дефиците этого витамина в пище.

Витамин А в организме осуществляет разнообразные функции. Вскоре после открытия была установлена его необходимость для нормального роста, а также для процесса сперматогенеза. В дальнейшем было показано, что витамин А необходим для нормального эмбрионального развития, а его окислённая форма - ретиновая кислота - контролирует ростовые процессы. Биохимическая основа действия витамина А чаще всего связанна с влиянием на проницаемость клеточных мембран. С помощью радиоизотопной технике было установлено также, что витамин А сорбируется на мембранах эндоплазматического ретикулума, влияя на созревание и транспорт секреторных белков. Велика роль витамина А в фотохимических процессах зрения. В зрительном акте можно выделить изменение конформации пигментов под действием кванта света, формирование нервного импульса, а также релаксацию пигмента в исходное состояние. Пигмент, состоящий из ретиналя и белка опсина, называется родопсином, при замене ретиналя на гидроретиналь образуется порфиропсин. Пигменты локализованы в колбочках, расположенных в мембране сетчатки. При фотохимической реакции происходит поглощение квантов световой энергии зрительным пигментом - родопсином. Родопсин, который в качестве хромофора содержит 11 - цис - ретиналь, под действием света превращается в нестабильный продукт лумиродопсин. При этом происходит изменение конформации молекулы родопсина, которые инициирует формирование нервного импульса передающегося в мозг. Затем в результате фотоизомеризации образуется полный транс - ретиналь, который в конечном счёте распадается на транс - ретиналь и белок опсин. В результате действия фермента ретиналь изомеразы полный транс - ретиналь, который в темноте взаимодействует с опсином и регенерирует родопсин.

Среди заболеваний у людей, особенно в детском возрасте, связанных с недостатком витамина, гипо - и авитаминоз А встречаются относительно часто. Они обусловлены недостаточным поступлением витамина А с пищей или нарушением резорбции и обмена этого витамина ( эндогенное происхождение ).

По данным ВОЗ в мире ежегодно наблюдается не менее 100000 случаев ксерофтальмии. Наиболее частой причиной слепоты в Южной и Восточной Азии является перенесённая в детстве ксерофтальмия.

В НРБ клиническое появление авитаминоза А - явление крайне редкое.

У здоровых людей при смешанной диете потребности в витамине А обычно удовлетворяются. Пища, бедная животными белками, как правило, бедна и ретинолом. Поэтому гипо - и авитаминоз А сопровождается недостаточностью белков и гипотрофией.

Растительная пища, а главным образом зеленолистые овощи, как и овощи и фрукты жёлто - оранжевого цвета, к которым относятся морковь, абрикосы, шиповник, перец, помидоры и другие, содержат только провитамин А. Из каротиноидов витамин А - активностью обладают только бета - каротины ( приблизительно равна 1/6 активности ретинола ). Активность выражается в международных единицах: 1 МЕ витамин А = 0,3 мкг. Ретинола или 0,6 мкг. бета - каротина. Резорбция и превращение в - каротина в витамин А осуществляется в клетках кишечной мукозы, откуда по лимфатическому пути переносится и депонируется в печени. Посредством специфического транспортного белка ретинол переносится из печени к месту действия - клетке.

Подобно резорбции нейтральных жиров, витамин А в кишечнике нарушается при отсутствии панкреатической липазы и желчи, а также при нарушении функции слизистой оболочки кишечника, целиакии, целиакоподобном синдроме, фиброзе поджелудочной железы, циррозе печени, обтурационной желтухе, мальабсорбционном синдроме и некоторых также острых инфекционных заболеваниях. К последним относятся: сепсис, тяжёлая пневмония или тяжёлый гломерулонефрит, а также некоторые интоксикации с поражением печени. В следствии увеличенной экскреции гиповитаминоз А возможен и при хронических инфекционных заболеваниях и инфекциях мочевых путей.

При белковом голодании снижается белок, переносящий ретинол из печени и тканям, и уровень витамина А в плазме резко снижается.

