Изучение и анализ производства медного купороса

Физические и химические основы производства медного купороса, этапы и особенности данного процесса, необходимое сырье и материалы. Технологическая схема производства медного купороса, характеристика и требования к сырью. Вакуум-выпарная кристаллизация.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 14.03.2011
Размер файла 171,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Целью данного дипломного проекта является изучение и анализ производства медного купороса, основанного на переработке отработанного передаточного электролита цеха электролиза меди.

В ходе работы над дипломным проектом был сделан анализ работы аппарата растворения (оксидизера) для растворения гранулированной меди и получения насыщенных растворов сернокислой меди. В результате использования большого количества сжатого воздуха и пара для растворения меди в оксидизере, возникла необходимость внести изменения в технологическую схему, то есть произвести замену аппарата растворения на аппарат колонного типа с целью снижения выхода меди в зашламленные гранулы, снижение расхода энергоносителей.

На протяжении многих десятилетий целями ОАО «Уралэлектромедь» являются:

- быстрое получение прибыли;

- расширение доли предприятия на рынке;

- повышение качества и номенклатуры выпускаемой продукции;

- разработка и внедрение ресурсо- и энергосберегающих технологий

производства.

Указанные направления в результате обеспечат экономическую устойчивость и конкурентоспособность продукции ОАО «Уралэлектромедь» на российском и мировом уровне.

В настоящее время ОАО «Уралэлектромедь» является лидером на рынке сбыта медного купороса.

Потребителями медного купороса являются: фирма VISTHON TRADING CORPORATION LTD, Бему; фирма TRISTAR Marketing Associates Limited, Нидерланды, Китай, Молдова, город Кишинев, Германия, Польша, Испания, Канада и другие.

Предлагаемый медный купорос имеет большой спрос на мировом рынке. Это продиктовано тем, что этот продукт является основным сырьем для получения искусственных волокон, органических красителей, минеральных красок, используется в качестве удобрения, как составная часть ядохимикатов.

Расположение предлагаемого производства в условиях ОАО «Уралэлектромедь» также дает ряд преимуществ:

Во-первых производство медного купороса основано на переработке отработан-ного электролита цеха электролиза меди и медных гранул, то есть источниками исходного сырья являются цеха, расположенные на территории данного предприятия, что, в свою очередь, приводит к снижению затрат на транспортировку, закуп сырья и т. д.

Во-вторых большой спрос на медный купорос объясняется отсутствием товаров заменителей, что делает предлагаемый продукт уникальным.

ОАО «Уралэлектромедь» придерживается следующей политики в отношениях с конкурентами: «Привлечь потребителя лучшим качеством и умеренной ценой» [1].

1. Обзор литературных источников

Основным сырьем для получения медного купороса служат серная кислота и медь: медный лом или отходы металлообрабатывающей промышленности - стружка, опилки и т. д., а также отходы или полупродукты металлургии меди - белый матт и окись меди, ватержакетная пыль, шлаковые отходы, электролитные растворы медеэлектролитных заводов, цементная медь, извлекаемая из рудничных вод, из колчеданных огарков и др.

Важным видом сырья для получения солей меди является ватержакетная пыль, представляющая собой тонкий порошок и содержащая 0,5 - 5 % Cu в форме сульфида и сульфата, 40 - 50 % Fe, 3 - 6 % Al2O3, 3 - 6 % Zn, до 15 % S,

7 - 10 % SiO2 и др. Перспективным видом сырья являются шлаковые отходы медеплавильных заводов, накапливаемые в течение многих лет в виде отбросов. Медь в этих отходах содержится в окисной, сульфидной и силикатной формах, а также в форме металла и ферритов. Примерный состав шлаковых отходов следующий:

2 - 7 % Cu, 5 - 7 % Fe2O3, 15 - 25 % Al2O3, 45 - 50 % SiO2, 1 - 5 % CaO, 5 - 10 % MgO, 1 - 3 % S и 1 - 2 % прочих примесей.

Большим резервом сырья для производства солей меди являются накапливаемые массы огарков от обжига колчедана на сернокислотных заводах. В старых огарках от обжигания рядового колчедана содержится до 1,5 % меди в виде CuSO4, CuSO3, CuO, Cu2S, CuS, CuFeS2. Необходимость извлечения соединений меди из огарков диктуется условиями их использования металлургической промышлен - ностью в качестве заменителя железной руды.

Указанные виды сырья в основном перерабатывают в медный купорос, который, помимо непосредственного употребления, служит также исходным материалом для получения всех других солей меди.

Способы производства медного купороса различают главным образом по видам применяемого сырья:

а) из медного лома и отходов меди (стружки, высечки, проволоки, опилок и т. п.) с окислением меди кислородом воздуха, электролизом или раствором хлорной меди;

б) из окиси меди, получаемой из белого матта;

в) из окиси меди и сернистого газа;

г) из окисленных медных руд, содержащих незначительное количество меди, переработка которых на металлическую медь плавкой в печах является неэкономичной;

д) из колчеданных огарков и других отходов;

е) из отбросных электролитных растворов медеэлектролитных заводов.

За рубежом основными производителями медного купороса являются Франция и Италия, где в качестве сырья используют главным образом медный лом и окисленные руды. В отличие от этого в США используют в основном электролитные щелоки, из которых производят больше половины всех солей и препаратов меди.

1.1 Производство медного купороса из медного лома

В отсутствие окислителей, в частности кислорода воздуха, в разбавленной серной кислоте медь практически не растворяется. Она с достаточной скоростью растворяется в горячей концентрированной серной кислоте, но осуществлять этот процесс не рационально, так как при этом половина затрачиваемой кислоты восстанавливается до SO2, окисляя медь в окись меди, которая и растворяется в серной кислоте, образуя медный купорос. Схема этого процесса может быть выражена следующими уравнениями реакций:

Cu + H2SO4 = CuO + H2O + SO2 (1)

CuO + H2SO4 = CuSO4 + H2O (2)

Cu + 2 H2SO4 = CuSO4 + 2 H2O + SO2 (3)

С целью экономии серной кислоты окисление меди производят кислородом воздуха одновременно с процессом «натравки», то есть растворения в серной кислоте. Медный лом предварительно переплавляют для рафинирования (очистки от примесей Fe, Zn, Al, Pb и др.) и придания ему формы, удобной для растворения - пустотелых гранул, обладающих большой поверхностью, что ускоряет растворение в кислоте в 5 - 10 раз.

