Создание новых лекарственных веществ
Компьютерное моделирование новых молекулярных структур с применением программы HyperChem. Три стадии изучения потенциального лекарственного вещества: фармацевтическая, фармакокинетическая и фармакодинамическая. Молекулярное моделирование веществ.
Рубрика | Химия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 17.12.2010 |
Размер файла | 108,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1,34441
1,3441
1,34399
1,34099
1,34297
1,36079
1,51602
1,54091
1,46417
1,45765
1,35257
1,3425
1,34235
1,34536
1,34524
1,34278
1,34206
1,36228
1,21202
1,35004
1,4099
1,53786
1,45675
1,45323
1,45163
120,802
120,483
119,222
122,579
117,432
120,669
121,368
118,714
120,184
120,594
121,181
121,385
115,402
114,762
123,704
116,621
120,198
119,72
120,071
119,877
120,004
119,927
120,013
120,082
119,383
120,612
119,581
120,826
119,469
119,174
110,679
113,688
111,433
113,311
111,143
1,35748
1,43712
1,4148
1,41582
1,41064
1,4048
1,41425
1,35924
1,51423
1,55179
1,47428
1,47004
1,43737
1,41646
1,40524
1,41186
1,41199
1,4048
1,41809
1,501
1,22707
1,36061
1,41166
1,5624
1,47048
1,46449
1,46417
123,264
118,062
119,488
121,583
118,032
121,572
120,637
118,674
117,63
122,882
121
120,916
117,262
113,931
116,04
114,642
123,731
117,39
120,376
120,696
118,949
120,676
120,373
118,878
120,928
120,123
126,438
112,643
120,919
125,616
107,249
109,754
116,591
116,835
115,996
1,359
1,381
1,368
1,388
1,347
1,358
1,413
1,362
1,514
1,551
1,469
1,462
1,395
1,561
1,395
1,354
1,456
1,400
1,346
1,447
1,210
1,369
1,469
1,537
1,475
1,462
1,495
122,645
119,472
119,265
121,583
117,463
120,873
121,145
118,714
118,139
121,246
121,012
121,213
114,786
113,746
122,612
115,621
120,198
118,365
120,376
120,519
119,789
120,581
120,373
120,566
120,491
120,573
122,469
117,721
120,651
123,125
108,452
110,956
117,854
114,651
113,786
Сравнивая полученные результаты, оба метода имеют небольшие отклонения.
Расположение молекулы немного изменяется в зависимости от применяемого метода.
Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.
Изменение потенциальной энергии связи N11-С13.
Исследуемая связь между атомами N11-С13. Задаём начальные величины начальная длина связи 2,36; конечная длина связи 5,666; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи N11-С13 от величины растяжения.
Изменение потенциальной энергии углового напряжения C19-О21-С22.
Исследуем угол между атомами C19-О21-С22. Задаём начальные величины начальный угол 70; конечный 130; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.
Оптимизация геометрии и расчёт параметров молекулы методом молекулярной механики (ММ+ и MNDO метод).