Витамин А устойчив при обычной варке, разрушается при высокой температуре, при сушке и под влиянием окислителей. От окисления его предохраняет витамин Е.

В печени имеются значительные резервы витамина А, поэтому клинические проявления авитаминоза А наступают после продолжительного его дефицита.

Витамин А участвует в образовании фоточувствительных пигментов в сетчатке и обеспечивает ночное зрение, принимает участие в развитии костной ткани, в созревании эпителия кожи и слизистых глаз, пищеварительной, дыхательной и мочеполовой системы. Он играет важную роль в процессе ороговения и образования слизи.

Известна роль витамина А в стабильности мембран. Большие дозы приводят к руптурам лизосомных мембран с освобождением гидролаз. Подобные явления наблюдаются и при дефиците. При недостаточном поступлении витамина А клинические явления соответствуют нарушенным функциям организма, при осуществлении которых витамин А играет существенную роль. Понижение содержание витамина А в крови, соответственно в сетчатке, приводят к нарушению ночного зрения (“куриная слепота” - гемералопия) в следствии нарушения цикла зрительного пурпура. Участие витамина А в формировании клеток особенно отчётливо проявляется по отношению эпителия: при дефиците витамина А в эпидермисе и в эпителии слизистых наступают атрофические изменения базальных слоёв с плоско - клеточной метаплазией и ороговением. При дефиците витамина А в связи с отсутствием его воздействия на хрящевые клетки прекращается эндохрондральное окостенение как результат нарушения деления ядра и созревания хрящевых клеток в эпифизах.

О механизме общего неблагоприятного воздействия на организм дефицита витамина А, в смысле его влияния на рост, массу тела и устойчивость по отношению к инфекционным возбудителям, можно судить по некоторым биохимическим и морфологическим изменениям. Отставание роста и массы тела связывается с нарушением белкового обмена. Это отставание проявляется ещё больше при усилении катаболических процессов, обусловленными продолжительными вторичными инфекциями кожи и слизистых. Нарушение окостенения в эпифизах длинных трубчатых костей вызывает замедление роста в длину.

Роль АТФ.

Как известно в биоэнергетике живых организмов имеют значение два основных момента:

а) химическая энергия запасается путём образования АТФ, сопряжённого с экзергоническими катаболическими реакциями окисления органических субстратов;

б) химическая энергия утилизируется путём расщепления АТФ, сопряжённого с эндергоническими реакциями анаболизма и другими процессами, требующими затраты энергии.

Встаёт вопрос, почему молекула АТФ соответствует своей центральной роли в биоэнергетике. Для его разрешения рассмотрим структуру АТФ

Структура АТФ4 -( при рН 7,0 тетразаряд аниона).

АТФ представляет собой термодинамически нестойкое соединение. Нестабильность АТФ определяется, во - первых, электростатическим отталкиванием в области кластера одноимённых отрицательных зарядов, что приводит к напряжению всей молекулы, однако сильнее всего связи - Р - О - Р, и во - вторых, конкретным резонансом. В соответствии с последним фактором существует конкуренция между атомами фосфора за неподелённые подвижные электроны атома кислорода, расположенного между ними, поскольку на каждом атоме фосфора имеется частичный положительный заряд в следствии значительного электронаицепторного влияния групп Р=О и Р - О-. Таким образом, возможность существования АТФ определяется наличием достаточного количества химической энергии в молекуле, позволяющей компенсировать эти физико - химические напряжения. В молекуле АТФ имеется две фосфоангидридных (пирофосфатных) связи, гидролиз которых сопровождается значительным уменьшением свободной энергии (при рН 7,0 и 37оС).

АТФ+Н2О = АДФ + Н3РО4 ДG0I = -31,0 КДж/моль.

АДФ+Н2О = АМФ +Н3РО4 ДG0I = -31,9 КДж/моль.

Одной из центральных проблем биоэнергетики является биосинтез АТФ, который в живой природе происходит путём Фосфорилирование АДФ.