1.1.1 Очистка и грануляция медного лома

Чистая медь плавится при 10840С, а в присутствии примесей - при более низкой температуре. Примеси летучих металлов и окислов - металлический цинк, трехокиси мышьяка и сурьмы - удаляются при нагревании меди до ее расплавления. При расплавлении медь окисляется до закиси меди, устойчивой выше 11000. Закись меди накапливается на поверхности расплавленной меди в твердом (до 12000С) и в жидком (выше 12350С) виде и частично растворяется в меди, а затем вступает во взаимодействие с примесями, например:

Cu2O + Fe = FeO + 2 Cu (4)

По мере расходования растворенной закиси меди новые ее количества переходят с поверхности в раствор, и медь подвергается дальнейшему окислению.

Образующиеся окислы железа, магния, кальция и других металлов не растворимы в меди и переходят в шлак, всплывающий на поверхность металла. Вследствие взаимодействия закиси меди с некоторыми окислами (например, с окисью железа с образованием феррита меди) часть ее также переходит в шлак и содержание в нем Cu2O достигает 30-40 %.

После окисления, ошлакования примесей металлов и удаления шлака температуру в печи немного снижают с целью окисления присутствующей в меди полусернистой меди:

Cu2S + 2 Cu2O- 6 Сu + SO2 (5)

Эта реакция протекает бурно, и выделяющаяся двуокись серы увлекает брызги меди с образованием «медного дождя» («кипение» массы).

В производстве медного купороса дальнейшая очистка меди не требуется, а присутствие в ней кислорода и двуокиси серы необходимо для получения пористых и пузыристых гранул. Растворимость газов в расплавленной меди возрастает с повышением температуры. В твердой меди, нагретой даже до температуры плавления, растворимость газов незначительная. Процесс гранулирования с получением пузыристой и пористой меди основан на быстром выделении газов при внезапном охлаждении и затвердевании расплавленной меди. Это осуществляется выливанием ее тонкой струей в холодную воду.

Серы, содержащейся в меди, обычно недостаточно для образования полных гранул. Поэтому в период «кипения» расплава в него добавляют некоторое количество полусернистой меди или комовой серы (1 - 1,5 %). Образующаяся при этом двуокись серы растворяется в меди, а при ее грануляции выделяется и раздувает капли меди в пустотелые шарики с тонкими стенками.

1.1.2 Растворение меди в серной кислоте (натравка)

При взаимодействии гранул меди с разбавленным раствором серной кислоты, содержащим также сульфат меди, в присутствии воздуха, кислород воздуха растворяется в кислоте, диффундирует к поверхности меди и окисляет ее до закиси меди:

4 Cu + O2 = 2 Cu2O (6)

Закись меди растворяется в серной кислоте:

Cu2O + H2SO4 = Cu2SO4 + H2O (7)

Образующийся сульфат закиси меди легко окисляется в сульфат окиси меди:

2 Cu2SO4 + 2 Cu2SO4 + O2 = 4 CuSO4 + 2 (8)

Общая скорость процесса лимитируется наиболее медленной его стадией - окислением меди до закиси меди. Это объясняется малой растворимостью кислорода и медленной его диффузией к поверхности гранул меди. Процесс значительно ускоряется, когда в растворе уже присутствует медный купорос.

Повышение температуры, как и в других случаях, ускоряет химические реакции, но вызывает уменьшение растворимости кислорода, что замедляет окисление. Поэтому в натравочной башне поддерживают температуру не выше 80-850С. При этом на окисление меди используется приблизительно ј кислорода, поступающего в башню с воздухом, расход которого составляет около 1000 нм3 на 1 тонну медного купороса.

Растворимость кислорода уменьшается с ростом концентрации CuSO4 в растворе. Поэтому при повышении концентрации CuSO4 скорость растворения меди сначала увеличивается за счет каталитического действия CuSO4, а затем уменьшается вследствие недостатка кислорода. Максимум скорости растворения наблюдается при концентрации 120 г./л CuSO4 (для раствора, содержащего ~ 110 г./л H2SO4). Но даже при содержании в растворе 300 г./л CuSO4 скорость растворения меди в 1,6 раза больше, чем в отсутствие медного купороса. С увеличением концентрации серной кислоты растворимость кислорода в ней уменьшается, но усиливаются ее окислительные свойства. Поэтому повышение кислотности раствора вызывает не очень большое уменьшение скорости растворения меди - всего на 10 % при повышении концентрации H2SO4 с 2,5 до 20 %. Растворение меди значительно ускоряется в присутствии в растворе ионов железа вследствие деполяризации

4 Fe2+ + O2 + 4 H+ = 4 Fe3+ + 2 H2O (9)

2 Cu + 4Fe3+ = 2 Cu2+ + 4 Fe2+ (10)

Ионы Fe2+ вновь окисляются в Fe3+ и служат, таким образом, катализатором процесса. Доля растворяющейся меди под действием ионов Fe3+ в растворе, содержащем ~110 г./л H2SO4, 60 г./л CuSO4 и 20 - 22 г./л FeSO4, составляет около 60 % от всего количества меди, перешедшей в раствор.

Ионы железа попадают в циркулирующий при растворении меди раствор с серной кислотой и вследствие растворения оставшихся в меди примесей. Содержание сульфатов железа в растворе непрерывно возрастает и достигает иногда

70 г./л и более. Вследствие этого при кристаллизации медного купороса выделяется также и сульфат железа, загрязняющий продукт. Поэтому, когда концентрация железа в растворе становится столь большой, что создается опасность получения нестандартного по содержанию железа медного купороса, раствор полностью выводят из обращения.

Существенным является обеспечение равномерного орошения (смачивания) гранул меди раствором. В местах, плохо орошаемых кислотой, образовавшаяся окисная пленка растворяется не полностью, вследствие малой своей растворимости кристаллизуется из раствора и цементирует при этом гранулы и шлам.

1.1.3 Производство медного купороса из медного лома

Производство медного купороса из медного лома делится на три стадии:

1) получение гранулированной меди; 2) получение раствора сульфата меди;

3) кристаллизация и сушка медного купороса.

Получение гранулированной меди

Медный лом («тяжелую» медь) плавят в медеплавильной печи. Проволоку, стружку, высечку и т. п. («легкую» медь) перед подачей в печь брекетируют. Плавку лома ведут обычно в пламенных печах из огнеупорного шамотного кирпича, отапливаемых мазутом.