Таблица 4
Длина связи или валентный угол |
Данные ММ расчёта |
Данные MNDO расчёта |
Справочные величины |
|
С1-С2 С2-С3 С3-С4 С4-N5 N5-C6 C6-C7 C7-C8 C41-C8 C9-C41 C5-C9 C7-C10 C10-O11 C10-O12 O12-C13 C13-C14 C14-N15 N15-C16 N15-C17 C1-C1-C3 C2-C3-C4 C3-C4-N5 C4-N5-C6 C4-N5-C9 N5-C6-C7 C6-C7-C8 C7-C8-C41 C8-C41-C9 C41-C9-N5 C9-N5-C6 C6-C7-C10 C8-C7-C10 C7-C10-C11 C7-C10-O12 C10-O12-O13 O12-C13-C14 C13-C14-N15 C14-N15-C16 C14-N15-C17 C16-N15-C17 |
1,53455 1,53762 1,5369 1,468 1,45685 1,5104 1,34294 1,34042 1,33896 1,35217 1,36168 1,21147 1,34976 1,41025 1,53651 1,45706 1,45297 1,4518 111,892 111,685 111,781 122,06 119,167 114,299 120,314 120,526 122,338 123,23 118,447 121,465 118,218 117,423 122,29 118,494 107,986 113,797 111,518 113,334 111,185 |
1,53153 1,54118 1,55042 1,47213 1,4767 1,51705 1,36463 1,44632 1,36782 1,39475 1,49687 1,22888 1,36285 1,41128 1,56218 1,47138 1,46379 1,46434 114,534 113,462 113,494 118,349 119,969 113,836 121,488 120,452 120,512 121,692 121,63 116,046 122,464 126,415 113,517 125,248 107,536 109,6 116,738 116,78 115,933 |
1,532 1,538 1,542 1,468 1,463 1,517 1,352 1,395 1,338 1,394 1,419 1,226 1,339 1,411 1,541 1,468 1,462 1,468 113,589 113,452 113,642 119,486 119,165 113,863 121,488 120,526 121,514 122,945 119,449 120,064 118,218 126,435 122,651 125,984 107,892 110,674 115,465 115,639 113,746 |
Сравнивая полученные результаты, оба метода имеют небольшие отклонения.
Расположение молекулы немного изменяется в зависимости от применяемого метода.
Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.
Изменение потенциальной энергии связи С4-N5.
Исследуемая связь между атомами С4-N5. Задаём начальные величины начальная длина связи 0,972; конечная длина связи 2,972; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4-N5 от величины растяжения.
Изменение потенциальной энергии углового напряжения C2-C3-С4.
Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.
Оптимизация геометрии и расчёт параметров молекулы методом молекулярной механики (ММ+ и MNDO метод).
- Проведение оптимизации молекулы.
ММ+ метод.
Таблица 5
Длина связи или валентный угол |
Данные ММ расчёта |
Данные MNDO расчёта |
Справочные величины |
|
С1-С2 С2-С3 С3-С4 С4-N5 N5-C6 C6-C8 C8-C10 C9-C10 C7-C9 N5-C7 C10-C11 C11-O12 C11-O13 O13-C14 C14-C15 C15-N16 N16-C17 N16-C18 C1-C2-C3 C2-C3-C4 C3-C4-N5 C4-N5-C7 C4-N5-C6 N5-C7-C9 C7-C9-C10 C9-C10-C8 C6-C8-C10 C8-C6-N5 C6-N5-C7 C10-C11-O12 C9-C10-C11 C8-C10-C11 C10-C11-O13 O12-C11-O13 C11-O13-C14 C13-C14-C15 C14-C15-N16 C15-N16-C17 C15-N16-C18 |
1,53461 1,53838 1,53856 1,45536 1,45232 1,53586 1,53611 1,53558 1,536 1,4525 1,52029 1,20871 1,34376 1,40919 1,53584 1,45663 1,45283 1,45193 111,827 111,685 116,445 113,912 113,888 111,468 110,753 108,473 112,918 111,794 116,304 127,3 110,877 112,884 112,782 119,917 125,512 107,339 109,614 116,591 116,809 |
1,53147 1,54129 1,55152 1,47019 1,46727 1,54676 1,54834 1,54919 1,5454 1,46687 1,54228 1,22757 1,36181 1,41133 1,56262 1,47096 1,46422 1,4643 114,597 113,519 116,865 117,555 117,81 111,826 113,034 111,009 112,918 111,794 116,304 127,3 110,877 112,884 112,782 119,917 125,512 107,339 109,614 116,591 116,809 |
1,533 1,539 1,542 1,467 1,467 1,539 1,539 1,542 1,542 1,468 1,534 1,213 1,352 1,412 1,556 1,472 1,468 1,464 113,654 113,512 116,865 116,526 116,956 111,429 111,485 111,006 112,918 111,783 116,304 127,3 110,563 112,853 112,782 119,456 125,654 107,339 110,369 115,654 116,809 |
Сравнивая полученные результаты, оба метода имеют небольшие отклонения.
