Расчет квантово-химических параметров ФАВ и определение зависимости "структура-активность" на примере сульфаниламидов

История развития квантово-химических методов анализа "структура вещества – проявляемая физиологическая активность". Вычисление геометрии органических соединений. Физические свойства, механизм действия и синтез сульфаниламидов, параметры их молекул.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 25.03.2011
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Наоборот, если поставлена цель поиска близкого аналога известного препарата, то из массива имеющихся образцов следует отобрать вещества с наибольшими значениями Pa.

Кроме того, если, наряду с основным действием, известен перечень нежелательных побочных эффектов, то при отборе перспективных для исследований соединений можно руководствоваться комбинированным критерием:

- наличие в прогнозируемом спектре требуемых эффектов/механизмов;

- отсутствие нежелательных эффектов/механизмов.

Естественно, что при рассмотрении всего списка, включающего свыше 400 прогнозируемых видов активности, можно составить большое количество комбинаций из требуемых и нежелательных эффектов. Для их анализа сотрудник Лаборатории структурно-функционального конструирования лекарств НИИ Биомедхимии РАМН А.А. Лагунин разработал специальную компьютерную систему интерпретации спектров биологической активности веществ IBIAC, основанную на знаниях об известных взаимосвязях между фармакологическими эффектами и механизмом действия биологически активных веществ (более 2000 терминов, описывающих биологическую активность). С использованием системы IBIAC генерация перечня эффектов, соответствующих определенному механизму действия и, наоборот, списка вероятных механизмов, ответственных за проявление определенного эффекта, осуществляется автоматически.

Поскольку прогноз спектра биологической активности осуществляется на основе структурной формулы химического соединения, он может быть выполнен уже на этапе планирования синтеза. В итоге будут синтезированы лишь некоторые из теоретически возможных производных, в наибольшей степени удовлетворяющие критериям задачи.

Необходимо отметить, что прогноз спектра биологической активности возможен для низкомолекулярных органических соединений, структура которых не отличается принципиально от веществ обучающей выборки. Не имеет смысла прогноз для синтетических и биополимеров, для неорганических веществ и т.п.

Другое ограничение определяется необходимостью наличия не менее 5 веществ с известной активностью для формирования обучающей выборки. Очевидно, что в случае принципиально новых мишеней действия лекарственных препаратов, для которых имеются данные только об 1-2 лигандах, предсказание биологической активности таким методом не может быть реализовано.

Химическая структура и часть прогнозируемого спектра биологической активности для препарата талидомид (жирным шрифтом выделены активности, известные из эксперимента).

PASS CT 1.11 - Prediction of Activity Spectra for Substances

Copyright (c) 1998 V.V.Poroikov, D.A.Filimonov & Associates

Chemical Structure File: thalido.mol, <ACTIVITY_PREDICTION>

24 Substructure descriptors; 0 new, 84 Possible activities.

Pa Pi Activity

0.781 0.006 Cytokine modulator

0.713 0.019 Sedative

0.678 0.030 Cardiovascular analeptic

0.656 0.015 Angiogenesis inhibitor

0.439 0.007 Neurokinin antagonist

0.435 0.008 Calpain inhibitor

0.433 0.009 Oxytocin antagonist

0.443 0.024 Chemoprotective

0.421 0.011 Tumour necrosis factor antagonist

0.398 0.007 Hypnotic

0.439 0.050 NMDA agonist

0.407 0.028 Bronchodilator

0.430 0.059 Psychotropic

0.417 0.054 Anxiolytic

0.370 0.007 Protein kinase C inhibitor

0.428 0.068 Anticonvulsant

0.421 0.062 Teratogen

0.361 0.008 Antidiabetic symptomatic

0.377 0.035 Cardioprotectant

0.336 0.012 Benzodiazepine agonist partial

0.362 0.052 Spasmolytic, urinary

0.364 0.060 Analeptic

0.360 0.060 Nootropic

0.305 0.008 Uterine Relaxant

0.375 0.086 Septic shock treatment

0.385 0.102 Platelet adhesion inhibitor

В случае существенной по отношению к соединениям обучающей выборки новизны химической структуры прогнозируемого вещества (более 3-х дескрипторов ни разу не встретились в обучающей выборке) результаты прогноза могут иметь значительную погрешность. В этом случае целесообразно протестировать вещество на требуемые виды активности независимо от результатов прогноза, так как результатом может оказаться принципиально новая базовая структура.

В некоторых случаях вещество прогнозируется одновременно как агонист и антагонист (стимулятор и блокатор, активатор и ингибитор) по отношению к одним и тем же рецепторам (ферментам и т.п.). Это означает, что система не может дифференцировать внутреннюю активность вещества, а лишь указывает на его способность к связыванию с данным рецептором (ферментом).

И, наконец, необходимо иметь в виду, что система PASS C&T не может предсказать, станет ли конкретное вещество лекарственным препаратом, поскольку это будет зависеть также от многих других факторов (сравнительной оценки безопасности и клинической эффективности; наличия необходимых для разработки и внедрения инвестиций, и т.д.). Прогноз, однако, может помочь определить, какие тесты наиболее адекватны для изучения биологической активности конкретного химического вещества, и какие вещества из имеющихся в распоряжении исследователя наиболее вероятно проявят требуемые эффекты. [19]

1.3 Вывод

В этом и предыдущем разделах было дано краткое описание использовавшихся и используемых квантовохимических методов. Более детальное знакомство с ними практически не требуется для решения практических задач. Это связано с тем, что на основе анализа приближений, сделанных при разработке того или иного квановохимического метода, как правило, не удается установить область его применения и очертить круг задач, которые можно решить с его помощью. К сожалению, многие квантовохимические методы, которые лучше обоснованы с теоретической точки зрения, на практике дают плохие результаты и поэтому не применяются, а более грубые модели с удачно подобранными параметрами широко используются. Это связано с тем, что в любом квантовохимическом методе сделано достаточно много различных приближений. В некоторых методах ошибки, к которым приводят эти приближения, частично компенсируют друг друга и в результате получается хорошее согласие с экспериментом. Сказать заранее, будет или не будет иметь место такая компенсация нельзя, поэтому выяснить область применения и охарактеризовать точность конкретного метода можно лишь на основе численного эксперимента и систематизации опубликованного расчетного материала.

Глава 2. ВЫЧИСЛЕНИЕ ГЕОМЕТРИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

2.1 Квантовохимические методы расчета

Данные статистического анализа результатов квантовохимических расчетов геометрических параметров стабильных органических молекул небольшого размера, содержащих одинарные и кратные связи, приведены в таблице 1.1 приложения А, показано, с какой точностью можно рассчитать геометрию молекул неэмпирическим методом и как меняются результаты расчетов в зависимости от выбора базиса. Обращает на себя внимание хорошее согласие с экспериментом, которое получается при использовании минимального и валентно - расщепленных базисов.

Сложнее обстоит дело с расчетом валентных углов. Если у молекулы нет неподеленных электронных пар, то расчет в валентно - расщепленном базисе приводит к хорошему согласию с экспериментом, но для расчета валентных углов в молекулах с неподеленными электронными парами в базис необходимо включить поляризационные орбитали.