Плавка меди в печи продолжается, в зависимости от количества примесей, 4,5 - 6 часов. После удаления шлака в «кипящую» медь забрасывают серу, затем ее выпускают тонкой струей в воду, находящуюся в гранулировочном бассейне. Он представляет собой бетонированную яму, высотой 1,6 м и диаметром 2,5 м.

В бассейн помещают стальную корзину с дырчатыми стенками высотой 1 м и диаметром 1,6 м; в последней собираются гранулы. При подъеме корзины с гранулированной медью вода стекает через отверстия в стенках корзины. Образующиеся гранулы имеют диаметр 5 - 15 мм. Вес 1 л гранул не должен превышать 2 кг. 1 кг таких гранул имеет поверхность до 1500 см2.

Получение раствора сульфата меди

Гранулированную медь загружают в натравочную башню, высотой около 6 м, диаметром 2,5 м. Башня изготовлена из листовой стали, внутри футерована кислотоупорным кирпичом и диабазовыми плитками. На высоте 0,5 - 0,9 м от дна в башне имеется ложное днище, лежащее на колосниковой решетке из стальных балок, опаянных свинцом. На ложном днище находится слой меди, высоту которого поддерживают периодическими загрузками на уровне 0,25 м от крышки башни. Под крышкой помещена турбинка, с помощью которой медь непрерывно орошается смесью серной кислоты с маточным раствором. Количество находящейся в башне меди составляет 22 - 28 т.

В башне происходит одновременно окисление и растворение меди. Эти процессы идут с выделением тепла, достаточным для повышения температуры до необходимого уровня, то есть до 70 - 850С. Для окисления меди в башню под колосниковую решетку вдувают воздух в смеси с паром. Пар подают для нагревания воздуха. Вдувание холодного воздуха вызвало бы охлаждение щелока и выделение из него кристаллов медного купороса, что привело бы к закристаллизовыванию нижнего слоя гранулированной меди. Подачей пара регулируют и температуру в башне. Уходящая из нее паро-воздушная смесь выбрасывается в атмосферу. С 1 м3 натравочной башни можно получить в сутки более 1,3 т. медного купороса.

Орошающий щелок имеет температуру 55 - 600С и содержит 20 - 30 % CuSO4 • 5 H2O, и 12 - 19 % свободной H2SO4. Оптимальная плотность орошения натравочной башни, равная 1,5 - 2,1 м3/(м2 • ч), обеспечивает образование на поверхности медных гранул очень тонкой жидкостной пленки, через которую кислород диффундирует к меди с достаточной скоростью. При большей плотности орошения [4 - 5 м32 • ч)] происходит снижение производительности башни, которое происходит после кратковременного ее возрастания, башня как бы «вымывается».

Вытекающий из натравочной башни горячий щелок (74 - 760С) представляет собой почти насыщенный раствор медного купороса - он содержит 42-49 % CuSO4 • 5 H2O и 4 - 6 % свободной H2SO4. Этот щелок подают центробежным насосом из хромоникелевой стали во вращающийся кристаллизатор непрерывного действия с воздушным охлаждением раствора. Смесь кристаллов медного купороса с маточным раствором через сборник с мешалкой поступает в центрифугу из нержавеющей стали, где кристаллы, отжатые от маточного раствора, промываются водой. На центрифугирование поступает пульпа с соотношением Т: Ж от 1: 2 до 1: 1,5. Отфугованный продукт, содержащий 4 - 6 % влаги и 0,15 - 0,2 % кислоты, высушивают в барабанной сушилке воздухом при 90-1000С. Маточный раствор и промывную воду после смешения с серной кислотой возвращают в производственный цикл.

В маточном растворе происходит постепенное накопление примесей, все больше загрязняющих продукт. Содержащийся в медном купоросе сульфат никеля можно удалить с достаточной полнотой при однократной перекристаллизации. Для удаления FeSO4 необходима многократная перекристаллизация. Получение медного купороса с содержанием 99,9 % CuSO4 • 5 H2O однократной перекристаллизацией из раствора, насыщенного при 700С, возможно при содержании в нем не более 0,3 % NiSO4 и не более 0,15 % FeSO4.

Если в растворе больше 40 г./л FeSO4, то количество железа в продукте больше 0,4 %, то есть выше нормы, допускаемой ГОСТом для продукта III сорта. Из растворов, содержащих больше 100 - 120 г./л FeSO4, выделяются смешанные кристаллы железного и медного купоросов с характерной сине-зеленой окраской.

Содержание железа в кристаллах медного купороса можно уменьшить предварительным окислением Fe2+ в Fe3+. Окислителем может служить воздух (длительный барботаж), азотная кислота, перекись водорода и др. Степень очистки повышается в 2 - 4 раза при добавке к раствору незначительного количества HF (плавиковой кислоты), что приводит к образованию фторидных комплексов Fe3+. Установлено также, что при усилении перемешивания в процессе кристаллизации получаются кристаллы с меньшим содержанием железа, но и размеры их уменьшаются. Присутствие ионов никеля также уменьшает размеры кристаллов, а мышьяка - увеличивает.

На производство 1 т. кристаллического медного купороса расходуют: 0,27 - 0,29 т. металлической меди и 0,39 - 0,40 т. серной кислоты (100 %).

На заводе имени Войкова общие затраты тепла на производство медного купороса составляли 0,76 мгкал на 1 т. продукта. Расход тепла распределяется следующим образом. В натравочную башню через инжекторы вводится 47 % тепла, на подогрев воздуха в калориферах сушильного агрегата затрачивается 26 % тепла и 27 % тепла расходуется на подогрев раствора в сборниках, на разогрев мазута в цистернах и т. д. Количество тепла, выводимого с паро-воздушной смесью, больше тепла, вводимого с паром вследствие дополнительного парообразования, обусловленного выделением тепла реакцией. Поэтому вместо паро-воздушной смеси можно вдувать в башню теплый воздух из кристаллизатора с добавкой 20 - 25 % пара от обычного количества, при температуре смеси, исключающей закристаллизовывание нижнего слоя гранул в башне.

Ввод пара в натравочную башню может быть и вовсе исключен при осуществлении процесса с рециркуляцией паро-воздушной смеси. Отходящую из башни паро-воздушную смесь с температурой ~ 800С направляют при помощи вентилятора из нержавеющей стали под ложное дно башни. При осуществлении процесса по такой схеме возможно введение в цикл газообразного кислорода, что значительно интенсифицирует растворение меди.

