Очистка попутного нефтяного газа
Цели и задачи, основные процессы и технологические схемы установок очистки попутного нефтяного газа. Методы очистки газа от газоконденсата, нефти, капельной, мелкодисперсной, аэрозольной влаги и механических шламовых примесей. Абсорбционная очистка газа.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 11.01.2013 |
Размер файла | 286,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Содержание
Введение
Цели и задачи очистки попутного нефтяного газа
Основные процессы очистки ПНГ
Технологические схемы установок очистки ПНГ
Литература
Введение
Попутный нефтяной газ - это смесь газов и различных веществ, которые выделяются из скважин в процессе добычи нефти. В отличие от природного газа попутный нефтяной газ содержит в своем составе кроме метана и этана большую долю пропанов, бутанов и паров более тяжелых углеводородов.
ПНГ подразделяются на растворенные в нефти и содержащиеся в газовых «шапках» газоконденсатных и нефтяных месторождений.
Как и природный газ или нефть, ПНГ является ценным сырьем для химической и энергетической промышленности. Несмотря на высокую теплотворную способность, использование ПНГ в электрогенерации затруднительно, в связи с существенной нестабильностью состава и наличием высокого числа примесей, что приводит к существенным затратам на подготовку (очистку) газа.
В химической промышленности ПНГ используют для получения различных веществ. Например - для получения бутадиена, бутиленов и пропиленов. Эти соединения применяются в изготовлении каучуков и пластмасс. Кроме того, ПНГ востребован в цветной и черной металлургии, стекольной и цементной промышленности. Объемы выделяющегося газа впечатляют - с одной тонны нефти может быть получено до 800 м3 попутного нефтяного газа. Тем обиднее, что в настоящее время попутный нефтяной газ практически не используется, а основной метод его утилизации - сжигание в факелах, что неблагоприятно сказывается на состоянии атмосферы. Так в 2009 году по самым приблизительным подсчетам путем сжигания было утилизировано свыше шестидесяти процентов добываемого ПНГ, а это порядка 20 миллиардов кубометров.
Попутный нефтяной газ, выделяемый из нефти при ее сепарации на объектах добычи и подготовки, является одним из важнейших ресурсов углеводородного сырья. Значительный рост мирового потребления нефти и природного газа, наблюдаемый в последние десятилетия, наряду с истощением их запасов, требует максимально эффективного использования всех видов углеводородных ресурсов. В этой связи попутный нефтяной газ рассматривается как ценный источник энергии и сырьё химической промышленности.
В настоящее время по разным оценкам в мире ежегодно сжигается 100150 млрд. м3 попутного газа, и Россия находится на первом месте по объёму сжигаемого на факелах ПНГ (20-35 млрд. м3/год). Помимо безвозвратных потерь ценнейшего сырья, сжигание попутного газа вызывает глобальное ухудшение экологической ситуации.
Цели и задачи очистки попутного нефтяного газа
Целью является наиболее оптимальная и перспективная утилизации попутного нефтяного газа т.е. использование его в качестве топлива для газопоршневых, газотурбинных электростанций и теплостанций для нужд добывающих предприятий и реализации сторонним потребителям, сбор и транспортировка нефтяного газа на химические минизаводы по производству моторных топлив, пластиковых труб, метанола и т.п.
Одной из наиболее серьезных проблем при утилизации попутного нефтяного газа является его очистка, от газоконденсата, нефти, капельной, мелкодисперсной, аэрозольной влаги и механических шламовых примесей. Использование газа содержащего капельную жидкость (нефть, влагу) практически не возможно на газотурбинных электро- и теплостанциях.
Ухудшение качества нефти разрабатываемых месторождений и пополнение запасов за счет недавно открытых и осваиваемых месторождений сернистых нефтей приводит к увеличению доли сероводородсодержащего попутного нефтяного газа. Попутный нефтяной газ, выделяемый из сернистых нефтей месторождений Урало-Поволжья и ряда других регионов России, характеризуется относительно невысокими объёмами его производства при сепарации нефти и высоким содержанием сероводорода. Часть промысловых объектов получают сернистый попутный газ низкого давления, что затрудняет его подготовку и использование. Все эти факторы препятствуют использованию этого ценнейшего углеводородного ресурса, и сероводородсодержащий ПНГ утилизируют сжиганием на факелах, нанося значительный экологический ущерб токсичными сернистыми выбросами. Транспортирование попутного газа до объекта переработки при отсутствии системы газопроводов не представляется возможным, и в таких случаях необходимо рассматривать вопрос использования газа в пределах нефтепромысла. При любом варианте использования сернистого ПНГ (как топлива, сырья переработки) необходимо предварительное удаление сероводорода.
