Элементарий. Стронций
История открытия стронция. Нахождение в природе. Получение стронция алюминотермическим методом и его хранение. Физические свойства. Механические свойства. Атомные характеристики. Химические свойства. Технологические свойства. Области применения.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 30.09.2008 |
Размер файла | 19,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Элементарий.
Стронций.
Казань 2004
Содержание:
1. История открытия
2. Нахождение в природе
3. Получение
4. Физические свойства
5. Механические свойства
6. Химические свойства
7. Технологические свойства
8. Области применения
1.История открытия.
Стронций (Sr) - металл серебристо-белого цвета. Минерал, содержащий стронций, был обнаружен в 1787 г. близ деревни Стронциан в Шотландии в свинцовой шахте и назван стронцианитом. Некоторые минералоги относили его к одной из разновидностей флюорита (CaF2). Но большинство считали, что стронцианит-разновидность витерита (бариевого минерала BaCO3).
В 1790 г. шотландские минералоги Крауфорд и Крюикшенк и тщательно исследовали этот минерал и пришли к выводу, что соль, полученная действием соляной кислоты на стронцианит, отличалась от хлорида бария. Она лучше растворялась в воде и имела другую форму кристаллов. А. Крауфорд заключил, что стронцианит содержит неизвестную ранее «землю» (оксид).
В конце 1791г. исследованием стронцианита занялся их соотечественник химик Т. Хоп. Он четко установил разницу между витеритом и стронцианитом. Также Т. Хоп отметил, что стронциевая земля соединяется с водой активнее, чем негашеная известь; в отличие от оксида бария она гораздо лучше растворяется в воде, а все соединения стронция окрашивают пламя в красный цвет. Т. Хоп доказал, что новая земля не может быть смесью кальциевой и бариевой земель, что в этом минерале содержится новый элемент - стронций. К такому же выводу пришел немецкий химик Клапорт. А. Лавуазье высказывал мысль о металлической природе, но это удалось доказать Г. Дэви в 1808 г.
История открытия стронция будет неполной, если не упомянуть ещё об одном учёном, которому, несомненно, принадлежит большая заслуга в изучении стронцианита. Им был русский химик Т. Е. Ловиц, который независимо пришёл к выводу, что стронцианит содержит неизвестный доселе элемент. Т. Е. Ловицу принадлежит первенство открытия стронция в тяжелом шпате. Метод получения металлического стронция, предложенный Г. Дэви, не мог дать достаточно чистого продукта. Лишь в 1924 г. П. Даннер (США) получил чистый стронций путём восстановления его оксида металлическим алюминием или магнием.
2. Нахождение в природе
Содержание стронция в земной коре 4.10І % ( по массе) . В природе в свободном виде не встречается. Присутствует главным образом в минералах - стронцианите (SrCO3) и целестине ( SrSO4 ). Содержится также в различных кальциевых минералах.
3. Получение
Металлический стронций в настоящее время получают преимущественно алюминотермическим методом. Оксид стронция смешивают с порошком алюминия, брикетируют и помещают в электровакуумную печь ( вакуум 1,333 Па ), где при 1100-1150°С происходит восстановление металла.
Поставляется стронций в виде прутков или комкового металла. Во избежание окисления стронций следует хранить под слоем керосина или под лаковым покрытием. В случае непродолжительного хранения стронций заворачивают в пергаментную бумагу и упаковывают в герметично закрывающиеся металлические банки. Для длительного хранения банки заполняют смесью трансформаторного масла и парафина (1:1). нА крышке несмываемой краской наносят надпись «Огнеопасно, от воды загорается». Хранят стронций в сухих закрытых помещениях. Не допускается хранить стронций в одном помещении с кислотами, водой, и огнеопасными веществами.
Соли и соединения стронция токсичны (вызывают паралич, влияют на зрение). При работе с ними следует соблюдать правила техники безопасности с солями щелочных и щелочноземельных металлов.
4. Физические свойства
Атомные характеристики. Атомный номер 38, атомная масса 87,Ю62 а.е.м, атомный объем 33,7.106 мі/моль, атомный радиус 0,215 нм, ионный радиус 0,127 нм. Потенциалы ионизации J(эВ):5,692; 11,026; 43,6. Электроотрицательность 1,0. Стронций имеет г.ц.к. решетку (б-Sr) с периодом а=0,6085 нм, энергия кристаллической решетки 164,3 мкДж/кмоль, координационное число 12, межатомное расстояние 4,30 нм. При температуре 488 К происходит б--в- превращение. в - стонций имеет гексагональную решетку с периодами а=0,432 нм, с=0,706 нм,с/а=1,64. При 605єС имеет место полиморфное превращение в>г. Образуется кубическая объемноценрированная модификация имеет период а=0,485 нм. Электронная конфигурация внешнего слоя 5sІ. Природный стронций состоит из четырех стабильных изотопов: 84Sr(0,58%), 86Sr(9,86%),87Sr(7,2%),88Sr(82,58%). Получено также 14 искусственных неустойчивых изотопов. Радиоактивный изотоп 90 Sr с периодом полураспада 27,7 лет образуется при ядерных реакциях (делении урана).