Наряду с неэмпирическими методами для вычисления геометрии органических молекул широко используются и полуэмпирические методы. Среди них наиболее точные результаты для большинства типов соединений дают методы АМ1, МПДП и МЧПДП/3. Методом МПДП получается хорошее согласие с экспериментом практически для всех геометрических параметров молекул (см. табл. 1.2 приложение А).

2.1.1 Расчет потенциалов ионизации

Потенциалы ионизации органических молекул обычно вычисляют по теореме Купманса, которая связывает ПИ электрона с энергией хартри - фоковской орбитали исходной молекулы с замкнутой оболочкой. Для большинства соединений расчеты в этом приближении дают удовлетворительное согласие с экспериментальными вертикальными ПИ и поэтому широко используются для интерпретации данных фотоэлектронной спектроскопии. Кроме того, расчеты ПИ оп теореме Купманса используются для изучения реакционной способности некоторых органических соединений.

Наибольшее количество опубликованных расчетов ПИ выполнено методами МЧПДП/3 и МПДП. В таблице 1.3 приложения А приведены результаты расчетов ПИ методом МПДП.

Основное правило при расчете ПИ: если верхняя занятая молекулярная орбиталь у молекулы вырождена или почти вырождена, то механические деформации, которые снижают симметрию молекулы и снимают вырождение, приводят к уменьшению ее ПИ.

2.1.2 Расчет индексов реакционной способности

Энергию межмолекулярного взаимодействия при сближении реагентов можно условно разбить на вклады трех типов: кулоновские, орбитальные и стерические. Энергия кулоновского взаимодействия зависит от распределения электронной плотности или от зарядов на атомах реагентов. Поэтому для некоторых реакций удается найти корреляцию между зарядами на атомах и выходом конечных продуктов реакции. Так, нуклеофильные реагенты присоединяются преимущественно к атомам, на которых локализованы большие положительные заряды, а электрофильные наоборот, - к атомам, на которых локализованы большие отрицательные заряды.

Корреляции между выходом конечных продуктов реакции и зарядами на атомах широко используются для объяснения экспериментальных данных. Обычно при вычислении заряда на атоме в квантовой химии пользуются анализом электронных заселенностей, предложенным Малликеном. В этом приближении заряд на атоме вычисляется по следующей формуле:

Здесь сумма берется по всем орбиталям i и j атома А; ZA - заряд ядра; Pij - матрица зарядов и порядков связей; Sij - матрица интегралов перекрывания. В полуэмпирических методах обычно пользуются упрощенной формулой:

Величины зарядов на атомах, вычисленные в этом приближении, в неэмпирических расчетах очень сильно зависят от выбора базиса, а в полуэмпирических - от выбора метода. Заряды на атомах, вычисленные в разных базисах и разными методами, могут различаться в 1,5 - 2 раза, но качественные результаты (знак и относительная величина заряда) обычно остаются одинаковыми. В неэмпирических расчетах заряды на атомах при расширении базиса обычно увеличиваются по абсолютной величине.

2.1.3 Вычисление теплот образования

Теплоты образования молекул являются фундаментальными термохимическими величинами. Однако их значение для многих органических соединений неизвестны, поэтому квантовохимические расчеты этих величин представляют большой интерес с точки зрения органической химии.

Параметры полуэмпирических методов МЧПДП/3 и МПДП подобраны так, чтобы наилучшим образом воспроизвести экспериментальные теплоты образования органических соединений при нормальных условиях. Средняя ошибка при вычислении теплот образования молекул методом МЧПДП/3 составляет 38 кДж/моль, а методом МПДП - 25 кДж/моль.

Сложнее вычислить теплоты образования и теплоты атомизации молекул неэмпирическими методами. Даже для небольших молекул неэмпирический расчет в базисе 6-31ГФ* приводит к ошибкам в теплотах образования, превышающим 100 кДж/моль. Это связано с неполнотой использованного базиса и неучетом энергии электронной корреляции. С увеличением размера молекулы ошибки в неэмпирически вычисленных теплотах образования хотя и возрастают, но в значительной мере носят систематический характер. Поэтому их можно уменьшить с помощью коррекции конечных результатов по аддитивной схеме.

Расчеты с эмпирически подобранными значениями параметров показали, что с их помощью можно уменьшить ошибку при вычислении теплот образования органических молекул: при использовании базиса ОСТ-3ГФ - до 45 кДж/ моль, а при использовании базисов 3-21ГФ и 6-31ГФ* - соответственно до 29 и 25 кДж/моль (табл. 1.4 приложения А).

Такие поправки нельзя использовать при расчете поверхностей потенциальной энергии, так как в ходе реакции всегда образуются структуры, в которых одни связи частично разорваны, а другие частично образованы, и нельзя сказать, между какими атомами есть валентная связь, а между какими ее нет. Однако поправки такого типа можно использовать для расчета тепловых эффектов реакций и для решения многих других прикладных задач.

2.1.4 Расчет тепловых эффектов органических реакций

Величина теплового эффекта позволяет оценить термодинамическую возможность протекания химической реакции или отдельной элементарной стадии. В общем случае теплота реакции не коррелирует с ее скоростью. Поэтому данные о тепловых эффектах широко применяются для изучения реакционной способности органических соединений. Следует, однако, отметить, что расчет тепловых эффектов для квантовой химии является весьма сложной задачей, так как эту величину необходимо знать с точностью до 4 кДж/моль (химическая точность).

Из полуэмпирических методов наиболее широко используются схему МЧПДП/3 и МПДП, причем метод МПДП дает более точные результаты. В таблице 1.6 приложения А приведены результаты расчетов этим методом тепловых эффектов некоторых реакций изомеризации. Из этих данных видно, что для некоторых реакций согласие теории с экспериментом хорошее, но в отдельных случаях ошибка получается очень большой.

Результаты неэмпирических расчетов тепловых эффектов органических реакций очень сильно зависят от выбора метода. В валентно - расщепленных базисах для реакций с участием насыщенных молекул ошибки составляют около 40 кДж/моль, но, если в молекуле есть кратные связи или молекулы являются напряженными, ошибки обычно увеличиваются приблизительно в 2 раза.

2.1.5 Расчет поверхностей потенциальной энергии

Для получения наиболее полной информации о механизме реакции необходимо вычислить многомерную поверхность потенциальной энергии (ППЭ), то есть рассчитать зависимость полной энергии от координат атомных ядер. Наиболее интересными и важными при изучении механизма реакции являются так называемые стационарные точки на ППЭ. Под этим термином понимают минимумы и седловые точки на ППЭ (рисунок 3.1.5.1, 3.1.5.2) В стационарных точках производные полной энергии по всем независимым координатам равны нулю.

Рисунок 2.1.5.1 Стационарные точки

а -- минимум локальный или глобальный;

б -- седловая точка

Рисунок 2.1.5.2 Простейшая ППЭ

Темные кружки - исходные

реагенты и продукты реакции;

крестик -- переходное состояние.