Фосфорилирование АДФ является эндергоническим процессом и требует источника энергии. Как отмечалось ранее, в природе преобладает два таких источника энергии - это солнечная энергия и химическая энергия восстановленных органических соединений. Зелёные растения и некоторые микроорганизмы способны трансформировать энергию, поглощённых квантов света в химическую энергию, которая расходуется на фосфорилирование АДФ в световой стадии фотосинтеза. Этот процесс регенерации АТФ получил название фотосинтетического фосфорилирования. Трансформация энергии окисления органических соединений в макроэнергетические связи АТФ в аэробных условиях происходит преимущественно путём окислительного фосфорилирования. Свободная энергия, необходимая для образования АТФ, генерируется в дыхательной окислительной цепи митаходрий.

Известен ещё один тип синтеза АТФ, получивший название субстратного фосфорилирования. В отличии от окислительного фосфорилирования, сопряжённого с переносом электронов, донором активированной фосфорильной группой (- РО3 Н2), необходимой для регенерации АТФ, являются интермедианты процессов гликолиза и цикла трикарбоновых кислот. Во всех этих случаях окислительные процессы приводят к образованию высокоэнергетических соединений: 1,3 - дифосфоглицерата (гликолиз), сукцинил - КоА (цикл трикарбоновых кислот), которые при участии соответствующих ферментов способны фолирировать АДФ и образовывать АТФ. Трансформация энергии на уровне субстрата является единственным путём синтеза АТФ в анаэробных организмах. Этот процесс синтеза АТФ позволяет поддерживать интенсивную работу скелетных мышц в периоды кислородного голодания. Следует помнить, что он является единственным путём синтеза АТФ в зрелых эритроцитах не имеющих митохондрий.

Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, и которому присоединены два остатка фосфорной кислоты. Такой вещество называется аденозинтрифосфорной кислотой (АТФ). В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия, которая освобождается при отщеплении органического фосфорита: АТФ= АДФ+Ф+Е, где Ф - фермент, Е - освобождающая энергия. В этой реакции образуется аденозинфосфорная кислота (АДФ) - остаток молекулы АТФ и органический фосфат. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производство тепла, нервных импульсов, свечений (например, улюминисцентных бактерий), то есть для всех процессов жизнедеятельности.

АТФ - универсальный биологический аккумулятор энергии. Световая энергия, заключенная в потребляемой пище, запасается в молекулы АТФ.

Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20 - 30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счёт расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит - в этот период происходит расщепление углеводов и других веществ ( происходит накопление энергии) и запас АТФ в клетках восстанавливается.

Глюкоза. Формула глюкозы.

Сахара имеют общую формулу С(Н2О)n, где n - целое число (от 3 до 7).

Всё сахара содержат гидроксильные, а также либо альдегидные, либо китонные группировки. Взаимодействую друг с другом, моносахара могут образовывать ди-, три- или олигосахариды. Сахара являются главным энергетическим субстратом клеток. Кроме того, они образуют связи с белками и липидами, а также являются строительными блоками при образовании более сложных биологических структур. Основными реакционоспособными группировками сахаров являются гидроксильные группы, участвующие, в частности, в образовании связей между мономерами.

Во всех клетках способных метаболизировать глюкозу, первой реакцией является её фосфорилирование до глюкозо - 6 - фосфата. Реакция катализируется ферментом гексокиназой, а донором фосфорильной группы является молекула АТФ.

Эта реакция практически необратима, дельта G0I= -16,74 КДж/моль. Гексокиназа, присутствующая во всех тканях, за исключением паренхимы печени имеет высокое средство к глюкозе, а также способна фосфорилировать и другие гексозы, но значительно с меньшей скоростью. В клетках печени эту функцию выполняет глюкокиназа, активность которой зависит от питания. Глюкокиназа специфична к глюкозе и эффективно функционирует только при высокой концентрации в крови глюкозы. Важным свойством глюкокиназы является ингибирование продуктом реакции глюкозо - 6 - фосфатом по аллостерическому механизму.

Фосфорилированная глюкоза не способна проходить через цитоплазматическую мембрану и оказывается “запертой” в клетке. Таким образом, глюкозо - 6 - фосфат является центральным метаболитом углеводного обмена и занимает важное положение в интеграции ряда метаболических путей (гликолиз, глюкогинез, пентозофосфатный путь, гликогенолиз).