Отходом производства медного купороса являются илы, скапливающиеся в резервуарах с производственными растворами. Количество илов составляет 1 - 2 % от перерабатываемой меди. Состав их различен; они могут содержать до 8,5 % Ag2O, до 5 % Bi2O3, 0,05 - 0,1 % Au, Pt, Pd. Такие илы могут быть переработаны гидрометаллургическими методами для извлечения из них ценных металлов.

Предложено получать медный купорос из натравочного щелока добавкой к нему серной кислоты (башенной, купоросного масла, олеума или SO3) до содержания свободной H2SO4 60 % и более. При этом быстро осаждается мелкокристаллический белый безводный сульфат меди, примеси же остаются в растворе. CuSO4 отфуговывают и растворяют в чистом маточном растворе медного купороса, из которого кристаллизуется CuSO4 • 5 H2O. Кислый щелок после осаждения безводного CuSO4 возвращается на растворение меди. После накопления в нем значительного количества ценных примесей (никель, цинк, серебро и др.) их можно извлечь. Преимущество этого способа - в простой и быстрой кристаллизации медного купороса без затраты тепла и холода и высокой чистоте продукта.

Можно вообще отказаться от выпуска пятиводного сульфата меди и выпускать безводный продукт, концентрация меди в котором больше (39,8 % вместо 25,5 % в CuSO4 • 5 H2O). Производство и транспорт его будут дешевле, хотя он и потребует более тщательной упаковки из-за гигроскопичности. Впрочем, даже при небрежной упаковке на поверхности белого порошка появится лишь синеватая окраска вследствие гидратации влагой воздуха, но это не ухудшит качества продукта, который предназначен для растворения в воде. Однако, во избежание слеживания, упаковка должна быть герметичной.

Очистка сточных вод, сбрасываемых в водоемы из производств медного купороса и других медных солей, от ионов меди может быть осуществлена на 70 - 90 % с помощью сульфата алюминия. Выделяющаяся при гидролизе сульфата алюминия гидроокись алюминия адсорбирует ионы меди.

1.2 Получение медного купороса электролизом

При проведении электролиза с растворимым медным анодом в растворе любой соли щелочного металла получающаяся на аноде медная соль, реагируя с образующейся на катоде щелочью, дает гидроокись меди с одновременной регенерацией электролита.

Можно получать электролизом и непосредственно раствор медного купороса, осуществляя процесс в ванне, в которой анод, находящийся на дне ванны, состоит из спрессованных или сплавленных обрезков меди. Через полый катод, помещенный сверху, подается серная кислота. Движением раствора от катода к аноду не допускается нежелательное в данном случае осаждение меди на катоде.

При проведении электролиза с растворимым медным анодом в растворе сульфата натрия в ванне с диафрагмой можно одновременно получать медный купорос и едкий натр. Особый интерес это может представить при применении ртутного катода с получением из образовавшейся амальгамы натрия концентрированной щелочи. Анодная жидкость, кроме медного купороса, будет содержать сульфат натрия, однако медный купорос и сульфат натрия могут быть легко отделены друг от друга (как известно, трудность разделения серной кислоты и сульфата натрия является одним из сложных вопросов в проблеме электролиза сульфата натрия). Таким образом, этот способ позволяет получать щелочь и медный купорос без затраты кислоты.

1.3 Получение медного купороса при окислении меди хлорной медью

Этот метод основан на образовании хлористой меди из хлорной и металлической меди:

Cu + CuCl2 = 2 CuCl (11)

(Хлористую медь получают также хлорированием цементной меди в растворе поваренной соли). Хлористую медь окисляют воздухом с образованием оксихлорида меди:

6 CuCl +1,5 O2 + 3 H2O = 3 [Cu(OH)2 • CuCl2] (12)

Оксихлорид растворяют в серной кислоте, в результате чего образуется раствор сульфата меди и регенерируется хлорная медь:

3 [Cu(OH)2 • CuCl2] + 3 H2SO4 = 3 CuSO4 + 3 CuCl2 + 6 H2O (13)

Получение оксихлорида меди осуществляют в бетонном баке, куда загружают медь и заливают раствор хлорной меди. После этого продувают массу воздухом, пока вся металлическая медь не перейдет в нерастворимый оксихлорид. После отстаивания и декантации пульпу растворяют при нагревании в серной кислоте. Приточный раствор возвращают в процесс.

1.4 Производство медного купороса из окиси меди

До распространения способа получения медного купороса из медного лома в натравочных башнях медный лом предварительно окисляли в печах в окись меди, которую затем перерабатывали в медный купорос.

В настоящее время медный лом перерабатывают в медный купорос только методом «натравки», а производство медного купороса растворением окиси меди в серной кислоте базируется на окиси меди, получаемой из полупродуктов и отходов медеплавильных заводов.

1.4.1 Получение окиси меди из белого матта

Белый матт образуется при извлечении меди из сульфидных руд в результате дальнейшей переработки штейна, состоящего из сульфидов меди и железа и получающегося после первой плавки сырья с отделением пустой породы. При добавке к штейну кварца и продувке воздухом сульфид железа окисляется и переходит в силикат. После удаления шлака остается полусернистая медь, имеющая в изломе серебристый белый цвет, поэтому ее называют белым металлом или белым маттом.

Белый матт получается в виде плит толщиной 6 - 8 см. Он содержит, кроме Cu2S, до 10 % металлической меди и 0,5 - 3 % железа; общее содержание меди 75 - 78 %. Он служит для получения черновой, а затем рафинированной меди.

Для переработки на медный купорос белый матт измельчают и подвергают обжигу в печах, с целью окисления сульфида в окись меди. Для обжига используют печи разных конструкций. Разрез одной из них показан на рис. 1. Печь имеет четыре пода, из которых два неподвижны, а два, находящиеся между ними, вращаются вокруг предполагаемой вертикальной оси, совпадающей с осью печи. Все металлические части печи вынесены наружу. Подвижные поды 2 опираются на ролики и опоясаны зубчатыми кольцами, с помощью которых приводятся во вращение. Поды выложены в форме пологих сводов из кислотоупорного кирпича. В каждый свод при кладке печи вставляются гребки 3, расположенные таким образом, что при вращении подвижных подов материал перемещается по сводам от периферии к центру или в обратном направлении и пересыпается со свода на свод.