Расположение молекулы немного изменяется в зависимости от применяемого метода.
Положительный знак электростатического потенциала отображается зелёным цветом. В области неподелённых пар на атомах азота, кислорода электрический потенциал отрицательный, что отображается красным цветом.
Изменение потенциальной энергии связи С4-N5.
Исследуемая связь между атомами С4-N5. Задаём начальные величины начальная длина связи 0,97; конечная длина связи 2,97; шаг 0,1. Проведя расчёты, изобразим график изменения потенциальной энергии связи С4-N5 от величины растяжения.
Изменение потенциальной энергии углового напряжения C2-C3-С4.
Исследуем угол между атомами C2-C3-С4. Задаём начальные величины начальный угол 50; конечный 140; шаг 10. Проведя расчёты, изобразим график изменения энергии углового напряжения при изменении величины угла.
3.3 Исследование биологической активности с помощью программы PASS
В работе выполнено исследование биологической активности всех молекулярных структур с помощью программы PASS согласно методике п.2.2.
Дикаин
Если величина Pa близка к единице, то вещество может оказаться близким аналогом известных препаратов.
Базовые структуры лекарств, обладающие существенной новизной, целесообразно отбирать из массива доступных веществ соединения с Pa<0.7. Риск получения отрицательного результата в эксперименте тем больше, чем меньше величина Pa, однако и новизна такой структуры (при подтверждении прогноза в эксперименте) будет более высокой [12]. Pa Pi:
0.603 0.023 спазмолитик,
0.511 0.048 сосудорасширяющее средство,
0.405 0.015 антагонист кальциевых каналов,
0.350 0.107 антигипертензивный,
0.323 0.166 токсичный,
0.114 0.098 агонист в - адренорецепторов,
0.219 0.214 тератоген,
0.092 0.091 антагонист в - адренорецепторов.
1. Структура 1 (карбоксиструктура).
Pa Pi:
0.591 0.025 спазмолитик,
0.367 0.095 сосудорасширяющее средство,
0.264 0.051 антагонист кальциевых каналов,
0.331 0.160 токсичный,
0.301 0.142 антигипертензивный,
0.211 0.144 диуретик,
0.233 0.195 тератоген,
0.113 0.101 агонист в - адренорецепторов,
0.092 0.090 антагонист в - адренорецепторов.
2. Структура 2 (адреноструктура).
Pa Pi:
0.620 0.021 спазмолитик,
0.472 0.059 сосудорасширяющее средство,
0.362 0.020 антагонист кальциевых каналов,
0.218 0.041 агонист дофамина,
0.128 0.020 агонист Д2 дофамина,
0.291 0.188 токсичный,
0.144 0.041 агонист в1 - адренорецепторов,
0.139 0.043 агонист в - адренорецепторов,
0.243 0.182 тератоген,
0.237 0.211 антигипертензивный,
0.133 0.119 агонист б - адренорецепторов.
3. Структура 3 (никотиноструктура).
Pa Pi:
0.683 0.017 сосудорасширяющее средство,
0.548 0.031 спазмолитик,
0.326 0.026 антагонист кальциевых каналов,
0.364 0.098 антигипертензивный,
0.171 0.066 агонист дофамина.
4. Структура 4 (пиперидиноструктура).
Pa Pi:
0.680 0.015 спазмолитик,
0.537 0.042 сосудорасширяющее средство,
0.411 0.014 антагонист кальциевых каналов,
0.402 0.078 антигипертензивный,
0.233 0.051 антагонист б1 - адренорецепторов,
0.253 0.075 агонист б - адренорецепторов
0.216 0.081 антагонист адреналина.