Обратный процесс дефосфорилирования глюкозы идёт только в трёх тканях, клетки которых способны транспортировать глюкозу в кровь, а именно ткани печени, эпителия почечных канальцев тонкого кишечника. Это становится возможным благодаря действию гидролитического фермента глюкозо - 6 - фосфатазы, который катализирует реакцию:

О регуляции активности этого фермента до сих пор известно мало, а следовательно, неясно, какие факторы предотвращают непрерывный цикл фосфорилирования и дефосфорилирования глюкозы.

В растительном мире огромные количества глюкозы образуется путём восстановления диоксида углерода в процессе фотосинтеза. В организме животных глюкоза непрерывно синтезируется в строго регулируемых реакциях из простых предшественников. Предшественниками могут быть: 1) пируват или лактат; 2) некоторые аминокислоты; 3) любой другой компонент, который в процессе катаболизма может превращён в пируват или один из метаболитов ЦТК.

Биосинтез глюкозы из неуглеводных предшественников носит название глюконеогенез, а пируват обуславливает вхождение в этот процесс. Как отмечалось выше, в процесс глюконеогенеза вовлекают ряд аминокислот, после превращения их в пируват или оксалоацетат. Также аминокислоты получили название глюкогенных. Из продуктов деградации триацилглицералов только глицерол может участвовать в глюконеогенезе путём превращения его в дегидроксиацетон ( метаболит гликолиза), а затем в глюкозу.

Подобно тому как гликолиз представляет собой центральный путь катаболизма глюкозы, в процессе которого она распадается до двух молекул пирувата, превращение последних в глюкозу составляет центральный путь глюконеогенеза. Таким образом, глюконеогенез в основном протекает по тому же пути, что и гликолиз, но в обратном направлении. Однако три реакции гликолиза ( глюкоза > глюкозо - 6 - фосфат; фруктозо - 6 - фосфат > фруктозо - 1,6 - дифосфат; фосфоеноилпируват > пируват) необратимы, и в обход этих реакций в глюконеогенезе протекают другие реакции с иной стехиометрией, катализируемые другими ферментами. Известны 4 фермента, катализирующие реакции глюконеогенеза и не принимающие участие в гликолизе: пируваткарбоксилаза, фосфоеноилпируваткарбоксилаза, фруктозо - 1,6 - диофосфотаза, глюкозо - 6 - фосфотаза.

Они локализованы преимущественно в печени, где и происходит главным образом глюконеогенез. Значительно менее интенсивно этот процесс идёт в корковом веществе почек.

После того как в мышцах истощается запас глюкогена, основным источником пирувата становится аминокислоты, образующиеся после деградации белков. При этом более 30% аминокислот, поступающих из крови в печень, приходится на аланин - одну из глюкогенных аминокислот, углеродный скелет которой используется в печени как предшественник для синтеза глюкозы. Другим источником пирувата является лактат, который накапливается в интенсивно работающих мышцах в процессе анаэробного гликолиза, когда митохондрии не успевают реокислить накапливающийся НАДН. Лактат транспортируется в печень, где снова превращается в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл называется циклом Кори (по имени его первооткрывателя). У цикла Кори две функции - сберечь лактат для последующего синтеза глюкозы в печени и предотвратить развитие ацидоза.

Энергетика обмена.

Обмен веществ (метаболизм) - это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря обмену веществ происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества . Например, у человека половина всех тканевых белков расщепляется и строится заново в среднем в течении 80 суток, белки печени и сыворотки крови наполовину обновляются каждые 10 суток, а белки мышц - 180, отдельные ферменты печени - каждые 2 - 4 часа. Обмен веществ неотделим от процессов превращения энергии: потенциальная энергия химических связей сложных органических молекул в результате химических превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток, температуры тела, для совершения работы и так далее. Все реакции обмена веществ и превращения энергии протекают при участии биологических катализаторов - ферментов. У самых разных организмов обмен веществ отличается упорядочностью и сходством последовательности ферментативных превращений, несмотря на большой ассортимент химических соединений, вовлекаемых в обмен. В тоже время для каждого вида характерен особый, генетическизакреплённый тип обмена веществ, обусловленный условиями его существования.