Разогрев печи производится топочным или генераторным газом, поступающим под нижний свод печи. Наиболее распространены печи с диаметром 4,5 м. Производительность печи составляет 6 - 7 т обожженного матта в сутки при продолжительности пребывания материала в печи 10 - 12 ч. Обжиг белого матта ведут с добавкой 1,75 - 2 % угля, обеспечивающего снижение температуры воспламенения сульфида меди, что ускоряет его окисление. Для предотвращения спекания в шихту добавляют до 15 % измельченного «нагара». (Нагар - комочки спекшегося, плохо обожженного белого матта, отделяемые при просеивании обожженного матта). Температурный режим в печи устанавливается за счет тепла, выделяющегося при горении белого матта и угля. Обычно температуру поддерживают в следующих пределах: 670 - 7000С на первом поде (сверху), 740 - 7600С на втором, 650 - 6750С на третьем и 450 - 4750С на четвертом.

При обжиге белый матт превращается в окись меди по реакции:

Cu2S + 2 O2 = 2 СuO + SO2 (14)

Небольшая доля сернистого газа, в связи с присутствием в белом матте железа, каталитически окисляется до SO3, который сульфатизирует окись меди. Поэтому в продукте обжига белого матта, помимо основного компонента - окиси меди, а также остатков сульфида, содержится некоторое количество CuSO4. С учетом этого общая реакция окисления белого матта может быть записана так:

2 Cu2S + 4,5 O2 = 2 СuO + SO2 + СuO • CuSO4 (15)

При недостатке кислорода или при плохом перемешивании может образоваться некоторое количество закиси меди:

2 Cu2S + 3 O2 = 2 Cu2O + SO2 (16)

Закись меди растворяется в серной кислоте хуже, чем окись, поэтому наличие ее в обожженном матте (огарке) нежелательно. Обожженный продукт содержит 87 - 90 % СuO и 8 - 10 % Cu2S или 70 - 72 % Cu и 2 - 2,5 % S. В нем несколько меньше меди, чем в исходном белом матте, что объясняется загрязнением продукта нагаром и золой угля. Основная масса серы уходит из обжиговой печи в виде сернистого газа, содержащего 1,5 - 2 % SO2, 0,5 - 1 % CO2, 15 - 17 % О2, имеющего температуру 250 - 3000С.

Растворение окиси меди в серной кислоте

Продукт обжига белого матта, огарок - окись меди - просеивают для отделения спекшихся комочков - «нагара» и продают в варочный чан для растворения в серной кислоте рис. 2. Отсеянный «нагар» после измельчения возвращают в печь, добавляя его к идущему на обжиг белому матту. Варочный чан изготавливают из андезитовых плит с внутренней свинцовой футеровкой. Используют также чаны из нержавеющей стали, выложенные кислотоупорным кирпичом и футерованные внутри листовым свинцом толщиной 5 мм.

Вначале в чан загружают маточный раствор, содержащий 28 % сульфата меди, а затем серную кислоту до получения раствора с концентрацией 15 - 20 % H2SO4. Массу подогревают до кипения острым паром, подаваемым через опущенные в раствор свинцовые трубы. В кипящий раствор загружают огарок небольшими порциями в течение 30 - 40 минут при перемешивании массы острым паром. Растворение ведут до образования раствора, содержащего 43 % CuSO4 и 3-4 % H2SO4.

Окись меди легко растворяется в серной кислоте. Содержащиеся в огарке металлическая медь и неокислившийся белый матт (Cu2S) практически не растворяются в серной кислоте и образуют нерастворимый шлам. В шлам частично переходит и плохо растворяющаяся в серной кислоте закись меди. По окончании варки отстоявшийся раствор направляют на кристаллизацию. В зависимости от качества обжига белого матта очистку реакционного чана от шлама производят или после каждой варки, или после 3 - 4 варок. В сухом веществе шлама содержится ~ 50 % меди, а также некоторые количества золота и серебра, зависящие от содержания их в исходной руде. Этот шлам возвращают для переработки на медеплавильные заводы.

1.4.2 Получение медного купороса из окиси меди и сернистого газа

Этот способ производства медного купороса является весьма экономичным. Однако применение его целесообразно главным образом в районах расположения медеплавильных заводов, где имеется соответствующее сырье - окись меди и отбросный сернистый газ.

В связи с этим особый интерес приобретает получение медного купороса из белого матта. При окислительном обжиге белый матт превращается в окись меди. Выделяющийся при этом сернистый газ рационально использовать для превраще-ния полученной окиси меди в медный купорос. Недостающее количество SO2 может быть пополнено за счет сернистых газов медеплавильных печей. Таким образом, белый матт может быть переработан на медный купорос без затраты серной кислоты и с полным использованием его компонентов - меди и серы.

Способ производства медного купороса из окиси меди и сернистого газа основан на взаимодействии при 85 - 950 суспензии окиси меди в водном растворе медного купороса со слабым сернистым газом, содержащим SO2 и кислород.

Отбросный сернистый газ, в случае необходимости, должен разбавляться воздухом. Это ускоряет процесс, так как концентрация SO2 в газе не имеет существенного значения, а увеличение содержания кислорода ускоряет реакцию.

Образование медного купороса происходит в результате двух независимо идущих процессов. Первый из них заключается в том, что сернистый газ в присутствии каталитически действующих ионов меди окисляется кислородом в серную кислоту:

2 SO2 + O2 + 2 H2O = 2 H2S (17)

Образовавшаяся кислота растворяет окись меди, причем получается медный купорос:

H2SO4 + СuO = CuSO4 + H2O (18)

Второй, параллельно идущий процесс заключается в частичном восстановлении сернистым газом двухвалентной (окисной) меди в одновалентную (закисную) с образованием плохо растворимой в воде соли Шевреля - комплексной окисно-закисной соли сернистой кислоты Сu(CuSO3)2 • 2 H2O или CuSO3 • Cu23 • 2 H2O:

3 CuSO4 + 3 H2SO3 + 3 H2O = CuSO3 • Cu23 • 2 H2O + 4 H2SO4 (19)

Эта соль в отсутствие кислорода при кипячении суспензии разлагается с выделением закиси меди:

3 (CuSO3 • Cu23 • 2 H2O) = CuSO4 + 2 Cu2О + 5 SO2 (20)

Однако под действием сернистого газа и кислорода в результате дальнейшего образования серной кислоты закись меди снова переходит в раствор, и осадок соли Шевреля постепенно исчезает из суспензии, также превращаясь в медный купорос:

CuSO3 • Cu23 • 2 H2O + SO2 + 2 O2 = 3 CuSO4 + 2 H2O (21)

Окисление соли Шевреля при действии SO2 и O2 протекает с образованием вначале основного сульфата меди:

2 (CuSO3 • Cu23 • 2 H2O) + 3 O2 = Cu(OH)2 • Cu SO4 + 3 CuSO4 + 2 H2O (22)

Эта реакция идет с большей скоростью, чем образование серной кислоты под каталитическим влиянием ионов меди. По мере накопления H2SO4 основной сульфат меди переходит в раствор:

2 Cu(OH)2 • Cu SO4 + 2 H2SO4 = 3 CuSO4 + 4 H2O (23)

В результате этих процессов из суспензии исчезают все твердые фазы - и СuO и CuSO3 • Cu23 • 2 H2O и 2 Cu(OH)2 • Cu SO4 - и суспензия превращается в раствор медного купороса. Таким образом, в общем процессы сводятся к окислению четырехвалентной серы (SO2) в шестивалентную и могут быть выражены суммар-ным уравнением:

2 СuO + 2 SO2 + O2 = 2 Cu SO4 (24)

Растворимость соли Шевреля возрастает с повышением температуры и содержанием в растворе CuSO4. При 200С растворимость этой соли в воде равна 0,042 %, а при 60 - 0,14 %. В 30 % растворе CuSO4 • 5H2O при 200С растворимость повышается до 0,1 %, а при 600С - до 0,379 %. Поэтому, будучи суспензирована в растворе медного купороса, комплексная соль окисляется быстрее, чем в водной суспензии. Следовательно, для приготовления исходной суспензии окиси меди целесообразно брать не воду, а раствор медного купороса.

Скорость окисления соли Шевреля возрастает с уменьшением концентрации SO2 в газе. Последнее объясняется, вероятно, тем, что в газовых смесях с высоким содержанием SO2 количество кислорода недостаточно для окисления. При содержании в газе 1 - 4 % SO2 и температуре 950С соль Шевреля окисляется полностью за 15 - 20 минут. Однако длительность процесса увеличивается за счет времени, необходимого для предварительного растворения окиси меди и образования соли Шевреля. При 950С и достаточном содержании кислорода в газе (при объемном отношении O2: SO2 > 4) степень использования меди за 1 час составляет 94 - 97 %, а за 1,5 ч больше 99 %.

Технологическая схема производства медного купороса этим способом весьма проста. Окись меди суспендируют в маточном растворе, оставшемся после кристаллизации медного купороса, суспензию нагревают до 85 - 950 и насыщают отбросным сернистым газом, разбавленным воздухом. Из полученного раствора при охлаждении до 200С кристаллизуется медный купорос. Кристаллы отжимают на центрифуге, и маточный раствор возвращают в процесс.

1.4.3 Получение медного купороса сульфатизирующим обжигом белого матта

Существенным недостатком способа получения медного купороса из белого матта путем его окислительного обжига и последующего растворения полученной окиси меди в серной кислоте является то, что основное количество серы, содержащейся в белом матте, не используется. Между тем за счет этой серы теоретически возможно было бы перевести в медный купорос 50 % меди, находящейся в белом матте, и тем самым снизить в 2 раза расход серной кислоты при последующей обработке продукта обжига. С этой целью белый матт должен подвергаться не простому окислительному, а сульфатизирующему обжигу, то есть длительной прокалке при сравнительно невысоких температурах (400 - 5000С) при достаточном избытке кислорода. В этих условиях реакции:

2 SO2 + O2 - 2 (25)

СuO + SO3 - CuSO4 (26)

смещены направо и 60 - 70 % сульфидной серы переходят в сульфатную, что соответствует превращению 30 - 35 % меди в сульфат меди. Для обработки продукта обжига расходуется в 1,5 раза меньше серной кислоты, чем при простом окислительном (не сульфатирующем) обжиге, а общее использование меди достигает 90 %.

Механизм образования сульфата меди при сульфатирующем окислении белого матта можно представить следующими элементарными реакциями. Часть сульфида непосредственно окисляется в сульфат:

Cu2S + 2,5 O2 = CuSO4 + СuO (27)

Наряду с этим происходит окисление сульфида меди с образованием двуокиси серы и окиси меди:

Cu2S + 1,5 O2 = Cu2О + SO2 (28)

Cu2О + 0,5 O2 - 2 СuO (29)

Окись меди далее реагирует с серным ангидридом, образующимся при каталитическом окислении SO2 в присутствии содержащейся в белом матте окиси железа, частично сульфатизируется по реакциям:

СuO + SO2 = CuSO3 (30)

4 CuSO3 = 3 CuSO4 + CuS (31)

с последующим окислением образующегося CuS. Для успешной сульфатизации белого матта необходимо обеспечить достаточно высокую концентрацию кислорода в газовой фазе. Этого можно достигнуть или использованием обогащенного кислородом воздуха, или применением добавок, обогащающих высоким равновесным давлением кислорода в температурных условиях обжига.

Степень перехода серы в газовую фазу в виде двуокиси серы значительно возрастает при добавке окиси меди. Степень окисления сульфида меди при 4500С в течение 60 минут в отсутствие добавки составляет 29,5 %. С увеличением температуры выше 4500С в этих условиях степень перехода сульфидной серы в сульфатную резко падает и при 750 - 8000С практически равна нулю. В присутствии добавок окиси меди увеличивается степень перехода сульфидной серы в сульфатную, а температура, отвечающая максимуму сульфатообразования, сдвигается в сторону более высоких температур. При добавке 25 % СuO в интервале 500-5500С за 60 минут 35 - 40 % сульфидной серы переходит в сульфатную, а общее количество окислившейся серы достигает 90 - 95 %.

Наиболее интенсивно сульфатизирующий обжиг сульфидов и окислов меди идет в кипящем слое, особенно при предварительном мелком измельчении материала.

Изучена сульфатизация Cu2S крепкой серной кислотой. До 3000С она идет по реакциям:

Cu2S + 2 H2SO4 = CuS + CuSO4 + SO2 + 2 H2O (32)

CuS + 2 H2SO4 = CuSO4 + SO2 + 2 H2O (33)

S + 2 H2SO4 = 3 SO2 + 2 H2O (34)

Наибольший выход CuSO4 достигается при 2000С. При высоких температурах частично улетучивается серная кислота и в результате взаимодействия Cu SO4 с Cu2S образуется Cu24, а затем Cu2О.