После исследования биологической активности ряда веществ можно сделать вывод, что все структуры обладают новизной. Есть большая вероятность, что они будут обладать спазмолитической, сосудорасширяющей активностью и являются антагонистами кальциевых каналов.
Суммарно характеристики биологической активности всех молекулярных структур предложены в таблице 6.
Таблица 6
Характерис-тика фармако-логической активности |
Основ-ная струк-тура |
Модифицированные структуры |
||||
Дикаин |
Структура 1 Карбокси-структура |
Структура 2 Адрено-структура |
Структура 3 Никотино-структура |
Структура 4 Пиперидиноструктура |
||
1. Спазмолитик |
0,603 0,023 |
0,591 0,025 |
0,620 0,021 |
0,683 0,017 |
0,680 0,015 |
|
2. Сосудорасши-ряющее средство |
0,511 0,048 |
0,367 0,095 |
0,472 0,059 |
0,548 0,031 |
0,537 0,042 |
|
3. Антагонист кальциевых каналов |
0,405 0,015 |
0,264 0,051 |
0,362 0,020 |
0,326 0,026 |
0,411 0,014 |
|
4. Антигипер-тензивный |
0,350 0,107 |
0,301 0,142 |
0,237 0,211 |
0,364 0,098 |
0,402 0,078 |
|
5. Агонист в-адренорецепторов |
0,114 0,098 |
0,113 0,101 |
0,139 0,043 |
|||
6. Токсичный |
0,323 0,166 |
0,331 0,160 |
0,291 0,188 |
|||
7. Тератоген |
0,219 0,214 |
0,233 0,195 |
0,243 0,182 |
|||
8. Антагонист в-адрено-рецепторов |
0,092 0,091 |
0,092 0,09 |
||||
9. Диуретик |
0,211 0,144 |
|||||
10. агонист -адрено-рецепторов |
0,144 0,041 |
|||||
11. Агонист б-адрено-рецепторов |
0,133 0,119 |
0,253 0,075 |
||||
12. Антагонист -адрено-рецепторов |
0,233 0,051 |
Краткое описание позиций проявленной фармакологической активности.
1. Спазмолитик.
Лекарственное средство, понижающее тонус и двигательную активность гладких мышц; применяют для предупреждения или устранения спазмов гладкомышечных органов.
По механизму действия спазмолитические средства делят на миотропные и нейротропные. Миотропные спазмолитические средства снижают тонус гладкомышечных органов путем прямого влияния на биохимические процессы в гладкомышечных клетках. Нейротропные спазмолитические средства оказывают спазмолитический эффект путем нарушения передачи нервных импульсов в вегетативных ганглиях или в области окончаний вегетативных нервов, стимулирующих гладкие мышцы [19].
2. Сосудорасширяющее средство (б- и в-адреноблокаторы).
Лекарственное средство, вызывающее расширение кровеносных сосудов.
По принципу действия различают нейротропные, миотропные сосудорасширяющие средства, антагонисты кальция и сосудорасширяющие средства, влияющие на гуморальную регуляцию сосудистого тонуса.
К нейротропным сосудорасширяющим средствам относят препараты, влияющие на эффективную иннервацию сосудов [18].
3. Антагонист кальциевых каналов.
Механизм сосудорасширяющего действия препаратов группы антагонистов кальция связывают с блокадой кальциевых каналов, что приводит к затруднению проникновения ионов кальция внутрь клетки и расслаблению гладкой мускулатуры. Из числа антагонистов кальция в медицинской практике широко используется верапамил и нифедипин, которые применяют в основном как антиангинальные средства [18, 20].
4. Антигипертензивный.
Антигипертензивный - свойство вещества, препятствующего повышению гидростатического давления в полости организма, полых органах и сосудах.
Антигипертензивные вещества препятствуют развитию гипертензивного синдрома - симптомокомплекса, обусловленного стабильным или прогрессирующим поведением внутричерепного давления [8].
5. Токсичный.