Обмен веществ складывается из двух взаимосвязанных, одновременно протекающих в организме процессов - ассимиляция и диссимиляция, или анаболизм и катаболизм. В ходе катаболических превращений происходит расщепление крупных органических молекул до простых соединений с одновременным выделением энергии, которая запасается в форме богатых энергией фосфатных связей, главным образом в молекуле АТФ и других богатых энергией соединений. Катаболические превращения обычно осуществляются в результате гидролитических и окислительных реакций и протекает как в отсутствии кислорода (анаэробный путь - гликолиз, брожение), так и при его участии (аэробный путь - дыхание). Второй путь эволюционно более молодой и в энергетическом отношении более выгодный. Он обеспечивает полное расщепление органических молекул до СО2 и Н2О. Разнообразные органические соединения в ходе катаболических процессов превращаются в органическое число небольших молекул (помимо СО2 и Н2О): углеводы - в трифосфаты и (или) пируват, жиры - в ацетил - КоА, пропионил - КоА, оксалоацетат, б - кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена - мочевину, аммиак, мочевую кислоту и другие.

В ходе анаболических превращений происходит биосинтез сложных молекул из простых молекул - предшественников. Автотрофные организмы (зелёные растения и некоторые бактерии) могут осуществлять первичный синтез органических соединений из СО2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганических веществ. Гетеротрофы синтезируют органические соединения только за счёт энергии и продуктов, образующихся в результате катаболических превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в том числе ацетил - КоА, сукцинил КоА, рибоза, пировиноградная кислота, глицерин, глицин, аспарагиновая, глутаминовая и другие аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и другие соединения. Например, глюкоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановительные этапы и сопровождается потреблением энергии.

Функции липидов.

Липиды (от греческого “липос” - жир) - низкомолекулярные органические соединения полностью или почти полностью нерастворимые в воде, могут быть извлечены из клеток животных, растений, и микроорганизмов неполярными органическими растворителями, такими как хлороформ, эфир, бензол.

Гидрофобность (или липофильность) является отличительным свойством этого класса соединения, хотя по природе химическому строению и структуре - они весьма разнообразны. В их состав входят спирты, жирные кислоты, азотистые соединения, фосфорная кислота, углеводы и другие. Следовательно, учитывая различия в химическом строении, функциях соединений, относящихся к липидам, дать единое определение для представителей этого класса веществ невозможно.

Роль липидов в процессе жизнедеятельности организма велика и разнообразна. К основным функциям липидов относятся структурная, энергетическая, резервная, защитная, регуляторная.

Структурная функция.

В комплексе с белками липиды являются структурными компонентами всех биологических мембран клеток, а следовательно, влияют на их проницаемость, участвуют в передаче нервного импульса, в создании межклеточного взаимодействия и других функциях биомембран.

Энергетическая функция.

Липиды являются наиболее энергоёмким “клеточным топливом”. При окислении 1г. жира выделяется 39 КДж энергии, что в два раза больше, чем при окислении 1г. углеводов.

Резервная функция.

Липиды являются наиболее компактной формой депонирования энергии в клетке. Они резервируются в адипоцитах - клетках жировой ткани. Содержание жира в организме взрослого человека составляет 6 - 10 кг.

Защитная функция.

Обладая выраженными термоизоляционными свойствами, липиды предохраняют организм от термических воздействий; жировая прокладка защищает тело и органы животных от механических и физических повреждений; защитные оболочки в растениях (восковой налёт на листьях и плодах) защищает от инфекции и излишней потери или накопления воды.

Регуляторная функция.

Некоторые липиды являются предшественниками витаминов, гормонов, в том числе гормонов местного действия - эйкозаноидов: простагландинов, тромбоксанов и лейкотриенов. Регуляторная функция липидов проявляется также в том, что от состава свойств, состояния мембранных липидов во многом зависит активность мембранно - связанных ферментов.