В точке минимума полной энергии матрица вторых производных имеет только положительные собственные значения, а в седловой точке - одно отрицательное собственное значение. Минимумы полной энергии соответствуют устойчивым структурам и интермедиатам, а седловые точки - переходным состояниям.

Рисунок 2.1.5.3. Зависимость потенциальной энергии молекулы водорода от расстояния между атомами: 1 -- расчет полуэмпирическим методом РМЗ; 2 -- аппроксимация потенциалом Морзе.

Типичный вид простейшей двумерной ППЭ показан на рисунке 2.1.5.2. Здесь минимумы соответствуют исходным реагентам и конечным продуктам реакции, а седловая точка - переходному состоянию. Минимумы на рисунке соединены пунктирной линией, которая проходит по дну долины на ППЭ через седловую точку. Эта линия показывает путь реакции в двумерном пространстве или траекторию движения реагентов в ходе реакции. Для большинства реакций ППЭ имеют более сложный вид.

В таблицах 1.7 и 1.8 приложения А сопоставлены данные расчета параметров переходных состояний для реакций, изображенных на схемах 1 - 5, методами МПДП и КМПДП (метод МПДП с учетом электронной корреляции), неэмпирическим методом в приближении Хартри - Фока без учета и с учетом электронной корреляции.

Схема I Схема II Схемa III

Схема IV Схемa V

В таблицах неэмпирический расчет в приближении Хартри - Фока без учета электронной корреляции обозначен ХФ, с учетом электронной корреляции - КХФ. Для реакций, изображенных на схемах 1 - 3, расчеты с оптимизацией геометрии в приближении Хартри - Фока проведены в базисе 6-31ГФ*, для реакций, изображенных на схемах 4, 5, - в базисе 3-21ГФ или 4-31ГФ. Электронная корреляция учитывалась только при вычислении энергии активации.

Из этих данных видно, что геометрические параметры переходных состояний, вычисленные методами МПДП и КМПДП, находятся в хорошем согласии с данными неэмпирических расчетов без учета электронной корреляции.

Вопрос о влиянии электронной корреляции на геометрию переходных состояний был рассмотрен в работе Шредера [20]. В ней методом МПДП без учета и с учетом электронной корреляции была рассчитана геометрия переходных состояний для реакций, изображенных на схемах 1 - 5, и показана хорошая сходимость с экспериментом.

2.1.6 Силовые постоянные химических связей и частоты внутримолекулярных колебаний

Для расчета силовых постоянных довольно широко применяют как полуэмпирические, так и неэмпирические методы квантовой химии. В любом случае сначала оптимизируют геометрию, то есть определяют наиболее устойчивую конформацию, отвечающую минимуму полной энергии; затем вычисляют вторые производные полной энергии по естественным координатам, а при необходимости - кубичные и биквадратные члены.

При использовании минимального слейтеровского базиса согласие с экспериментом получается весьма посредственное. Для полуэмпирических методов характерно относительное занижение частот деформационных колебаний по сравнению с валентными. В связи с тем, что ошибки в большинстве случаев носят систематический характер, их удается значительно уменьшить введением эмпирически подобранных масштабных корректирующих множителей для определенных типов силовых постоянных или инкременентов, которые прибавляются к рассчитанным частотам.

Для расчетов методами МЧПДП/3 и МПДП Дьюар и Форд [23] подобрали систему инкрементов, специфичных для валентных, деформационных и торсионных колебаний определенных атомных групп или связей; на очень большом числе примеров продемонстрирована удовлетворительная точность результатов.

сульфаниламид квантовый химический органический молекула

Более логичным представляется корректирование значений силовых постоянных, и на этом пути достигнуты положительные результаты. В настоящее время используется несколько методик подбора корректирующих множителей. Наиболее распространенными являются следующие предложения:

1. Корректировка только диагональных силовых коэффициентов, а недиагональные оставлять без изменений.

2. Использование одного общего корректирующего множителя для всех недиагональных силовых постоянных.

Подбирать значения корректирующих множителей только для диагональных членов, а корректирующие множители для недиагональных коэффициентов вычислять как среднее геометрическое из соответствующих диагональных величин.

2.2 Вывод

В данной главе были рассмотрены возможности программы HyperChem для расчета геометрических и физико-химических параметров молекул и проведена сравнительная оценка используемых методов. Из приведенных выше данных видно, что наибольшей точностью обладают методы ab initio и АМ1. Этими методами и будет производиться расчет соединений сульфаниламидного ряда. Для сравнительной оценки также включен в расчет метод INDO.

В следующей главе будут представлены рассчитанные геометрические параметры молекул сульфаниламидного ряда и рассчитанная физиологическая активность этих соединений. Следует сказать, что вначале проводился расчет геометрии приведенных соединений, затем просчитанные соединения были проверены на наличие физиологической активности.

Глава 3 СУЛЬФАНИЛАМИДНЫЕ ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ

3.1 История открытия сульфаниламидов

Сульфаниламидными препаратами называются лекарственные вещества, содержащие сульфамидную группу, большей частью производные бензосульфамида (1). Простейшим из них является п - аминобензолсульфамид (2) сульфаниламид или амид сульфониловой кислоты. Он впервые синтезирован Гельмо в 1908 году среди других производных анилина. В 1909 году были сделаны попытки использования сульфаниламида в качестве диазосоставляющей азокрасителей (для шерсти).

1 2

В 1919 году был синтезирован производное сульфаниламида путем его диазотирования (3) и его последующего сочетания с дигидрокупреином (4), но обнаруженное противострептококковое действие было приписано купреновому ядру.

Клалер синтезировал несколько красителей этого типа, испытанных Домагком на проявление бактерицидных свойств, при этом было обнаружена эффективность действия их на белых мышей, зараженных вирулентным штаммом в - гемолитического стрептококка. Догмак установил ценные химиотерапевтические свойства сульфаниламидных азокрасителей, в том числе г-амино-N- вторичноизопропилкарбинол-М-метилфенилсульфамида (5).

5

Выявленные бактерицидные свойства были впервые приписаны наличию сульфаниламидной группировки. Из синтезированных впоследствии более простых по структуре сульфаниламидных препаратов наибольшее внимание привлек сульфамид хризоидина (6), хлористоводородная соль, которого была названа пронтозилом.

6

В СССР этот препарат синтезирован и внедрен в производство О.Ю. Магидсоном и М.В. Рубцовым в 1936 году под названием красного стрептоцида.

В отличие от незамещенного хризоидина, сульфамид оказался активным в отношении стрептококков in vivo, но плохо растворялся в воде, что затрудняло его использование. Для увеличения растворимости сульфаниламидных красителей были синтезированы препараты, в которых азосоставляющая представляла сульфокислоты нафталинового ряда. Один из них был вскоре введен в медицину под названием растворимого пронтозила (7).

7

В СССР к этому времени было освоено производство красного растворимого стрептоцита (8) с азосоставляющей Н - кислотой.