Токсичность - свойство вещества синтетического и природного происхождения при поступлении в организм в количестве, превышающем меру их фармакологической активности, что выражается в возникновении токсических эффектов разной направленности, интенсивности и продолжительности вплоть до развития отравления [20].
6. Агонист в-адренорецепторов.
Агонист в-адренорецепторов - лекарственное вещество, которое прикрепляясь к в-адренорецептору, индуцирует эффективное конформационное изменение [3].
7. Тератоген.
Тератоген - фактор, вызывающий развитие врожденных пороков [5].
8. Антагонист в-адренорецепторов.
Антагонист в-адренорецепторов - лекарственное вещество, которое прикрепляется к в-адренорецептору, не индуцирует эффективного конфигурационного изменения.
в-адренолитики блокируют в-адренорецепторы, осуществляющие симпатическую иннервацию сердца (возбуждение) и торможение гладких мышц бронхов, желудка, некоторых сосудов, ресничной мышцы, поперечнополосатых мышц, а также регуляцию гликогенолиза и липолиза [7].
9. Диуретик.
Диуретики (мочегонные средства) - лекарственные средства, увеличивающие выделение почками ионов натрия и воды и вызывающие в связи с этим уменьшение содержания жидкости в тканях и серозных полостях организма.
Основным и практически важным эффектом мочегонного средства является увеличение выделения ионов натрия.
Одновременно с выделением натрия мочегонные средства способствуют выделению других ионов [19].
10. Агонист -адренорецепторов.
Агонист -адренорецепторов - вещество, которое посредством прикрепления к рецептору индуцирует эффективное конформационное изменение.
-адренорецепторы опосредуют влияние катехоламинов на сердце, гладкие мышцы желудочно-кишечного тракта и, возможно, липолитический эффект КА [7].
11. Агонист б-адренорецепторов.
Агонист б-адренорецепторов - вещество, которое посредством прикрепления к б-адренорецептору индуцируют эффективное конформационное изменение.
б-адренорецепторы осуществляют возбуждение гладких мышц сосудов, гладких образований кожи, слизистых оболочек, органов брюшной полости, селезенки, сфинктеров желудочно-кишечного тракта и мочевого пузыря, мышцы, расширяющей зрачок и др. Сильное б-адренолитическое действие оказывают производные в-галоидоалкиламина, которые вызывают необратимую блокаду адренореактивных систем [7].
12. Агонист б-адренорецепторов.
Агонист б-адренорецепторов - вещество, которое посредством прикрепления к б-адренорецептору индуцируют эффективное конформационное изменение.
б-адренорецепторы осуществляют возбуждение гладких мышц сосудов, гладких образований кожи, слизистых оболочек, органов брюшной полости, селезенки, сфинктеров желудочно-кишечного тракта и мочевого пузыря, мышцы, расширяющей зрачок и др. Сильное б-адренолитическое действие оказывают производные в-галоидоалкиламина, которые вызывают необратимую блокаду адренореактивных систем [7].
Из таблицы 6 видно, что порог ингибирования практически для всех видов биологической активности незначителен, поэтому в дальнейшем сравнительный анализ фармакоактивности будем проводить по порогу активности . Одновременно приведем значения программы PASS в условные проценты относительно базовой структуры - дикаина, принемая его характеристики за 100 %.