Основные процессы очистки ПНГ
Попутный нефтяной газ, поступающий с каждой добытой тонной нефти в объемах от 10 до 1000 м3, во все времена и для всех нефтяных компаний был и остается большой помехой. Наиболее простым способом избавления от него стало сжигание в факелах. Однако экологические проблемы, возникающие от многочисленных горящих факелов, заставляют нефтедобывающие компании и страны принимать самые эффективные меры по его утилизации без больших затрат.
Основными применяемыми и разрабатываемыми технологиями очистки природного газа от сероводорода в настоящее время являются:
Ї хемосорбционные процессы, основанные на химическом взаимодействии
H2S и СО2 с активной частью абсорбента;
Ї процессы физической абсорбции, в которых извлечение кислых компонентов происходит за счет их растворимости в органических поглотителях;
Ї комбинированные процессы, использующие одновременно химические и физические поглотители;
Ї окислительные процессы, основанные на необратимом превращении поглощенного сероводорода в серу;
Ї адсорбционные процессы, основанные на извлечении компонентов газа твердыми поглотителями - адсорбентами.
Выбор процесса очистки природного газа от сернистых соединений зависит от многих факторов, основными из которых являются: состав и параметры сырьевого газа, требуемая степень очистки и область использования товарного газа, наличие и параметры энергоресурсов, отходы производства и др.
Анализ мировой практики, накопленной в области очистки природных газов, показывает, что основными процессами для обработки больших потоков газа являются абсорбционные с использованием химических и физических абсорбентов и их комбинации.
Окислительные и адсорбционные процессы применяют, как правило, для очистки небольших потоков газа, либо для тонкой очистки газа.
Хемосорбционная очистка газа
Основным преимуществом хемосорбционных процессов является высокая и надежная степень очистки газа от кислых компонентов при низкой абсорбции углеводородных компонентов сырьевого газа.
В качестве хемосорбентов применяют едкий натрий и калий, карбонаты щелочных металлов и наиболее широко - алканоламины.
Очистка газа растворами алканоламинов
Аминовые процессы применяют в промышленности, начиная с 1930-го года, когда впервые была разработана и запатентована в США схема аминовой установки с фенилгидразином в качестве абсорбента.
Процесс был усовершенствован применением в качестве поглотителя водных растворов алканоламинов. Алканоламины, являясь слабыми основаниями, вступают в реакцию с кислыми газами H2S и СО2, за счет чего происходит очистка газа. Образующиеся соли при нагревании насыщенного раствора легко разлагаются.
Наиболее известными этаноламинами, используемыми в процессах очистки газа от H2S и СО2 являются: моноэтаноламин (МЭА), диэтаноламин (ДЭА), триэтаноламин (ТЭА), дигликольамин (ДГА), диизопропаноламин (ДИПА), метилдиэтаноламин (МДЭА).
До настоящего времени в промышленности на установках по очистке кислых газов в качестве абсорбента, в основном, применяется моноэтаноламин (МЭА), а также диэтаноламин (ДЭА). Однако в последние годы наблюдается тенденция по замене МЭА на более эффективный абсорбент - метилдиэтаноламин (МДЭА).
На рис. 1 показана основная однопоточная схема абсорбционной очистки газа растворами этаноламинов. Поступающий на очистку газ проходит восходящим потоком через абсорбер навстречу потоку раствора. Насыщенный кислыми газами раствор с низа абсорбера подогревается в теплообменнике регенерированным раствором из десорбера и подается на верх десорбера.
Рис.1. Схема абсорбционной очистки газа растворами этаноламинов
попутный нефтяной газ очистка
После частичного охлаждения в теплообменнике регенерированный раствор дополнительно охлаждается водой или воздухом и подается на верх абсорбера. Кислый газ из десорбера охлаждается для конденсации водяных паров.