Плотность с при 273 К равна 2,630 Мr/м3
Электрические и магнитные. Удельная электрическая проводимость у и удельное электрическое сопротивление с зависит от температуры:
Т |
К |
20 |
253 |
273 |
295 |
673 |
973 |
|
у |
МСм/м ….. |
- |
5,9 |
5,0 |
- |
1,15 |
1,03 |
|
с |
МкОм.м ... |
0,0048 |
0,17 |
0,20 |
21,5 |
60 |
94 |
Температурный коэффициент электросопротивления в интервале температур 273-473 К б=5,2·10і К №.
Наибольшее значение коэффициента вторичной электронной эмиссии уmax=0,72 при ускоряющем напряжении первичных электронов 0,400кэВ.
Магнитная восприимчивость при температуре 293 К ч=+1,05·10№.
Тепловые и термодинамические Температура плавления tпл=770°С, температура кипения tкип=1380°С, характеристическая температура ШD =129 К , удельная теплота плавления ДНпл=960 кДж/кг. Средняя удельная теплоемкость в интервале температур 273-373 К Ср=737 Дж/(кг·К). Средний температурный коэффициент линейного расширения б=23·106 К№.
Оптические свойства. Отражательная способность (коэффициент отражения nD ) и коэффициент поглощения б в зависимости от длины волны (пленка толщиной 0,2 мкм):
л , мкм |
ND, % |
б , м№ |
|
0,124 |
3 |
1,7·107 |
|
0,138 |
7 |
2,5·107 |
|
0,155 |
14 |
4,0·107 |
|
0,177 |
20 |
5,6·107 |
5. Механические свойства
Механические свойства в зависимости от температуры:
T, °C |
у, МПа |
д, % |
Ш, % |
НВ, МПа |
|
20 |
49,0 |
1,0 |
11,0 |
190 |
|
110 |
53,9 |
- |
- |
180 |
|
200 |
47,0 |
5,3 |
13,5 |
90 |
|
300 |
- |
10,5 |
30,0 |
60 |
|
400 |
24,5 |
19,0 |
45,0 |
48 |
|
450 |
- |
20,0 |
50,0 |
38 |
|
550 |
- |
8,0 |
16,0 |
3,0 |
|
600 |
2,0 |
33,0 |
99,0 |
2,5 |
|
700 |
1,0 |
40,0 |
99,9 |
2,0 |
Модуль нормальной упругости Е=16,0Гпа; модуль объемного сжатия К=12,200 Гпа; модуль сдвига G=6,08 Гпа . Коэффициент Пуассона г= 0,280.
6. Химические свойства
Нормальный электронный потенциал реакции Sr--2е- SrІ+ цо=2,89В. Степень окисления +2.
Стронций встречается в природе главным образом в виде сульфатов и карбонатов, образуя минералы целестин SrCO3 и стронцианит SrSO4
Стронций -- очень активный элемент, быстро окисляется на воздухе с выделением большего количества тепла, энергично разлагает воду. С водородом взаимодействует при повышенной температуре 300-400°C, образуя гидрид SrН2 с температурой плавления 650°C. С кислородом образует оксид (II) SrО с температурой плавления 2430°C, при 500°C и давлении 15 МПа -- оксид (IV) SrО2.. С азотом взаимодействует при 380 -- 400°C и дает соединение Sr3N2 .
При нагревании стронций легко взаимодействует с галогенами образуя соответствующие соли: хлорид SrCl2 с температурой плавления 872°C, бромид SrBr2 с температурой плавления 643°C, фторид SrF2 с температурой плавления 1190°C, иодит SrI2. С углеродом образует карбид стронция SrC2, с фосфором - фосфид стронция SrР2 , с серой при нагревании- сульфоды.
С концентрированной азотной и серной кислотами взаимодействует слабо, с разбавленными энергично; со щелочами -- NaOH, KOH (концентрированными и разбавленными) также вступает в реакции.
С металлами образует твердые растворы и металлические соединения. В жидком состоянии смешивается с элементами ІІA, ЙЙB--VB Be, Mg, Zn, Cd, Hg, Al, Ga, In, Tl, Sn, Pb, Sb, Bi, As). Со многими из них образует металлические соединения (Al, Mg, Zn, Sn, Pb и др.). С некоторыми переходными и благородными мнталлами дает несмешивающиеся системы. Для большинства металлов платиновой группы характерно образование со стронцием фаз типа Лавеса. С элементами ЙЙЙ B подгруппы образуются фазы типа АВ4.