Таблица 7
Дикаин |
Карбокси-структура |
Адрено-структура |
Никотино-структура |
Пиперидно-структура |
||
1. Спазмолитик |
100 (0,603) |
98,00 (0,591) |
102,82 (0,620) |
113,27 (0,693) |
112,77 (0,680) |
|
2. Сосудорасширя-ющее |
100 (0,511) |
71,82 (0,367) |
92,37 (0,472) |
107,24 (0,548) |
105,09 (0,537) |
|
3. Антагонист Ca каналов |
100 (0,405) |
65,19 (0,264) |
89,38 (0,362) |
80,49 (0,326) |
101,48 (0,411) |
|
4. Антигипертен-зивный |
100 (0,350) |
86,00 (0,301) |
67,71 (0,237) |
104,00 (0,364) |
114,8 (0,402) |
|
5. Агонист в-адренорецеп-торов |
100 (0,114) |
99,12 (0,113) |
119,30 (0,139) |
|||
6. Токсичность |
100 (0,323) |
102,48 (0,331) |
90,09 (0,291) |
|||
7. Тератоген |
100 (0,219) |
106,39 (0,233) |
110,96 (0,243) |
|||
8. Антагонист в-адренорецеп-торов |
100 (0,092) |
100 (0,092) |
||||
9. Диуретик |
(0,211) |
|||||
10. Агонист -адренорецеп-торов |
(0,144) |
|||||
11 Агонист б-адренорецеп-торов |
(0,133) |
(0,253) |
||||
Антагонист -адренорецеп-торов |
(0,233) |
Сравнивая характеристики фармакологических структур и их соотношение, можно сделать следующие выводы.
1. Чем больше показатель спазмолитических свойств, тем больше анестезирующий эффект.
2. Чем меньше показатель сосудорасширяющего свойства, тем больше анестезирующий эффект.
3. Чем больше показатель антагонист кальциевых каналов, тем больше анестезирующий эффект.
4. Чем больше антигипертензивный показатель, тем меньше токсичность.
5. Чем больше показатель сосудорасширяющего средства, тем меньше токсичность.
6. Появление диуретических свойств снижает токсичность.
7. Появление б, в-антагонистов адренорецепторов уменьшает токсичность.
В нашей работе для комплексной оценки анестезирующих и токсических свойств предлагается использовать интегральные показатели.
Расчет интегральных показателей проводили по формуле 1.
;
где -интегральный коэффициент анестезирующей активности. -порог активности каждого i - вида фармакологического действия, влияющего на анестезирующий эффект. -порог активности дикаина по соответствующему виду. n-число видов фармакологического действия, влияющего на анестезирующий эффект.
Для суммарной оценки токсических свойств предложен интегральный показатель токсичности.
;
где -интегральный коэффициент токсичности. -порог активности каждого j-вида фармакологического действия, влияющего на токсичность. -порог активности дикаина по соответствующему фармакологического действия. n-число видов фармакологического действия, влияющего на токсичность.
Таблица 8
Интегральные коэфф-ы |
Дикаин |
Структура1 Карбокси-структура |
Структура 2 Адрено-структура |
Структура 3 Никотино-структура |
Структура 4 Пиперидино-структура |
|
Коэффициент анестези-рующей активности |
0,5 |
0,443 |
0,419 |
0,543 |
0,560 |
|
Коэффициент токсичности |
0,5 |
0,486 |
0,564 |
- |
- |
Из таблицы видно, что по анестезирующему эффекту исследуемые структуры можно ранжировать в следующий ряд:
Пиперидиноструктура>никотиноструктура>дикаин>
>карбоксиструктура>адреноструктура
Наглядно эффект анестезирующей активности представлен на диаграмме 1.
По токсичности исследуемые структуры располагаются в следующий ряд:
Таким образом, результаты компьютерного дизайна молекулы дикаина с целью снижения токсичности и усиления местноанестезирующего эффекта позволяют исследуемые структуры расположить в следующий ряд:
Никотиноструктура>пиперидиноструктура>адреноструктура>>дикаин>карбоксиструктура
4. Экономическая часть
4.1 Цель и база сравнения
Несмотря на достижения современной анестезии, продолжаются поиски менее опасных средств для наркоза, разработка различных вариантов многокомпонентного избирательного наркоза, позволяющего значительно снизить дозы используемых средств, уменьшить их токсичность и побочные отрицательные влияния.