Изучены условия превращения Cu2S в CuSO4 путем автоклавного выщелачивания белого матта слабой серной кислотой в присутствии кислорода. При этом паралельно идут следующие реакции:

Cu2S + 0,5 O2 + H2SO4 = 2 CuSO4 + H2O (35)

Cu2S + O2 + 2 H2SO4 = 2 CuSO4 + S + 2 H2O (36)

Скорость растворения Cu2S пропорциональна давлению кислорода в степени 0,5. Для преимущественного (на 93 %) осуществления процесса по реакции (35), то есть с полным использованием серы и с меньшим расходом серной кислоты, оптимальными условиями являются: давление кислорода ~ 4 ат, концентрация серной кислоты 0,01 моль/л, температура 1400С.

Аналогичным способом можно получать медный купорос из водной суспензии халькопиритного концентрата (Т: Ж = 1: 3) с добавкой СаO или СаСO3 для регулирования гидролиза образующегося сульфата железа и выделения H2SO4.

1.4.4 Получение медного купороса из окисленных медных руд

Из больших запасов медных руд 10 - 15 % составляют руды, содержащие медь в окисленной форме. При незначительном содержании меди в руде извлечение металлической меди методами плавки оказывается зачастую неэкономичным. В таких случаях целесообразно перерабатывать эти руды гидрометаллургическими методами, заключающимися в извлечении (выщелачивании) меди каким-либо растворителем. Содержащаяся в окисленных рудах окись меди хорошо растворяется в серной кислоте. Полученные разбавленные растворы сульфата меди или выпаривают, или выделяют из них медь цементацией. Из выпаренных растворов получают кристаллизацией медный купорос, а цементную медь также перерабатывают в медный купорос.

Выщелачивание измельченной руды 10 - 15 %-ной серной кислотой осуществляют в растворителе, снабженном мешалкой, куда предварительно заливают разбавленную кислоту, подогревают ее глухим паром до 50 - 800С, а затем загружают руду в таком количестве, чтобы отношение Т: Ж в пульпе составляло 1: 3. Растворение ведут при перемешивании и 60 - 700С в течение 30 - 40 мин. При содержании в руде 3 - 5 % Cu выщелачивание ведут 3 - 5 %-ной серной кислотой в течение ~ 2 ч.

Очистку раствора медного купороса перед его дальнейшей переработкой от примесей сульфатов железа, алюминия и др. можно осуществлять с помощью известняка и обожженной медной руды, пропуская его затем через гравийный фильтр для отделения образовавшихся осадков.

1.4.5 Производство медного купороса из колчеданных огарков

Медь в колчеданных огарках содержится в виде различных соединений - Cu SO4, CuS, Cu2S, СuO, Cu2О, CuSO3, CuFeS2. Это затрудняет полное ее извлечение каким-либо одним простым методом.

Сульфат и сульфит меди легко выщелачиваются водой, а окись меди - разбавленной серной кислотой. Сульфиды меди, в виде которых находится до 20 % меди огарков, не растворяются в воде и в растворах серной кислоты, но переходят в раствор при нагревании в результате взаимодействия с сульфатом (или хлоридом) трехвалентного железа:

CuS + Fe2 (SO4)3 = CuSO4 + 2 FeSO4 + S (37)

Cu2S + 2 Fe2 (SO4)3 = 2 CuSO4 + 4 FeSO4 + S (38)

Этим же способом извлекают медь из сульфидных медных руд. Интенсивность выщелачивания увеличивается при бактериальном окислении сульфидов. Из получаемого раствора медного купороса удаляют железо окислением Fe2+ в Fe3+ пиролюзитом или кислородом воздуха и обработкой известняком:

Fe2 (SO4)3 + 3 СаСO3 + 3 H2O = 2 Fe (OH)2 + 3 CаSO4 + 3 СO2 (39)

Халькопирит с помощью сульфата железа растворить нельзя. Его можно превратить в растворимые соединения хлорированием:

2 CuFeS2 + 7 Cl2 = 2 CuCl2 + 2 FeCl3 + 2 S2Cl2 (40)

Наиболее разработанными способами получения медного купороса из огарков и являются водно-кислотное выщелачивание, применяемое на некоторых заводах, и хлорирующий обжиг в присутствии NaCl.

Выщелачивание меди из огарка

При выщелачивании огарка 1 % раствором серной кислоты на холоду в течение 1 ч при отношении Т: Ж, равном 1: 3, переходит в раствор от 60 до 80 % меди. В результате шестикратного выщелачивания могут быть получены щелоки, содержащие 15 - 18 г./л меди. Эти щелоки загрязнены соединениями железа (5 - 6 г/л Fe), которые удаляются из раствора осаждением мелом, после их окисления бертолетовой солью или хлором. Выпариванием очищенного щелока от железа получается продукт, содержащий 2 - 2,5 % Fe. Непосредственное получение фунгицидных препаратов из щелока может оказаться более экономичным, чем переработка его на медный купорос.

Извлечение водо- и кислоторастворимых соединений меди из огарка можно осуществлять, орошая свалку огарка подкисленной водой (3 - 5 % H2SO4). Для сбора образующегося раствора, содержащего 5 - 15 г./л CuSO4 • 5H2O, необходим колодец, откуда раствор откачивается на цементацию. Аналогичным образом можно производить выщелачивание огарка, находящегося в плоских прямоугольных ямах, имеющих большую площадь. Загрузку и выгрузку огарка можно осуществлять при этом с помощью мостового крана, движущегося по опорам, уложенным вдоль краев ямы.

Хлорирующий обжиг огарка

Хлорирующий обжиг огарка заключается в обработке его хлористым натрием при высокой температуре с целью превращения нерастворимых сульфидов меди в водорастворимые соединения:

CuS + NaCl + 2 O2 = CuCl2 + Na2SO4 (41)

К огарку добавляют 4 - 5 % NaCl (в зависимости от содержания в нем меди), смесь измельчают на вальцовой мельнице до размера частиц не более 2 мм и обжигают в механической колчеданной печи при температуре 550 - 6000С. Развитие требуемой температуры обеспечивается сжиганием генераторного газа или другого горючего. В качестве горючего можно применять серу или серный колчедан. В этом случае шихту составляют с соблюдением молярного отношения Cu: 3 S: 6 NaCl. Огарок состоит из окислов железа и CuCl2, CuCl, СuO, CuSO4 и Na2SO4. Часть хлорида натрия реагирует с серой и водяными парами, образуя хлористый водород. В отходящих газах, помимо продуктов сгорания топлива и хлористого водорода, содержится некоторое количество Cl2, SO2, SO3 SO3, водяных паров и мышьяковистых соединений. Газы из печи поступают в башню, орошаемую водой. Здесь получается 10 %-ная соляная кислота с примесью серной кислоты и хлора. Ее используют для выщелачивания обожженного огарка.