8

Получение пронтозилов явилось крупным событием в химиотерапии; впервые были получены вещества, пригодные для лечения различных септических процессов, вызываемых стрептококком, ранее часто кончавшихся летальным исходом.

Вскоре, однако, было установлено, что пронтозилы и сходные по структуре сульфаниламидные азокрасители не являются непосредственно противострептококковыми средствами и что проявлению химиотерапевтической активности таких красителей предшествует восстановление их в организме в сульфаниламиды:

Образующийся одновременно с ним амин является либо излишним балластом, либо причиной токсического действия. Использованные впоследствии недиазотированные сульфаниламиды оказались более эффективными. Было выявлено, что в моче экспериментальных животных, подвергавшихся лечению сульфаниламидными азокрасителями, наряду с последними, выявлен сульфаниламид. Испытание последнего на больных стрептококковыми инфекциями показало высокие терапевтические свойства.

В СССР препарат был назван белым стрептоцидом. Ценные химикотерапевтические свойства сульфаниламида, обнаруженные спустя 27 лет после его открытия, побудили проверить ранее известные его производные. При изучении последних выявилось, что химиотерапевтическим эффектом обладают лишь производные пара - изомера. Ввиду специфического влияния сульфаниламидов, тесно связанного с ориентацией амино - и сульфамидной групп в их молекуле, для них принята следующая нумерация:

Изучение многочисленных соединений, в которых 1 - сульфамидная группа замещена на тиофенольную (9), сульфидную (10), дисульфидную (11), сульфоксидную (12) и сульфоновую (13) группы не привело к увеличению активности.

9 10 11

12 13

Испытание амидов сульфокислот различных ароматических и гетероциклических аминов, содержащих амино- и сульфамидную группы в параположении друг к другу, например амид нафталиновой кислоты (14), сульфамид амидопиридина (15), изохинолина (16) и других также не привело к созданию лекарственных препаратов, более активных, чем сульфаниламид.

14 15 16

В дальнейшем было выяснено, что сульфаниламиды не уничтожают болезнетворные микроорганизмы, а лишь тормозят их рост и развитие; такой эффект в отличие от действия дезинфицирующих веществ был назван бактериостатическим.

3.2 Физические свойства сульфаниламидов

Все сульфаниламиды -- белые или слегка желтоватые порошки без запаха, некоторые -- горького вкуса. Большинство из них плохо растворимы в воде, лучше -- в разбавленных кислотах и водных растворах щелочей (кроме сульгина). Повышение температуры растворителя улучшает растворимость препаратов. Смесь двух или более сульфаниламидов растворяется несколько лучше, чем любой из ее компонентов в отдельности. Хорошей растворимостью обладает только сульфацил.

Сульфаниламиды амфотерны, они образуют соли с сильными щелочами (за исключением сульгина) и с сильными кислотами. Некоторые соли сульфаниламидов легко растворимы в воде, их можно применять для внутривенных инъекций, когда необходимо быстро создать высокую концентрацию препарата в крови и органах. В связи с тем, что натриевые солив водных растворах имеют сильную щелочную реакцию (рН 10,5--12,5), при подкожном и внутримышечном введении они оказывают сильное раздражающее действие. Инфильтрация места введения изотоническим раствором хлорида натрия может ослабить некроз тканей, а инфильтрация раствором новокаина значительно уменьшает болевую реакцию. По этой же причине неразведенные натриевые соли не следует давать внутрь.

В растворах сульфаниламиды диссоциируют на ионы. Фармакологическая активность связана с их константами диссоциации. Так, например, бактериостатическое действие сильнее выражено в щелочных растворах, так как в этих условиях больше образуется ионов. Хорошо диссоциируют норсульфазол, сульфацил, значительно хуже -- стрептоцид. Соединения, более способные к кислотной диссоциации, лучше всасываются. Сульфаниламидные препараты хорошо растворимы в биологических жидкостях, в том числе в плазме крови.

3.3 Механизм действия сульфаниламидов

Препараты этой группы относятся к химиотерапевтическим средствам широкого антибактериального спектра действия, так как они подавляют жизнедеятельность многих видов бактерий: стрептококков, стафилококков, менингококков, гонококков, бактерий кишечно-тифозно-дизентерийной группы и многих других. Сульфаниламиды активны в отношении крупных вирусов (возбудителей трахомы, пахового лимфогранулематоза), кокцидий, плазмодий малярии и токсоплазм, актиномицет и т.д.

Сульфаниламидные препараты в небольших концентрациях задерживают рост и развитие бактерий, то есть действуют бактериостатически. Бактерицидное влияние они оказывают лишь при воздействии таких высоких концентраций, которые небезопасны для макроорганизма.

Рисунок 3.1.1 Реакционные центры сульфаниламида.

График 3.1.1 Поверхность потенциальной энергии для связи С-S в молекуле сульфаниламида

График 3.1.2 Поверхность потенциальной энергии для связи S-N в молекуле сульфаниламида

Важнейшая особенность сульфаниламидов -- высокая активность in vivo при сравнительно более слабом действии in vitro. Под их воздействием микробы разбухают, перестают размножаться, продуцировать токсины, становятся более уязвимыми для защитных сил организма. Установлена избирательная способность отдельных препаратов в отношении определенных возбудителей инфекционных болезней. Так, норсульфазол и сульфазол более активны при стафилококковых инфекциях, стрептоцид. -- при стрептококковых, а сульфапиридазин весьма эффективен при сепсисе, вызванном бактерией коли, сульфатиазол (17) в 70 - 80 раз активнее сульфаниламида, а сульфоидин (18) лишь в 8 раз.

17 18

Бактериостатический эффект зависит от химического строения препарата, степени и силы связывания с белками плазмы, реакции среды, константы диссоциации и других факторов. Большое значение имеет состояние нервной системы, защитных сил макроорганизма, которым принадлежит ведущая роль в. окончательной ликвидации инфекционного процесса.

В основе механизма действия сульфаниламидных препаратов лежит антагонизм между сульфаниламидами и парааминобензойной кислотой (ПАБК) В силу структурного сходства молекулы парааминобензойной кислоты и сульфаниламидов последние способны вытеснять ПАБК из ферментных систем микроорганизма. Сульфаниламиды нарушают процесс получения микробами необходимых для их развития "ростовых факторов" -- фолиевой кислоты и других веществ, в молекулу которых входит ПАБК. Под действием препаратов в микробной клетке нарушается синтез метионина, пуриновых и пиримидиновых оснований, что в свою очередь приводит к нарушению синтеза нуклеиновых кислот и нуклеопротеидов.

Бактериостатическое действие сульфаниламидов проявляется только при определенной концентрации препаратов в окружающей микробов среде. Эта концентрация должна быть достаточна для предотвращения использования микроорганизмами парааминобензойной кислоты, содержащейся в тканях. Чем выше концентрация ПАБК, тем больше требуется сульфаниламидного препарата для наступления антимикробного эффекта. Установлено, что для нейтрализации одной части ПАБК требуется 1600 частей стрептоцида, 100 частей сульфазина и 36 частей норсульфазола.