В последнее время методы компьютерного моделирования все более входят в практику технологии создания новых синтетических лекарственных веществ. Полученные таким образом данные позволяют более целенаправленно проводить синтезы биоактивных молекул с заданными на молекулярном уровне параметрами, что значительно экономит время, материалы и силы при аналоговом поиске лекарственных веществ.
4.2 Проведение работы связано с определенными видами затрат
Затраты на проведение работы включают в себя:
1) Расчет заработной платы работнику, выполняющему данную работу с окладом 3500 р/мес.
2) Затраты на электроэнергию с ценой 1 кВт-1,6 р.
3) Затраты на покупку компьютера и приобретение программы HyperChem.
4.3 Заработная плата рассчитывается на 1 человека
Оклад составляет 3500 р/мес. Работа проводилась 4 месяца. Заработная плата за 4 месяца составляет 3500. 4=14000 р.
Отчисления на социальные нужды:
1) Пенсионный фонд .
2) Фонд социального страхования .
3) Фонд медицинского страхования .
4) Фонд страхования от несчастных случаев р.
Итого: 5222 р.
Основные производственные фонды
Стоимость компьютера 20000 р.
Стоимость компьютера Hyper Chem 30000 р.
Итого: 50000 р.
Амортизация
4.4 Затраты на электроэнергию
Цена за 1 кВт - 1,6 р.
Затраты на энергоресурсы составили 0,1 кВт/ ч.
Работа на компьютере составили 528 ч.
Смета затрат
Статьи затрат |
Стоимость, руб |
|
Информационная программа HyperChem |
30000 |
|
Заработная плата |
19222 |
|
Амортизация |
1920 |
|
Затраты на электроэнергию |
844,8 |
|
ИТОГО |
51986 |
Список литературы
1. Поройков В.В. Компьютерное предсказание биологической активности веществ: пределы возможного. Химия в России, 1999, № 2, 8-12.
2. Кнунянц И. Л. Химическая энциклопедия. Издательство “Советская энциклопедия” Москва, 1988.
3. Кукес В. Г., Стародубцева А. К. Фармакология и фармакотерапия. - М.: ГЭОТАР - МЕД, 2004.
4. Беликов В. Г. Фармацевтическая химия. - М.: Высшая школа, 1985
5. Харкевич Д. А. Фармакология, четвертое издание, Москва, 1993.
6. Солдотенков А. Т., Колядина Н. М., Шендрик И. В. Основы органической химии лекарственных веществ. - М.: МИН, 2003.
7. Аляутдин Р. Н. Фармакология. - учебник для вузов, Москва, 2004.
8. Ланса Л., Лейси Ч., Голдман. М. Фармакологический справочник, Москва, 2000 г.
9. Поройков В.В., Филимонов Д.А. Компьютерный прогноз биологической активности химических соединений как основа для поиска и оптимизации базовых структур новых лекарств. В сб.: Азотистые гетероциклы и алкалоиды. Москва: Иридиум-пресс, 2001, т.1, с.123-129.
10. Poroikov V.V., Filimonov D.A., Borodina Yu.V., Lagunin A.A., Kos A. Robustness of biological activity spectra predicting by computer program PASS for non-congeneric sets of chemical compounds. J. Chem. Inform. Comput. Sci., 2000, 40 (6), 1349-1355.
11. Anzali S., Barnickel G., Cezanne B., Krug M., Filimonov D., Poroikov V. Discriminating between drugs and nondrugs by Prediction of Activity Spectra for Substances (PASS). J. Med. Chem., 2001, 4 (15), 2432-2437.
12. Лагунин А.А., Филимонов Д.А., Поройков В.В. Компьютерный поиск потенциальных антигипертензивных соединений комбинированного действия. Хим.-фарм. журн., 2001, 35 (7), 28-34.
13. Filimonov D., Poroikov V., Borodina Yu., Gloriozova T. Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. J. Chem. Inf. Comput. Sci., 1999, 39 (4), 666-670.
14. Lagunin A., Stepanchikova A., Filimonov D., Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics, 2000, 16 (8), 747-748.