Электротехнический эквивалент 0,45404 мг/Кл.
7. Технологические свойства
Стронций - ковкий и пластичный металл. Ковкой из него можно получить тонкий лист , а прессованием при 230°C-проволоку.
8. Области применения
В промышленности используют металлический стронций и его соединения. Введение этого элемента и его соединений в сталь и чугун способствуют повышению их качества. Имеются сведения об использовании стронция для раскисления и рафинирования меди; при этом также повышается твердость. Введение 0,1% Sr в титан и его сплавы повышает ударную вязкость; строонций увеличивает пластичность магния и его сплавов, положительно влияет на свойства алюминиевых сплавов.
Соединения стронция используют в пиротехнике, в электровакуумной технике (газопоглотитель), в радиоэлектронике (для изготовления фотоэлементов). Стронций входит в состав оксидных катодов, применяемых в электронно-лучевых трубках, лампах СВЧ и др.
В стекловарении стронций используют для получения специальных оптических стекол; он повышает химическую и термическую устойчивость стекла и показатели преломления. Так, стекло, содержащее 9% SrО, обладает высоким сопротивлением истиранию и большой эластичностью, легко поддается механической обработке (кручению, переработке в пряжу и ткани). В нашей стране разработана технология получения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улучшать радиационную стойкость. Фторид стронция используют для производства лазеров и оптической керамики. Гидроксид стронция применяют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой- для обработки отходов сахарного производства с целью дополнительного извлечения сахара. Соединения стронция входят также в состав эмалей, глазурей и керамики. Их широко используют в химической промышленности в качестве наполнения резины, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти и т. д.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:
Д.Н. Трифонов В.Д. Трифонов « Как были открыты химические элементы»
«Список химических элементов»
Подобные документы
История открытия азота, его формула и свойства, нахождение в природе и химические реакции, которые происходят непосредственно в природе при участии азота. Методы связывания, получение и свойства нескольких важнейших соединений, области применения азота.
курсовая работа [896,1 K], добавлен 22.05.2010История и происхождение названия меди, ее нахождение в природе. Физические и химические свойства элемента, его основные соединения. Применение в промышленности, биологические свойства. Нахождение серебра в природе и его свойства. Сведения о золоте.
курсовая работа [45,1 K], добавлен 08.06.2011Общая характеристика меди. История открытия малахита. Форма нахождения в природе, искусственные аналоги, кристаллическая структура малахита. Физические и химические свойства меди и её соединений. Основной карбонат меди и его химические свойства.
курсовая работа [64,2 K], добавлен 24.05.2010Характеристика металлов - веществ, обладающих в обычных условиях высокой электропроводностью и теплопроводностью, ковкостью, "металлическим" блеском. Химические и физические свойства магния. История открытия, нахождение в природе, биологическая роль.
презентация [450,8 K], добавлен 14.01.2011Основные физические и химические свойства, технологии получения бериллия, его нахождение в природе и сферы практического применения. Соединения бериллия, их получение и производство. Биологическая роль данного элемента. Сплавы бериллия, их свойства.
реферат [905,6 K], добавлен 30.04.2011Металлический барий и его распространенность в природе. Получение металлического бария. Электролиз хлорида бария. Термическое разложение гидрида. Химические и физические свойства. Применение. Соединения (общие свойства). Неорганические соединения.
автореферат [21,0 K], добавлен 27.09.2008Английский естествоиспытатель, физик и химик Генри Кавендиш - первооткрыватель водорода. Физические и химические свойства элемента, его содержание в природе. Основные методы получения и области применения водорода. Механизм действия водородной бомбы.
презентация [4,5 M], добавлен 17.09.2012История открытия элемента и его нахождение в природе. Способы получения металлов из руд, содержащих их окислы. Восстановление двуокиси титана углем, водородом, кремнием, натрием и магнием. Физические и химические свойства. Применение титана в технике.
реферат [69,5 K], добавлен 24.01.2011Нахождение металла в природе, характеристика его типичных минералов. Способы получения и области применения. Физические и химические свойства его аллотропных модификаций. Углерод - основной легирующий элемент. Описание синтеза оксидов железа (II) и (III).
курсовая работа [71,0 K], добавлен 24.05.2015Изучение комплексов водорастворимых полимеров с различными классами соединений. Свойства растворов катионных полимеров, особенности амфотерных полиэлектролитов. Проведение вискозиметрического исследования комплексообразования ЭЭАКК/АК с ионом стронция.
курсовая работа [79,9 K], добавлен 24.07.2010