Некоторые сульфаниламиды проявляют конкурентный антагонизм и в отношении других ферментных систем, в частности они нарушают процесс декарбоксилирования пировиноградной кислоты, окисления глюкозы

Механизм антимикробного действия сульфаниламидных препаратов определяется не только конкурентными взаимоотношениями между сульфаниламидами и парааминобензойной кислотой. Сульфаниламиды препятствуют синтезу дигидрофолиевой кислоты в микроорганизме из глютаминовой и парааминобензойной кислот. Белковые вещества (гной, мертвые ткани), содержащие большое количество ПАБК, а также некоторые лекарственные препараты, в молекулу которых входит остаток парааминобензойной кислоты (новокаин, анестезин), являются ингибиторами активности сульфаниламидов. В то же время присутствие мочевины повышает их бактериостатическую активность.

Микроорганизмы в процессе своего роста и развития синтезируют фолиевую кислоту, которая контролирует биосинтез аминокислот, пуриновых и пиримидиновых оснований. Структура нормальной фолиевой кислоты содержит фрагмент ПАБК. Сульфаниламиды, вследствие их структурной близости, способны аналогичным путем вступать во взаимодействие с таким - же коллоиднобелковым носителем. Образующийся при этом новый комплекс, в отличие от активного фермента, уже не обладает способностью стимулировать рост микроорганизмов.

Х - СО, фолиевая кислота

Х - SO2, псевдофолиевая кислота

ХR - COOH, SO2NH2

Воздействие малыми дозами или назначение сульфаниламидов с большими интервалами приводит к развитию приспособительной реакции у микробов, изменению пути образования нужных им для роста и размножения энзимных систем. Вследствие этого возникают сульфаниламидо - устойчивые расы микроорганизмов. Блокада ПАБК сульфаниламидами существенно не нарушает жизнедеятельности микробов.

Устойчивость микроорганизмов, приобретенная к одному сульфаниламидному препарату, распространяется и на другие препараты этой группы (полная перекрестная устойчивость). Приобретенная резистентность бактерий к сульфаниламидам, связанная с повышенной выработкой ими ПАБК, может быть генетически наследуемой.

Сульфаниламидные соединения обладают широким диапазоном действия на макроорганизм и должны рассматриваться как специфические нервные раздражители. Они снижают повышенную реактивность организма, оказывают жаропонижающий эффект. Сульфаниламидные препараты действуют противовоспалительно, вызывают угнетение процессов регенерации при местном применении; снижают активность нуклеофосфатазы печени, почек, селезенки, нарушают нормальные процессы ацетилирования, являясь специфическим ингибитором угольной ангидразы, уменьшают способность плазмы к связыванию углекислоты, тормозят газообмен, снижают активность других ферментных систем, стимулируют процесс фагоцитоза, повышают устойчивость организма к токсинам.

Благодаря сочетанию противоаллергических, антипиретических свойств с бактериостатическим действием сульфаниламиды можно использовать при различных заболеваниях, сопровождающихся воспалительными процессами. Воздействие их на микро - и макроорганизм дополняют друг друга, обеспечивая хорошо выраженный терапевтический эффект.

Сульфаниламидные препараты малотоксичны. Однако длительное применение их в завышенных дозах может привести к развитию токсических, эффектов. При недостаточной функции почек или при назначении больших доз препаратов могут возникать явления кристаллурии. Правильное назначение сульфаниламидов больным не вызывает побочных эффектов.

Большинство сульфаниламидов легко всасывается из ЖКХ (стрептоцид, норсульфазол, этазол, сульфазин, сульфадимезин, сульфапиридазин, сульфадиметоксин и др.) и быстро накапливается в крови, органах и тканях в бактериостатических концентрациях, проникает через гематоэнцефалический барьер. Основная масса препаратов всасывается в тонком отделе кишечника. Скорость всасывания зависит от степени кислотной диссоциации. Очень хорошо всасываются натриевые соли препаратов. Некоторые сульфаниламиды, такие, как фталазол, сульгин, фтазин, трудно всасываются, относительно долго находятся в кишечнике в высоких концентрациях и выделяются преимущественно с фекалиями, поэтому их применяют главным образом при заболеваниях ЖКХ.

В организме человека сульфаниламидные соединения, как и другие лекарственные вещества, подвергаются расщеплению, окислению, ацетилированию. Особенно большое значение для клинической практики имеет процесс ацетилирования. Он происходит главным образом в печени как за счет уксусной кислоты, поступающей извне, так и за счет кислоты, образующейся в организме из пировиноградной кислоты.

В здоровом организме степень ацетилирования несколько выше, чем в инфицированном. Кроме того, степень ацетилирования сульфаниламидов возрастает при их продолжительном применении, понижении диуреза, заболеваниях почек, сопровождающихся почечной недостаточностью.

Ацетилированные производные сульфаниламидов не действуют на микроорганизмы и значительно хуже растворяются в воде. Вследствие плохой растворимости, особенно в кислой моче, ацетопродукты выпадают в осадок с образованием конгломератов, закупоривающих просвет почечных канальцев с последующим нарушением диуреза.

В терапевтическом отношении особенно ценны препараты быстро всасывающиеся из желудочно-кишечного тракта и мед ленно выделяющиеся из организма. В зависимости от скорости элиминации сульфаниламидов из организма их подразделяю на три группы:

1) препараты быстрого действия (стрептоцид, норсульфазол этазол, сульфацил, уросульфан, сульфадимезин и др );

2) препараты средней продолжительности действия (сульфазин, метилсульфазин и др.),

3) препараты длительного и сверхдлительного действий (сульфапиридазин, сульфадиметоксин, сульфамонометоксин, сульфален и др). В приложении Б подробно рассмотрены сульфамиламидные лекарственные вещества.

Скорость выведения из организма в значительной мере определяет величину дозы и частоту приема препарата. Показателем скорости выведения служит величина Т50%, или T1/2, - период полувыведения, то есть время снижения максимальной концентрации в крови в 2 раза. У препаратов короткого действия T1/2 менее 8 ч, средней продолжительности действия - 8--16 ч и у препаратов длительного и сверхдлительного действия -- 24--56 ч и более.

Сульфаниламидные препараты длительного действия хорошо всасываются из ЖКХ, создавая высокие концентрации в крови, а самое главное -- длительна задерживаются в организме. Их можно назначать в значительно меньших дозах и через более продолжительные интервалы между введениями. Указанные свойства значительно расширяют перспективу применения соединений этой группы в ветеринарной практике.

Сульфаниламиды показаны для лечения инфекционных заболеваний дыхательных путей (трахеита, бронхита, пневмоний, гнойных плевритов и др.), желудочно - кишечных заболеваний различной этиологии (диспепсии, кокцидиоза, дизентерии, гастроэнтероколитов и т. д.); рожистого воспаления, мыта, послеродового сепсиса, пиелита, цистита, сальмонеллеза, колибактериоза, пастереллеза, раневых и других инфекций, вызванных микроорганизмами, чувствительными к сульфаниламидам.

