Разновидности и принцип действия экстракторов

Основы процесса химической экстракции, особенности его проведения. Экстракторы периодического и полупериодического, непрерывного действия. Основы выбора и расчета жидкостных экстракторов, сведения о жидкостной экстракции. Выбор и расчет оборудования.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 07.11.2009
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В приведенной классификации не отражены разновидности горизонтальных смесительно-отстойных экстракторов, различных по конструкции перемешивающих устройств и взаимному направлению движения фаз после отстаивания (прямоток или противоток).

Ниже рассмотрены типы экстракторов, нашедшие наибольшее применение в различных отраслях промышленности.

В качестве аппаратуры для непрерывной противоточной экстракции применяют вертикальные колонны, горизонтальные смесители-отстойники и центробежные экстракторы.

Экстракторы колонного типа (статические) могут быть полыми (распылительные колонны), заполненными насадкой или оборудованными перфорированными тарелками, что уменьшает продольное перемешивание и способствует столкновению и разрушению капель дисперсной фазы. В результате возрастает скорость массопередачи и уменьшается высота, эквивалентная теоретической ступени (ВЭТС). В экстракторах этого типа диспергирование фаз достигается за счет разности плотностей водной и органической фаз, а в колоннах с механическим перемешиванием и в пульсационных колоннах -- за счет работы мешалки или пульсатора.

Горизонтальные смесительно-отстойные экстракторы в отличие от колонных позволяют при сравнительно малой высоте аппарата перерабатывать большие объемы жидкостей. Экстракционная установка с использованием смесительно-отстойной аппаратуры может состоять из отдельных смесителей и отстойников, установленных каскадом и соединенных внешними трубопроводами. Одна из фаз движется от ступени к ступени каскада самотеком, другая перекачивается насосами. Перемешивание обычно производится механическими мешалками. Во внутренних смесителях-отстойниках перемешивание и транспортирование жидкостей осуществляются с помощью турбинной мешалки, помещаемой в кожухе непосредственно внутри отстойной камеры.

Горизонтальные смесители-отстойники занимают большую площадь, однако ее можно уменьшить, используя аппараты ящичного типа.

Каждый экстрактор состоит из секций, имеющих смесительную и отстойную камеры. Движение жидкостей через аппарат противоточное, а внутри секций прямоточное.

В камерах смешения устанавливают мешалки (обычно турбинного типа), одновременно перемешивающие жидкости, перемещающие их на соседние ступени и регулирующие уровень в камерах.

При использовании каскадов смесителей-отстойников теоретическая ступень может соответствовать практической, если на каждой ступени выходящие органическая и водная фазы находятся в равновесии.

Центробежные экстракторы используются в тех случаях, когда плотности органической и водной фаз близки и система имеет тенденцию к эмульгированию.

Смешение и разделение фаз в подобных аппаратах осуществляется в поле действия центробежных сил, что позволяет эффективно разделять жидкие фазы и снижать потери растворителя с уносом водной фазой. Необходимо отметить, что время пребывания смеси жидких фаз в центробежных, экстракторах мало (от одной до нескольких секунд), поэтому для случая массообмена, осложненного химической реакцией, применение данной аппаратуры иногда нецелесообразно.

Для ряда систем применяются также статические экстракторы, представляющие собой цилиндрическую трубу, в которой размещаются специальные насадки, способствующие перемешиванию фаз при их движении по трубе.

ОСНОВЫ ВЫБОРА ЭКСТРАКТОРА

При выборе типа экстракционного аппарата для осуществления заданного технологического процесса необходимо учитывать:

1) пригодность конструкции, которая определяется физико-химическими характеристиками реагентов (плотность, вязкость, токсичность, концентрация и т. д.), степенью проработки конструкции (наличием результатов опытно-промышленной проверки, использованием в промышленности) и масштабом производства;

2) технологичность конструкции, которая определяется удельной производительностью и эффективностью, коэффициентом масштабного перехода (отношением эффективности промышленного аппарата к эффективности лабораторного образца);

3) экономичность конструкции, которая характеризуется капитальными (стоимость аппарата, загрузка экстрагента и т.д.) и эксплуатационными (расход электроэнергии, реагентов, стоимость обслуживания и т. д.) затратами.

Для предварительного выбора экстрактора необходимо учитывать конструктивные его особенности и значения параметров процесса экстракции.

1. Число ступеней экстрактора определяется в зависимости от величины требуемых теоретических ступеней |экстракции. Если эта величина менее 3, то на практике можно

использовать практически любой тип аппарата. Когда число ступеней более 20 наиболее целесообразно применять аппараты типа смеситель-отстойник, при 10--20 ступенях -- колонные аппараты (однако при расчетах необходимо учитывать предельную высоту, которую может иметь данный тип колонны).