Медноколчеданные огарки, содержащие 0,5 - 1 % меди, можно хлорировать газообразным хлором. Систематическое выщелачивание растворимых соединений меди из обожженного огарка ведут при 20 - 250С. Общая продолжительность выщелачивания составляет 4 - 5 дней.

Извлечение меди из отходов медеплавильных заводов

К отходам производства меди относятся: ватержакетная пыль, шлаки, рудничные отвалы и др. Эти материалы содержат, как и колчеданные огарки, различные соединения меди и перерабатываются аналогичными методами - непосредственным выщелачиванием или выщелачиванием после сульфатизирующего или хлорирующего обжига. Полученные растворы подвергают цементации. При наличии отбросного тепла их можно выпаривать для кристаллизации из них медного купороса.

Водное выщелачивание ватержакетной пыли при 75 - 800С позволяет извлечь из нее в течение 4 ч от 20 до 70 % меди в раствор в виде сульфата меди. При последующей обработке остатков от выщелачивания водой в течение 4 ч 4 %-ной серной кислотой в раствор переходит еще 15 - 30 % меди.

Выщелачиванием шлаков 5 %-ной серной кислотой при 90 - 950С и Т: Ж, равном 1: 1, и 6000С в течение 1 ч можно увеличить извлечение меди в раствор до 80 %.

В рудничных отвалах обычно содержится 1 - 2 % меди. Она может быть извлечена в раствор теми же методами, как и из других отходов, а также обработкой водной пульпы сернистым газом. Степень извлечения меди достигает при этом 98 % в течение 1 ч, если предварительно произвести хлорирующий обжиг материала при 3000С, с добавкой к нему 20 % NaCl.

Выделение меди из разбавленных растворов

При извлечении меди из колчеданных огарков, отходов медеплавильных заводов, рудничных отвалов, а также из окисленных медных руд получаются разбавленные растворы медного купороса (или хлорной меди). Рудничные воды, образующиеся на медных рудниках в результате медленного окисления сернистой меди кислородом воздуха, также представляют собой слабый раствор медного купороса. Так как концентрирование таких слабых растворов не экономично, медь выделяют из них цементацией. Этот процесс заключается в вытеснении меди из растворов железными стружками и железным ломом:

Cu2+ + Fe = Fe2+ + Cu (42)

Электродный потенциал меди значительно выше, чем железа в маточных растворах, содержащих ионы Cu2+ или Fe2+, при обычной температуре и давлении водорода 1 ат он равен для Cu + 0,34 в, для Fe - 0,44 в. Поэтому железо вытесняет медь из раствора в виде тонкого металлического шлама, называемого цементной медью.

Цементацию осуществляют в стальном футерованном или освинцованном баке, куда загружают очищенный от грязи и ржавчины железный лом. Затем в бак подают разбавленный раствор сульфата меди. Для полноты осаждения меди раствор не должен содержать значительных количеств серной кислоты.


Подобные документы

  • Характеристика и способы производства медного купороса. Физико-химические характеристики основных стадий процесса. Грануляция медного лома. Растворение меди в серной кислоте (натравка). Кристаллизация медного купороса. Отходы и проблемы их обезвреживания.

    курсовая работа [50,8 K], добавлен 20.06.2012

  • Физические свойства, происхождение и нахождение серы в природе. Использование в аналитической химии сульфатов бария и кальция. Получение и применение сульфида серебра, сульфата хрома, медного купороса и сероуглерода в сельском хозяйстве и промышленности.

    презентация [601,7 K], добавлен 17.11.2012

  • Изучение и анализ производства никеля сернокислого (сульфат никеля, никелевый купорос), основанного на переработке маточного раствора медного отделения ОАО "Уралэлектромедь". Характеристика основного оборудования производства никеля сернокислого.

    дипломная работа [846,0 K], добавлен 19.06.2011

  • Структурная, химическая формула серной кислоты. Сырьё и основные стадии получения серной кислоты. Схемы производства серной кислоты. Реакции по производству серной кислоты из минерала пирита на катализаторе. Получение серной кислоты из железного купороса.

    презентация [759,6 K], добавлен 27.04.2015

  • Технологические свойства азотной кислоты, общая схема азотнокислотного производства. Физико-химические основы и принципиальная схема процесса прямого синтеза концентрированной азотной кислоты, расходные коэффициенты в процессах производства и сырье.

    реферат [2,3 M], добавлен 08.04.2012

  • Седиментация под действием сил тяжести - широко применяемый прием снижения содержания взвеси в воде. Технологический процесс коагуляции примесей. Гидролиз железного купороса в воде. Защита гидрофобных коллоидов, с точки зрения технологии очистки воды.

    реферат [955,5 K], добавлен 09.03.2011

  • Свойства стирола и области применения. Сырье для промышленного производства стирола. Схема производства этилбензола. Функциональная и химическая схемы производства и их описание. Технологическая схема производства стирола дегидрированием этилбензола.

    контрольная работа [3,6 M], добавлен 26.11.2011

  • Физические и физико-химические свойства азотной кислоты. Сырье для производства азотной кислоты. Характеристика целевого продукта. Процесс производства слабой (разбавленной) и концентрированной азотной кислоты. Действие на организм и ее применение.

    презентация [1,6 M], добавлен 05.12.2013

  • Общая характеристика, физические и химические свойства 1,1,2 – трихлорэтана, методы его получения. Критерии выбора способа производства данного вещества. Анализ технологической схемы производства аналога на соответствие требованиям целевой функции.

    курсовая работа [131,4 K], добавлен 17.01.2011

  • Сырье, общая технологическая схема производства алюминия. Процесс получения глинозема, описание электролитической технологии получения алюминия. Его очистка и рафинирование. Определение технической топологии ТХС, специфика определения ее параметров.

    лекция [308,5 K], добавлен 14.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.