Противопоказаний к применению сульфаниламидных препаратов больным немного: общий ацидоз, заболевания кроветворной системы, гепатиты.

3.4 Синтез сульфаниламидов

Исходным продуктом синтеза препаратов является анилин. Аминогруппу анилина замещают остатком уксусной кислоты и проводят сульфохлорирование. Далее проводят замену галогена в хлорангруппе замещенной сульфаниловой кислоты на аминогруппу и гидролизом удаляют защитную группу [24]:

Ниже представлена схема синтеза четырех лекарственных веществ сульфаниламидной серии: сульгина (19), сульфадимезина (20), норсульфазола (21) и сульфафуразола (22), получаемых типичной конденсацией ароматического сульфанилхлорида с различными аминными компонентами:

Ниже в данной работе будут представлены геометрические и физико - химические параметры данных молекул рассчитанные в программе HyperChem и проявляемая ими физиологическая активность, рассчитанная в программе PASS C&T.

3.5 Расчитанные параметры молекул

3.5.1 Сульфаниламид

В приложении В представлена молекула сульфаниламида (стрептоцита белого) с рассчитанными геометрическими параметрами молекулы и видами проявляемой физиологической активности (жирным шрифтом выделены активности, известные из эксперимента). Из данного приложения видно, что:

подтверждена активность сульфаниламида в отношении ПАБК;

получены вероятности нахождения других видов активности, такие как агонист Допамина Д4 (0,941), кардиовезикулярный аналептик (0,857), ингибитор циклооксагеназы 1 (0,847), диуретик (0,776), антиэпилептик (0,681) и другие;

предсказано несколько видов токсичности (гематоксичность (0,933) и эмбриотоксичность (0,495)).

3.5.2 Сульгин

В приложении Г представлена молекула сульгина с рассчитанными геометрическими параметрами молекулы и видами проявляемой физиологической активности (жирным шрифтом выделены активности, известные из эксперимента). Из данного приложения видно, что:

подтверждена активность сульгин в отношении ПАБК;

получены вероятности нахождения других видов активности, такие как ингибитор пируваткиназы (0,863), ингибитор катепсина G (0,769), антиэпилептик (0,617), агонист Допамина Д4 (0,692);

предсказана гематоксичность (0,947).

3.5.3 Сульфадимезин

В приложении Д представлена молекула сульфадимезина с рассчитанными геометрическими параметрами молекулы и видами проявляемой физиологической активности (жирным шрифтом выделены активности, известные из эксперимента). Из данного приложения видно, что:

подтверждена активность сульфадимезина в отношении ПАБК;

получены вероятности нахождения других видов активности, такие как агонист Допамина Д4 (0,708), антидиабетик (0,536);

предсказана гематоксичность (0,791).

3.5.4 Норсульфазол

В приложении Е представлена молекула норсульфазола рассчитанными геометрическими параметрами молекулы и видами проявляемой физиологической активности (жирным шрифтом выделены активности, известные из эксперимента). Из данного приложения видно, что:

подтверждена активность норсульфазола в отношении ПАБК;

получены вероятности нахождения других видов активности, такие как Antiobesity (0,885), агонист Допамина Д4 (0,785), агонист простагландина (0,549);

предсказана гематоксичность (0,791).

3.5.4 Сульфафуразол

В приложении Ж представлена молекула норсульфазола с рассчитанными геометрическими параметрами молекулы методами и видами проявляемой физиологической активности (жирным шрифтом выделены активности, известные из эксперимента). Из данного приложения видно, что:

подтверждена активность сульфафуразола в отношении ПАБК;

получены вероятности нахождения других видов активности, такие как антагонист простагландина Н2, антагонист эндотелинового рецептора (0,674), ингибитор тиолоксидазы (0,620) агонист Допамина Д4 (0,581);

предсказано несколько видов токсичности (гематоксичность (0,833) и эмбриотоксичность (0,339)).

ЗАКЛЮЧЕНИЕ

В ходе проведенной работы были рассчитаны геометрические параметры соединений сульфаниламидного ряда и предсказана вероятность проявления ими некоторых видов физиологической активности. Результатом работы стал прогноз ранее неизвестных видов активности у соединений сульфаниламидного ряда, к которым можно отнести агонист Допамина Д4 (проявляется у всех анализируемых веществ с вероятностью 0,581 - 0,941), гематоксичность (проявляется у всех соединений с вероятностью 0,791 - 0,947), эмбриотоксичность (проявляется у сульфафуразола и сульфаниламида с вероятностью 0,339 и 0,495) и другие. Вместе с тем была подтверждена уже известная проявляемая физиологическая активность (антагонист ПАБК), которая оценена на уровне 0,860 - 0,9, что является очень высоким показателем. Как показано в приложениях В - Ж, имеет смысл провести дополнительные доклинические испытания на пример использования их в качестве антиэпилептического назначения.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1 Prous J. Drugs Years News[Text] / Proc. Natl. Acad. Sci. USA. 1995. P 345

2 Djons A. Talidomid as anxiolitic [Text] / Brit. J. Pharmacol., 1960, 15, p.111-116

3 Am. J. Public Health, 1965, 55, p.703-707

4Sridhar B., Ravikumar K. Some interesting properties of talidomid [Text] / Proc. Natl. Acad. Sci. USA. 1994, Apr 26; 91 (9):4082-5

5 Clin. Immunol. Immunopathol. 1996, 81, p.219-223

6 Иванов А.С., Арчаков А.И. Интегральная платформа «От гена до прототипа лекарства» in silico и in vivo [Текст] / Иванов А.С. Арачаков А.И. // Российский химический журнал М.: Наука №2, 2006. - с. 18-35

7 Жидомиров Г.М., Багатурьянц А.А. Прикладная квантовая химия.-М.: Химия, 1979.-295 с.

8 Бурштейн К.Я., Шорыгин П.П. Квантово- химические расчеты в органической химии и молекулярной спектроскопии.- М.: Наука, 1989.-310 с.

9 Кузнецов П.Е., Люлин Ю.Н., Щербаков А.А. Методы математического моделирования в приложении к проблеме биофизической химии. ДСП, 1985.-250 с.

10 Hansch C, Fujita Т., р-ст-л Analysis. A Method for the Correlation of Biological Activity and Chemical Structure, J. Am. Chem. Soc, 86, 1616 (1964).

11 Hammett L. P., Physical Organic Chemistry, McGraw-Hill, New York, 1940.

12 Cramer R. D., Quantitative Drug Design, in: Annual Reports in Medicinal Chemistry, Vol. 11, F. H. Clarke (Ed.), Academic, New York, 1976.

13 Silipo C, Hansch C, Correlation Analysis. Its Application to the Structure -Activity Relationship of Triazines Inhibiting Dihydrofolate Reductase, J. Am.Chem. Soc, 97, 6849 (1975).