Конденсат в виде флегмы непрерывно возвращается обратно в систему для поддержания заданной концентрации раствора амина.
Для улучшения технико-экономических показателей процесса за счёт, главным образом, сокращения эксплуатационных затрат служит модификация ДЭА-способа с использованием водного раствора смеси метилдиэтаноламина и ДЭА. Это позволяет в 1,5 - 2 раза снизить удельное орошение по сравнению с чистым раствором ДЭА.
Если не установлены жесткие требования по содержанию СО2, более целесообразно применять раствор МДЭА, имеющий ряд достоинств:
Ї возможность селективного извлечения H2S в присутствии СО2, следовательно, увеличение доли Н2S в кислом газе;
Ї у МДЭА более высокая термическая стабильность и меньшая коррозионная активность раствора по сравнению с ДЭА;
Ї МДЭА обладает меньшей реакционной способностью по отношению к CO2 и меньшей теплотой реакции с H2S и CO2, что позволяет снизить количество теплоты на регенерацию абсорбента; Ї не образует нерегенерируемых амидов (что является одной из причин вспенивания в абсорбере) при взаимодействии с карбоновыми кислотами, ингибиторами коррозии, следовательно, не происходит потери амина, не образуются твердые осадки на внутренних поверхностях теплообменников;
Ї МДЭА имеет низкое давление насыщенных паров, что уменьшает потери амина за счет летучести.
Применение щелочных способов очистки газа также целесообразно в промысловых условиях для очистки небольших количеств сырьевого газа и при небольшом содержании в газе H2S.
Промышленный процесс щелочной очистки природного газа имеет следующие преимущества:
Ї тонкая очистка газа от основных серосодержащих соединений;
Ї высокая избирательность к сероводороду в присутствии диоксида углерода;
Ї высокая реакционноспособность и химическая стойкость поглотителя;
Ї доступность и дешевизна поглотителя;
Ї низкие эксплуатационные затраты.
Технологические схемы установок очистки ПНГ
Рис. 1. Схема установки подготовки попутного газа методом низкотемпературной сепарации
Сырой газ под давлением поступает в газовый сепаратор ВС-1, где происходит отделение капельной жидкости, образовавшегося конденсата и механических примесей, которые направляются в дренажную емкость.
Газ, освобожденный от капельной жидкости, поступает в теплообменник «газ-газ» Т-1 для предварительного охлаждения газом, обратным потоком, поступающим с низкотемпературной сепарации.
Для предупреждения образования гидратов перед теплообменником в газ подается ингибитор гидратообразования (метанол, диэтиленгликоль). Далее газ клапаном РД-1 дросселируется, охлаждаясь при этом за счет эффекта Джоуля-Томсона. Охлажденный газ поступает на вторую ступень сепарации в газовый сепаратор с НС-1, где конденсат с насыщенным водой раствором ингибитора отделяется и направляется в разделитель Р-100. Осушенный газ подогревается в теплообменнике Т-1 сырым газом, поступающим на осушку, до температуры и направляется на коммерческий узел учета.
Смесь нестабильного конденсата с насыщенным водой раствором ингибитора поступает в разделитель Р-1, где конденсат отделяется и направляется на подготовку. Насыщенный водой раствор ингибитора подогревается в кожухотрубчатом теплообменнике Т-2 обратным током регенерированного ингибитора и поступает на установку регенерации БР-1. Установка регенерации состоит из ректификационной колонны, установленной непосредственно на кубе, в котором жидкость подогревается путем сжигания газа в жаровой трубе. Испаряемая вода конденсируется в аппарате воздушного охлаждения, отделяется в сборнике и сбрасывается в дренажную емкость.
Регенерированный ингибитор через теплообменник Т-2, где он охлаждается потоком насыщенного ингибитора, и через аппарат воздушного охлаждения AВO-1 направляется в расходную емкость блока подачи реагента БП-1. Затем насосами дозаторами блока подачи реагента возвращается на установку осушки.
Рис. 2. Технологическая схема установки подготовки попутного газа методом адсорбционной осушки
Перед поступлением в адсорберы из газа в сепараторе С-1 отделяются механические примеси и капельная жидкость. После сепаратора газ сверху вниз проходит через один из адсорберов. Осушенный газ отводится в коллектор сухого газа. Второй адсорбер в это время находится на стадии регенерации (нагрев, охлаждение или ожидание).