2. Производительность. При низких и средних нагрузках наиболее целесообразно использовать распылительную и насадочную колонны, для умеренных и высоких -- роторно-дисковый экстрактор, пульсационную тарельчатую колонну

или смеситель-отстойник. Наиболее высокие удельные производительности имеют пульсационные тарельчатые колонны и центробежные экстракторы.

3. Время пребывания экстрагента. Для процессов, требующих малого времени пребывания экстрагента, наиболее целесообразно использовать центробежный экстрактор, где разделение фаз происходит под действием центробежной силы. Смесительно-отстойные экстракторы с гравитационным расслаиванием фаз при большом числе ступеней применяются для длительных процессов (для таких аппаратов расслоение и разделение фаз зависит от скорости коалесценции дисперсной фазы и будет происходить после каждой смесительной ступени). В дифференциально-контактных экстракторах расслоение и разделение фаз происходит только на концах аппарата, поэтому время пребывания фаз зависит от средней скорости подъема или падения капель и не зависит от времени коалесценции.

4. Отношение потоков фаз влияет на размеры аппарата, причем при снижении скорости движения потоков дисперсной и сплошной фаз объем экстрактора будет уменьшаться.

5. Физико-химические свойства фаз влияют на размеры капель. Например, при большом отношении межфазного натяжения а и разности плотностей фаз ?? образуются крупные капли, что приводит к уменьшению поверхности раздела фаз и ухудшению массопередачи. Для таких систем (для очень вязких жидкостей) рекомендуется использовать экстрактор с механическим перемешиванием с высокой интенсивностью перемешивания фаз, что дает возможность обеспечить требуемую эффективность и производительность.

6. Направление массопередачи играет особую роль в системах вода -- растворитель, так как размер капли увеличивается при массопередаче из растворителя в водную фазу. Поэтому для таких систем наиболее целесообразно использовать экстракторы с механическим перемешиванием фаз при интенсивном перемешивании. В целом влияние направления массопереноса необходимо определять в лабораторном эксперименте.

7. Диспергирование и задержка дисперсной фазы. Для обеспечения наибольшей величины межфазной поверхности и высокой скорости массопередачи необходимо диспергировать ту фазу, производительность по которой максимальна. При диспергировании водной фазы в колонных экстракторах вследствие смачивания материалов насадки водной фазой может ухудшиться процесс диспергирования. В этом случае рекомендуется применять в качестве насадок гидрофобные материалы, устойчивые к воздействию экстракционных фаз. При загрязнении органической фазы примесями на поверхности раздела фаз в колонном экстракторе диспергирование должно быть таким, чтобы граница раздела находилась над рафинатом в конце колонны. Если используются нестабильные растворенные вещества или растворители очень дороги, то необходимо обеспечить малую задержку фаз, для чего применяются центробежные экстракторы с минимальными временем контакта и рабочим объемом.

8. Скорость реакций. При осуществлении медленной реакции на поверхности раздела фаз или в объеме одной из фаз следует использовать смесители-отстойники с рециркуляцией внутри каждой ступени для увеличения времени контакта фаз.

9. Присутствие твердых веществ. В этом случае необходимо применять экстракторы, имеющие приспособления для удаления твердых осадков, например пульсационную тарельчатую колонну, экстрактор Лувеста и др. 10. Оценка общей эффективности работы экстрактора. Такая оценка проводится, например, при выборе размеров колонны и условий ведения процесса, для чего используется параметр, представляющий собой модифицированный коэффициент массопередачи, -- высота единицы переноса (ВЕП); ВЕП является мерой эффективности переноса растворенного вещества и производительности на единицу объема колонны. Для ступенчатых экстракторов в качестве такого параметра можно использовать отношение суммы объемных скоростей фазовых потоков при захлебывании к общему объему одной ступени. Этот параметр можно использовать для различных экстракторов при их сравнении. С увеличением значения этого параметра для идентичных питающих потоков конструкция экстрактора будет более эффективной.

Окончательный выбор экстрактора осуществляется по результатам последовательной оценки работы двух-трех выбранных типов экстракторов с использованием экономического показателя -- приведенного дохода Рпр = РР -- Зпр, где Рр -- доход от реализации полученной продукции, Зпр -- приведенные затраты.

ОБЩИЕ СВЕДЕНИЯ О РАСЧЕТЕ ЖИДКОСТНЫХ ЭКСТРАКТОРОВ

К экстракционным аппаратам предъявляются разнообразные требования, основными из которых являются:

1) максимальные производительность и интенсивность работы;

2) малый расход энергии при эксплуатации;

3) высокая степень извлечения ценных компонентов;

4) простота устройства и низкая стоимость изготовления;

5) легкость управления и автоматического регулирования.