14 Dixon W. J. (Ed.), BMD - Biomedical Computer Programs, 3rd ed., Universityof California Press, Berkeley, CA, 1973.

15 Furnival G. M., Wilson R. W., Jr., Regressions by Leaps and Bounds, Tech-nometrics, 16, 499 (1974).

16 Стьюпер Э., Брюггер У. Машинный анализ связи химической структуры и биологической активности. Пер. с англ. -- М.: Мир, 1982.--235 с, ил.

17 Сборник программ расчета спектральных и квантовохимических параметров молекул. ДСП, 1983.-53 с.

18 Hartigan G. H., Clustering Algorithms, Wiley, New York, 1975.

19 Ball G. H., Hall J. P., ISODATA: A Novel Method of Data Analysis and Pattern Classification, NTIS Report AD699616, 1965.

20 Ball G. H., Hall J. P., ISODATA, An Iterative Method of Multivariate Analysis and Pattern Classification, Proceedings of the IFIPS Congress, 1965.

21 По материалам сайта ChemNet

22 Shroder S., Thiel W. //Ibid. Vol. 108, N 25. P. 7985 - 7989

23 Dewar M.J.S., Ford G.P. // J. Amer. Soc. 1977. Vol. 99, N6. P. 1685-1691

24 Вартанян Р.С. Синтез основных лекарственных средств. - М. Медицинское информационное агентство, 2004. - 845 с.

Приложение А

Таблица А.1 - Абсолютные ошибки, которые получаются при расчете длин валентных связей и значений валентных углов неэмпирическими методами.

Неэмпирический расчет в базисе

Ошибки

Длины валентных связей, нм

Валентные углы, град

ОСТ-3ГФ

0,002-0,003

3-4

Валентно - расщепленные базисы, безэкспоненциальные базисы, расширенные базисы без поляризационных орбиталей

0,001

Сильное завышение валентных углов у молекул типа Н2О, NН

Валентно - расщепленные и безэкспоненциальные базисы с поляризационными орбиталями

0,0011

1-2

Хартри- Фоковский предел

0,005

1-2

Большие базисы с учетом электронной корреляции

Очень хорошее согласие с экспериментом

Примечание 1 - вычисленные значения обычно меньше экспериментальных величин

Таблица А.2 - Абсолютные значения ошибок при расчете длин валентных связей и валентных углов методами МПДП и МЧПДП/3

Геометрический параметр

Количество расчетов

Абсолютная ошибка

МПДП

МЧПДП/3

Валентная связь, нм

Все тины связей

228

0,0014

0,0022

С-Н

56

0,0009

0,0019

С-С

96

0,0012

0,0016

N-H

9

0,0006

0,0019

N-C

17

0,0010

0,0029

N-N

9

0,0032

0,0074

O-H

7

0,0011

0,0010

O-C

22

0,0016

0,0025

O-N

8

0,0026

0,0026

O-O

3

0,0117

0,0043

Валентный угол, град

Все типы углов

91

2,8

5,6

Углы при С

62

2,0

4,4

Углы при N

15

3,2

7,1

Углы при О

9

8,5

10,7

Углы между плоскостями в бициклических соединениях

5

1,6

5,9

Таблица А.3 - Потенциалы ионизации, эВ

Соединение

МПДП

Эксперимент

Отнесение1

Соединение

МПДП

Эксперимент

Отнесение1

Метан

13,9

14,0

1t2

Аммиак

11,2

10,9

2a1

30,6

22,9

1a2

16,7

16,0

1e

Этан

12,7

1eg

32,9

27,0

1a1

13,3

12,1

2a1g

Цитанистый

Водород

13,4

13,6

15,1

15,0

1eu

14,3

14,0

3

24,8

20,4

1a2u

21,6

20,0

Этилен

Этилен

10,2

10,5

1b1u

Азот

Азот

14,9

15,6

2уg

12,6

12,8

1b1g

16,2

17,0

1рu

14,6

14,7

2ag

21,1

18,8

1уu

15,8

15,9

1b2u

Вода

12,2

12,6

1b1

14,5

14,7

2a1

Ацетилен

11,0

11,4

1р u

19,1

19,1

1b2

15,9

16,4

2уg

40,0

32,2

1a1

21,0

18,7

1уu

Диоксид

Углерода

12,8

13,8

1р g

Бензол

9,4

9,2

1e1g

17,7

17,6

1р u

12,5

11,5

2e2g

17,8

18,1

2уu

12,6

12,3

1a2g

21,2

19,4

2уg

14,4

13,8

2e1u

Формаль

дегид

11,0

10,9

2b2

15,2

14,7

1b2u

14,2

14,4

1b1

16,8

15,4

1b1u

16,3

16,0

2a1

17,5

16,9

2a1u

16,9

16,8

1b2

Примечание 1 - отнесение, сделанное на основе данных метода МПДП, для большинства всех перечисленных в таблице соединений совпадает с общепринятым

Таблица А.4 - Экспериментальные теплоты образования и ошибки при вычислении этих величин квантовохимическими методами.

Молекула

Экспериментальная величина НА

Ошибка при вычислении методом1

3-21ГФ

6-31ГФ*

МПДП

1

2

3

4

5

Метан

-75

-4

2

25

Этан

-85

1

8

2

Пропан

-104

2

8

0

Этилен

-52

-7

-10

12

Пропилен

21

8

-10

0

цис - Бутен - 2

-8

-

15

-9

транс - Бутен - 2

-13

-13

13

-9

H2C=CMe2

-18

-16

12

9

H2C=C=CH2

192

-11

-29

-8

H2C=CH-CH=CH2

109

-20

52

12

C2H2

228

-7

-33

12

186

2

-25

-15

146

2

20

-44

475

6

45

-46

Циклопропан

53

-35

-10

-6

Циклопропен

278

-77

-44

8

Циклобутен

158

-47

-34

-26

Бензол

83

-11

45

6

H2O

-243

-20

-11

-14

H2O2

-136

77

13

-24

CO

-111

39

56

85

CO2

-395

31

64

79

CH3OH

-202

22

-21

-39

C2H5OH

-236

23

-20

-29

CH2O

-109

15

33

-29

HCOOH

-381

47

-54

-8

CH3CHO

-167

15

83

-11

CH3COCH3

-218

17

-32

10

CH3OCH3

-185

48

-44

-30

NH3

-46

-4

-17

20

N2H4

96

32

-8

-36

цис - HN=NH

214

-33

-16

-72

HN3

295

-72

44

11

Продолжение таблицы А.4

CH3NH2

-23

14

0

-8

CH3NCH3

-18

22

8

-9

HCN

136

37

5

11

CH3CN

88

58

14

-8

CH3NC

150

34

-

102

310

94

6

-33

HNO2

-79

-15

-

-92

N2O

80

-64

-16

47

Средняя ошибка

-

29

25

26

Примечание 1 - при расчете теплот образования методами 3-21ГФ и 6-31ГФ* использованы корректирующие параметры из таблицы 1.5

Таблица А.5 - Корректирующие параметры для расчета теплот образования молекул неэмпирическими методами

Атом

Метод

ОСТ-3ГФ

3-21ГФ

6-31ГФ*

Н

-0,57429

-0,56908

-0,56912

С

-37,40983

-37,67347

-37,88940

N

-53,74645

-54,14898

-54,46617

O

-73,77352

-74,36308

-74,78492

Таблица А.6 - Теплоты реакций изомеризации (кДж/моль)

Реакция

МПДП

Эксперимент

СН3С?H > СН2=С=CH2

12

6

105

86

26

32

2

2

4

4

23

12

13

-5

2

8

31

31

5

4

42

-23

С2Н5NH2 > (СН3)2NH

27

30

8

0

СН3СN > СН3NС

170

60

С2Н5OH > СН3OСН3

48

49

113

113

СН3СOOН > НСOOСН3

67

87

7

2

Таблица А.7 - Вычисленные энергии активации (кДж/моль) для реакций, приведенных на схемах 1 - 5.