15. Poroikov V., Akimov D., Shabelnikova E., Filimonov D. Top 200 medicines: can new actions be discovered through computer-aided prediction? SAR and QSAR in Environmental Research, 2001, 12 (4), 327-344.
16. Poroikov V., Filimonov D. Computer-aided prediction of biological activity spectra. Application for finding and optimization of new leads. Rational Approaches to Drug Design, Eds. H.-D. Holtje, W.Sippl, Prous Science, Barcelona, 2001, p.403-407.
17. Кудрин А. Н. Фармакология, Москва “Медицина”, 1991.
18. Лоуренс Д. Р., Беннетт П. Н. Браун М. Дж. Фармакология. Издание второе. Москва, 2002.
19. Кудрин А. Н. Фармакология. - М.: Медицина, 2001.
20. Лоуренс Д. Р., Беннетт П. Н. Фармакология Том 1. Москва, 1993.
Подобные документы
Растворимость асфальтенов в смолисто-углеродных системах. Классификация асфальто-смолистых веществ. Нефти алканового основания. Типы полициклических структур Влияние асфальто-смолистых веществ на нефтепродукты. Очистка трансформаторных дистиллятов.
реферат [48,5 K], добавлен 31.05.2013Источники и причины загрязнения лекарственных средств. Способы определения примесей в субстанции. Испытание на соли тяжелых металлов, мышьяк растворов лекарственных веществ. Определение потери в массе лекарственного препарата методом высушивания.
курсовая работа [2,5 M], добавлен 16.09.2017Методы окислительно-восстановительного титрования. Основные окислители и восстановители. Факторы, влияющие на окислительно-восстановительные реакции. Применение реакции окисления-восстановления в анализе лекарственных веществ. Растворы тиосульфата натрия.
презентация [1,0 M], добавлен 21.10.2013Изучение теоретических основ методов осаждения органических и неорганических лекарственных веществ. Анализ особенностей взаимодействия лекарственных веществ с индикаторами в методах осаждения. Индикационные способы определения конечной точки титрования.
курсовая работа [58,1 K], добавлен 30.01.2014Химия и технология душистых веществ. Связь между структурой душистых веществ и их запахом. Основы производства парфюмерии и косметики. Душистые вещества и полупродукты парфюмерно-косметических производств. Классификация пахучих веществ. Благоухающая ретор
научная работа [1,4 M], добавлен 04.11.2008Свойства 2-нафтилацетата и исходных веществ. Расчет количеств исходных веществ. Приготовление исходных и вспомогательных реактивов. Отделение вещества от сопутствующих продуктов. Физико-химические константы и растворимость синтезированного вещества.
курсовая работа [385,5 K], добавлен 22.10.2011Молекулярное моделирование различных структурных форм полупроводникового сопряженного полимера парацианогена, анализ его предсказуемых свойств. Метод сопряженных полимеров. Полуэмпирические методы квантовой химии. Подходы и программное обеспечение.
курсовая работа [2,1 M], добавлен 21.01.2016Фуллериды металлов и их свойства. Полуэмпирические и неэмпирические методы квантовой химии. Молекулярное моделирование фуллеридов металлов. Эмпирические методы молекулярной механики. Особенность электронной структуры эндоэдральных металлофуллеренов.
дипломная работа [3,7 M], добавлен 21.01.2016Биологическими проблемами занимаются сейчас десятки наук. Продуктивными оказываются науки, связанные с претворением новейших биологических открытий в жизнь. Исследование молекулярных механизмов развития множества заболеваний. Коррекция нарушений.
доклад [21,1 K], добавлен 17.07.2008Современное состояние исследований в области азеотропии. Термодинамико-топологический анализ структур диаграмм парожидкостного равновесия. Новый подход к определению классов диаграмм трехкомпонентных биазеотропных систем. Математическое моделирование.
дипломная работа [4,8 M], добавлен 12.11.2013