От правильности выбора типа аппарата и значений параметров во многом зависит эффективность всего процесса, проводимого в экстракторе.

В настоящее время используются в основном экстракторы двух типов -- периодического и непрерывного действия, причем применение непрерывнодействующих экстракторов более эффективно вследствие возможности обеспечения большей производительности и осуществления автоматизированного контроля за их работой. Экстракторы периодического действия выгоднее использовать в производствах с небольшими объемами потоков взаимодействующих фаз.

Для расчета экстрактора необходимо иметь данные о скоростях протекания химических реакций, тепло- и массопередачи и о гидродинамической обстановке или структуре потоков в экстракторе.

К числу основных факторов, влияющих на работу экстрактора, следует отнести:

1) термодинамические факторы -- константы химического и фазового равновесия; эта группа факторов определяет направление реакции, технологические параметры проведения реакции и оказывает влияние на скорость и селективность всего процесса;

2) кинетические факторы -- константы скорости и энергии активации основных и побочных реакций, а также истинные и кажущиеся порядки реакций;

3) массообменные факторы -- коэффициенты массоперодачи исходных и промежуточных веществ и конечных продуктов реакции;

4) теплообменные факторы -- коэффициенты теплопередачи между фазами и коэффициенты теплопередачи между средой и теплообменными устройствами, величина поверхности внешнего теплообмена;

5) гидродинамические факторы -- характеристики межфазной поверхности и перемешивания по сплошной и дисперсной фазам.


Подобные документы

  • Промышленное применение и технологические операции жидкостной экстракции. Физические основы процесса экстракции в случае взаимонерастворимости жидкостей. Удельный расход растворителя при противоточной экстракции. Построение диаграммы экстракции.

    презентация [1,4 M], добавлен 29.09.2013

  • Экстракция. Процесс экстракции характеризуют следующими основными величинами. Влияние условий экстракции на ее результат. Распределение лиганда. Распределение комплексов металлов. Синергизм. Конкурирующие реакции.

    реферат [38,1 K], добавлен 04.01.2004

  • Изучение сути экстракции - процесса извлечения одного или нескольких компонентов из растворов или твердых тел с помощью избирательно действующих растворителей. Органические растворители, применяемые при этом. Катионообменная и анионообменная экстракция.

    курсовая работа [1,2 M], добавлен 30.10.2011

  • Процесс произведения нитробензола и составление материального баланса нитратора. Определение расхода реагентов и объёма реактора идеального смешения непрерывного действия при проведении реакции второго порядка. Расчет теплового эффекта химической реакции.

    контрольная работа [247,6 K], добавлен 02.02.2011

  • Экстракция кислот реагентами группы диантипирилметана в органические растворители; свойства реагентов; закономерности экстракции минеральных и органических кислот. Исследование совместной экстракции хлороводородной и бензойной кислот диантипирилалканами.

    дипломная работа [619,4 K], добавлен 13.05.2012

  • Анализ результатов расчета ректификационной колоны непрерывного действия, предназначенной для разделения бинарной смеси метиловый спирт - этиловый спирт. Материальный баланс, расчет тепловой изоляции колонны, вспомогательного оборудования, кипятильника.

    дипломная работа [260,6 K], добавлен 17.04.2011

  • Общие сведения о процессе экстракционного разделения, область его применения. Основные схемы проведения экстракционных процессов. Равновесие в системе жидкость-жидкость. Основные группы промышленных экстрагентов. Материальный баланс процесса экстракции.

    контрольная работа [165,2 K], добавлен 15.10.2011

  • Описание установки непрерывного действия для ректификации. Определение рабочего флегмового числа и диаметра колонны. Вычисление объемов пара и жидкости. Расчет кипятильника. Выбор насоса для выдачи исходной смеси на установку, анализ потерь напора.

    курсовая работа [996,3 K], добавлен 26.11.2012

  • Технологические схемы процесса выпаривания. Конструкции выпарных аппаратов. Принцип действия проектируемой установки. Определение поверхности теплопередачи. Расчет толщины тепловой изоляции. Определение гидравлического сопротивления теплообменника.

    курсовая работа [1,4 M], добавлен 29.11.2010

  • Сравнительный анализ способов извлечения фенольных веществ, характеристика метода твердофазной экстракции, параметры хроматографического определения фенолкарбоновых кислот и флавоноидов в растительных объектах. Методы экстракции фенольных соединений.

    дипломная работа [2,0 M], добавлен 24.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.