Реакция

МПДП

КМПДП

ХФ

КХФ1

1

400

331

344

327

2

523

420

483

419

3

627

589

638

559

4

343

316

315

286

5

396

271

212

202

6

458

390

437

402

7

405

299

455

361

8

84

96

119

131

9

538

502

550

-

10

568

540

483

430

11

458

382

411

436

12

425

347

426

403

13

453

323

348

378

14

341

349

338

353

15

318

268

278

262

16

78

38

26

23

17

360

201

218

161

18

444

352

397

326

19

609

467

538

428

20

370

238

254

200

21

399

372

452

390

22

286

280

250

186

23

403

310

420

-

24

437

275

319

259

Примечание 1 - при расчете энергии активации использована геометрия переходного состояния, предварительно вычисленная в приближении Хартри - Фока

Таблица А.8 - Статистический анализ результатов расчета геометрии переходных состояний и энергий активации методами МПДП и КМПДП

Вычисленная величина

Число расчетов

Абсолютная ошибка1

МПДП

КМПДП

Длинна валентных связей2, нм

Активных3

Пассивных3

112

70

42

0,0057

0,0078

0,0019

0,0056

0,0073

0,0025

Валентный угол2

58

7,9

6,2

Торсионный угол2, град

20

11,6

7,9

Энергия активации, кДж/моль

24

55

904

45

364

Примечание 1 - по сравнению с данными неэмпирического расчета в приближении Хартри - Фока

Примечание 2 - для переходного состояния

Примечание 3 - активные связи разрываются или образуются в ходе реакции, пассивные связи в ходе реакции формально остаются неизменными

Примечание 4 - по сравнению с данными неэмпирических расчетов с учетом электронной корреляции

Приложение Б

СУЛЬФАНИЛАМИДЫ РЕЗОРБТИВНОГО ДЕЙСТВИЯ

Стрептоцид -- Streptocidum. пара-Аминобензолсульфамид. Синонимы: пронтозил, стрептоцид белый, стрептамин, сульфаниламид, стрептозол и др.

Белый кристаллический порошок без запаха и вкуса. Мало растворим в воде, легко -- в кипящей воде, растворах кислот и щелочей; трудно растворим в этаноле. Водные растворы имеют нейтральную реакцию, весьма стойкие. Несовместим с новокаином, анестезином, барбитуратами и другими препаратами, легко отщепляющими серу.

Оказывает противомикробное действие на стрептококков, менингококков, пневмококков, кишечную палочку, возбудителя газовой гангрены и некоторые другие микробы, но почти неактивен в отношении стафилококков. Препарат нарушает течение обменных процессов и тормозит рост и размножение микроорганизмов.

Стрептоцид быстро всасывается из желудочно-кишечного тракта, подкожной клетчатки и с раневой поверхности. Особенно хорошо всасывается из тонкого отдела кишечника, несколько хуже -- из желудка и толстого отдела кишечника. При местном применении не раздражает тканей.

После перорального применения максимальная концентрация препарата в крови устанавливается через 0,5--3 ч и удерживается примерно на этом уровне в течение 1--2 ч, а затем довольно быстро снижается. Всосавшийся препарат легко проникает через внутренние барьеры. Его обнаруживают во всех органах и тканях в достаточно высоких концентрациях. В организме стрептоцид связывается с белками до 20 % и подвергается различным превращениям, в том числе ацетилированию. Степень ацетилирования в крови составляет 20--25 %, в моче -- 25--60 %. Продукты ацетилирования не обладают антимикробной активностью и значительно хуже растворяются в воде. При высокой концентрации препарата в моче они могут выпадать в осадок. Выделяется стрептоцид в свободной и связанной формах преимущественно почками (90--95 %).


Подобные документы

  • Качественное развитие квантово-химических моделей. Кинетическая концепция Рюденберга. Анализ теории гипервалентных связей, основные условия их образования. Электронная структура непереходных соединений. Орбитально-избыточные связи, правило четности.

    презентация [209,2 K], добавлен 22.10.2013

  • Квантово-химический расчет термодинамических данных при полной оптимизации геометрии и оценка количественного содержания наиболее стабильных таутомерных форм молекулы нитрогуанидина при стандартных условиях в газовой фазе с помощью программы GAUSSIAN-03.

    курсовая работа [937,6 K], добавлен 08.06.2012

  • Понятие рефракции как меры электронной поляризуемости атомов, молекул, ионов. Оценка показателя преломления для идентификации органических соединений, минералов и лекарственных веществ, их химических параметров, количественного и структурного анализа.

    курсовая работа [564,9 K], добавлен 05.06.2011

  • Изучение состава и структуры комплексных соединений включения b-циклодекстрина с производными 4-этинил-пиперидин-4-ола. Сравнительный анализ возможности комплексообразования с производными на основании квантово-химических расчетов равновесной геометрии.

    дипломная работа [2,5 M], добавлен 25.04.2014

  • Периодическая система химических элементов. Строение атомов и молекул. Основные положения координационной теории. Физические и химические свойства галогенов. Сравнение свойств водородных соединений. Обзор свойств соединений p-, s- и d-элементов.

    лекция [558,4 K], добавлен 06.06.2014

  • Понятие о химических элементах и простых телах, свойства химических элементов. Химические и физические свойства соединений, образуемых элементами. Нахождение точного соответствия между числами, выражающими атомные веса элементов, их место в системе.

    реферат [34,8 K], добавлен 29.10.2009

  • Понятие и назначение химических методов анализа проб, порядок их проведения и оценка эффективности. Классификация и разновидности данных методов, типы проводимых химических реакций. Прогнозирование и расчет физико-химических свойств разных материалов.

    лекция [20,3 K], добавлен 08.05.2010

  • Свойства молибдена и его соединений. История открытия элемента. Электронная структура атома, его расположение в периодической системе химических элементов Д.И. Менделеева. Химические и физические свойства молибдена, его оксидов и гидроксидов.

    курсовая работа [2,3 M], добавлен 24.06.2008

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Применение полуэмпирических методов для оценки основных термодинамических параметров химических реакций. Параметры метода INDO. Сущность популярных современных методов MNDO, AM1, PM3, MNDO-d. Расчет молекулярных характеристик, геометрии молекулы.

    курсовая работа [174,0 K], добавлен 01.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.