У бактерий липиды определяют таксономическую индивидуальность, дифференциацию видов, тип патогенеза и многие другие особенности. Нарушение липидного обмена у человека приводит к развитию таких патологических состояний, как атеросклероз, ожирение, метаболический ацидоз, желчнокаменная болезнь и других.

Литература.

1 В.П. Комов., В.Н. Шведова “Биохимия” - М.:”Дрофа” 2004 г.

2 Гл. ред. М.С. Гиляров. Ред.кол.: А.А. Абаев, Г.Г. Винберг, Г.А. Гаварзин и др. “Биологический энциклопидический словарь” - М.: Современная энциклопедия 1986 г.

3 З.А. Власова “Биология. Пособие для поступающих в ВУЗ” - М.: Филологическое общество Слово “Эксмо” 2003 г.

4 Под ред. Пр. Бр.Батанова “Клиническая педиатрия”: София 1988г.


Подобные документы

  • Строение и классификация, свойства и значение белковых веществ (протеинов) как высокомолекулярных природных полимеров. Биологические функции белков: пластическая, транспортная, защитная, энергетическая, каталитическая, сократительная, регуляторная.

    реферат [1006,1 K], добавлен 27.06.2013

  • Функции липидов в организме, сущность и биохимия жирового обмена в организме. Взаимодействие углеводного и липидного обменов, роль L-карнитина. Характеристика факторов, продуцирующих нарушения обмена, улучшение его за счет физических упражнений.

    реферат [35,9 K], добавлен 17.11.2011

  • Химическая природа витамина С. Обмен веществ. Авитаминоз. Гипоавитаминоз. Кулинарная обработка продуктов, содержащих витамин С. Потребность в поступлении извне готовых молекул витаминов. Содержание витамина С в некоторых продуктах и потребность в нем.

    реферат [51,5 K], добавлен 29.09.2008

  • Классификация углеводов (моносахариды, олигосахариды, полисахариды) как самых распространенных органических соединений. Химические свойства вещества, его роль в питании как основного источника энергии, характеристика и место глюкозы в жизни человека.

    реферат [212,0 K], добавлен 20.12.2010

  • Определение и строение глюкозы - моносахарида и шестиатомного сахара. Изомеры. Фруктоза. Физические и химические свойства. Особенности получения - гидролиз крахмала, фотосинтез. Сферы применения. Распространение в природе. Значение глюкозы для человека.

    презентация [6,1 M], добавлен 11.09.2016

  • Разработка урока по расширению знаний об углеводах, изучению строения и свойств глюкозы. Проведение химического эксперимента по взаимодействию раствора глюкозы с гидроксидом меди и аммиачным раствором оксида серебра. Тестовые упражнения, задание на дом.

    презентация [440,8 K], добавлен 31.10.2009

  • Углеводы, их химический состав, биологическая роль, характеристика классов, процесс обмена в организме при мышечной деятельности, расщепление в процессе пищеварения и их всасывание в кровь. Уровень глюкозы в крови, его регуляция и влияние на организм.

    реферат [4,1 M], добавлен 18.11.2009

  • Общая характеристика, классификация и номенклатура моносахаридов, строение их молекул, стереоизомерия и конформации. Физические и химические свойства, окисление и восстановление глюкозы и фруктозы. Образование оксимов, гликозидов и хелатных комплексов.

    курсовая работа [1,6 M], добавлен 24.08.2014

  • Строение и уровни укладки белковых молекул, конформация. Характеристика функций белков в организме: структурная, каталитическая, двигательная, транспортная, питательная, защитная, рецепторная, регуляторная. Строение, свойства, виды и реакции аминокислот.

    реферат [1,0 M], добавлен 11.03.2009

  • Описание витамина В1, история его получения, химическая формула, источники, производные. Роль тиамина в процессах метаболизма углеводов, жиров и протеинов; его действие на функции мозга, циркуляцию крови. Симптомы гиповитаминоза и гипервитаминоза.

    презентация [423,5 K], добавлен 12.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.