Газ регенерации отбирается из потока осушенного газа и компрессором ДК подается в печь подогрева П-1 и с температурой +180-200 °С подается снизу вверх через адсорбер, в котором производится десорбция воды и тяжелых углеводородов.
Литература
1. Блазнов А.Н. Распределение пузырьков по размерам в жидкостно-газовых струйных аппаратах с удлиненной камерой смешения // Электронный журнал "Исследовано в России", 2002. C. 663-670.
2. Галеев Р.Г. Повышение выработки трудноизвлекаемых запасов углеводородного сырья. М.: Недра, 1997. - 362 с.
3. Голдобин В. Попутный газ - добро или зло // Нефть России, N11, 2007.
4. Стренк Ф.Н. Перемешивание и аппараты с мешалками. Л.: Химия, 1975. -384 c.
5. Хисамутдинов Н.И. Разработка нефтегазовых месторождений в поздней стадии. М.: ВНИИОЭНГ, 2004. - 252 с.__
Размещено на Allbest.ru
Подобные документы
Основные состояния природного газа, залегающего в земных недрах и в виде газогидратов в океанах и зонах вечной мерзлоты материков. Химический состав и физические свойства природного газа, его месторождения и добыча. Утилизация попутного нефтяного газа.
презентация [109,0 K], добавлен 08.03.2011Способы очистки углеводородных газов от Н2S, СO2 и меркаптанов. Схемы применения водных растворов аминов и физико-химических абсорбентов для извлечения примесей из природного газа. Глубокая осушка газа. Технология извлечения тяжелых углеводородов и гелия.
контрольная работа [340,3 K], добавлен 19.05.2011Переработка каменного угля, его значение, потребление, мировые запасы. Особенности перегонки нефти на непрерывно действующих трубчатых установках. Основные виды крекинга. Состав природного газа, его применение. Способы применения попутного нефтяного газа.
реферат [26,7 K], добавлен 20.12.2015Процесс поглощения газа жидким поглотителем. Абсорбционные методы очистки отходящих газов. Очистка газов от диоксида серы, от сероводорода и от оксидов азота. Выбор схемы и технологический расчет аппаратов для очистки газов на ТЭЦ, сжигающих мазут.
курсовая работа [1,0 M], добавлен 18.04.2011Процесс производства аммиака. Очистка газа от двуокиси углерода. Метод низкотемпературной абсорбции метанолом. Равновесие основной реакции при различных температурах. Термодинамический анализ процесса очистки конвертированного газа от диоксида углерода.
курсовая работа [374,1 K], добавлен 21.04.2015Характеристика сернистых примесей. Классификация основых способов очистки от примесей сероводорода и других сернистых соединений. Сорбционные методы очистки газов от сероводорода растворами алканоламинов. Адсорбционные и окислительные методы очистки.
реферат [448,4 K], добавлен 15.05.2015Классификация газообразных топлив. Очистка газа от примесей. Осушка газа короткоцикловой безнагревной адсорбцией. Разделение газа на фракции на установке ГФУ. Получение и применение продуктов газофракционирования. Состав сухого газообразного топлива.
курсовая работа [240,8 K], добавлен 05.05.2015Физико-химические основы процесса производства аммиака, особенности его технологии, основные этапы и назначение, объемы на современном этапе. Характеристика исходного сырья. Анализ и оценка технологии очистки конвертированного газа от диоксида углерода.
курсовая работа [1,1 M], добавлен 23.02.2012Роль углекислого газа в живой природе, в процессах метаболизма живой клетки. Строение молекулы газа. Получение углекислого газа в лаборатории и промышленности. Физические и химические свойства диоксида углерода. Примеры применения углекислого газа.
презентация [561,6 K], добавлен 18.04.2014Рассмотрение способов очистки промышленных газов от газообразных примесей. Проведение расчета скорости газа, диаметра абсорбера, высоты светлого слоя жидкости, коэффициентов массоотдачи, штуцеров, числа тарелок и их гидравлического сопротивления.
курсовая работа [191,2 K], добавлен 01.05.2010