Белки – основа жизни

Определение белков и их составных частей – аминокислот. Структура и функции белков в организме. Роль в обеспечении воспроизводства основных структурных элементов органов и тканей, а также образовании таких веществ, как, например, ферментов и гормонов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 16.12.2014
Размер файла 735,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Минобрнауки России

Тверской государственный технический университет

Кафедра технологии полимерных материалов

Курсовая работа

Белки - основа жизни

Выполнил:

студент гр. ХТ-1202

Затика Н.Ю.

Принял: Карасева Т.В.

Тверь 2014

  • Содержание
  • белок аминокислота организм фермент
  • Введение
  • 1. Основная часть
    • 1.1 История исследования
    • 1.2 Физико-химические свойства
    • 1.3 Структура белков
      • 1.3.1 Первичная структура
      • 1.3.2 Вторичная структура
    • 1.3.3 Третичная структура
      • 1.3.4 Четвертичная структура
    • 1.4 Простые и сложные белки
    • 1.5 Функция белков в организме
      • 1.5.1 Каталитическая функция
      • 1.5.2 Структурная функция
      • 1.5.3 Защитная функция
      • 1.5.4 Регуляторная функция
      • 1.5.5 Сигнальная функция
      • 1.5.6 Транспортная функция
      • 1.5.7 Запасная (резервная) функция
      • 1.5.8 Рецепторная функция
      • 1.5.9 Моторная (двигательная) функция
    • 1.6 Белки в обмене веществ
  • 2. Тирозин
  • Заключение
  • Список использованных источников
  • Введение

Белки -- высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его "работы" в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров -- полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют ключевую роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки -- важная часть питания животных и человека (основные источники: мясо, птица, рыба, молоко, орехи, бобовые, зерновые; в меньшей степени: овощи, фрукты, ягоды и грибы), поскольку в их организмах не могут синтезироваться все необходимые аминокислоты и часть должна поступать с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются для биосинтеза собственных белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка -- инсулина -- методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию по химии в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в конце 1950-х годов, за что в 1962 году они получили Нобелевскую премию по химии.

1. Основная часть

1.1 История исследования

Белок попал в число объектов химических исследований 250 лет тому назад. В 1728 году итальянский ученый Якопо Бартоломео Беккари получил из пшеничной муки первый препарат белкового вещества - клейковины. Он подверг клейковину сухой перегонке и убедился, что продукты такой перегонки были щелочными. Это было первое доказательство единства природы веществ растительного и животного царств. Он опубликовал результаты своей работы в 1745 году, и это была первая статья о белке.

В XVIII-начале XIX веков неоднократно описывали белковые вещества растительного и животного происхождения. Особенностью таких описаний было сближение этих веществ и сопоставление их с веществами неорганическими.

Важно отметить, что в это время, еще до появления элементного анализа, сложилось представление о том, что белки из различных источников - это группа близких по общим свойствам индивидуальных веществ.

В 1810 году Жозеф Гей-Люссакк и Луи Тенар впервые определили элементный состав белковых веществ. В 1833 году Ж. Гей-Люссак доказал, что в белках обязательно присутствует азот, а вскоре было показано, что содержание азота в различных белках приблизительно одинаково. В это же время английский химик Джон Дальтон попытался изобразить первые формулы белковых веществ. Он представлял их довольно просто устроенными веществами, но чтобы подчеркнуть их индивидуальное различие при одинаковом составе, он прибег к изображению молекул, которые бы сейчас назвали изомерными. Однако понятия изомерии во времена Дальтона еще не было.

Одной из самых распространенных теорий доструктурной органической химии была теория радикалов - неизменных компонентов родственных веществ. В 1836 году голландец Г. Мульдер высказал предположение о том, что все белки содержат один и тот же радикал, который он назвал протеином (от греческого слова "первенствую", "занимаю первое место").

В середине XIX века были разработаны многочисленные методы экстракции белков, очистки и выделения их в растворах нейтральных солей. В 1847 году К. Рейхерт открыл способность белков образовывать кристаллы. В 1836 году Т. Шванн открыл пепсин - фермент, расщепляющий белки. В 1856 году Л. Корвизар открыл еще один подобный фермент - трипсин. Изучая действие этих ферментов на белки, биохимики пытались разгадать тайну пищеварения. Однако наибольшее внимание привлекли вещества, получающиеся в результате действия на белки протеолитических ферментов (протеаз, к ним относятся вышеприведенные ферменты): одни из них были фрагментами исходных молекул белка (их назвали пептонами), другие же не подвергались дальнейшему расщеплению протеазами и относились к известному еще с начала века классу соединений - аминокислот (первое аминокислотное производное - амид аспарагин был открыт в 1806 году, а первая аминокислота - цистин в 1810). Аминокислоты в составе белков впервые обнаружил в 1820 году французский химик Анри Браконно. Он применил кислотный гидролиз белка и в гидролизате обнаружил сладковатое вещество, названное им глицином. В 1839 году было доказано существование в составе белков лейцина, а в 1849 году Ф. Бопп выделил из белка еще одну аминокислоту - тирозин.

К концу 80-х гг. XIX века из белковых гидролизатов было выделено уже 19 аминокислот и стало медленно укрепляться мнение, что сведения о продуктах гидролиза белков несут важную информацию о строении белковой молекулы. Тем не менее, аминокислоты считались обязательным, но неглавным компонентом белка.

Немецким химиком Э. Фишер была разработана пептидная теория, получившая общее признание во всем мире.

Немаловажно, что Фишер построил план исследования, резко отличающийся от того, что предпринималось раньше, однако учитывающий все известные на тот момент факты. Прежде всего он принял, как наиболее вероятную гипотезу о том, что белки построены из аминокислот, соединенных амидной связью:

Рис. 1. Амидная связь по представлению Фишера.

Такой тип связи Фишер назвал (по аналогии с пептонами) пептидной. Он предположил, что белки представляют собой полимеры аминокислот, соединенных пептидной связью. Доказывая пептидный тип соединения аминокислотных остатков. Э. Фишер исходил из следующих наблюдений. Во-первых, и при гидролизе белков, и при их ферментативном разложении образовывались различные аминокислоты. Другие соединения было чрезвычайно трудно описать а еще труднее получить. Кроме того Фишеру было известно, что у белков не наблюдается преобладания ни кислотных, ни основных свойств, значит, рассуждал он, амино- и карбоксильные группы в составе аминокислот в белковых молекулах замыкаются и как бы маскируют друг друга (амфотерность белков, как сказали бы сейчас).

Решение проблемы строения белка Фишер разделил, сведя ее к следующим положениям:

1) Качественное и количественное определение продуктов полного гидролиза белков.

2) Установление строения этих конечных продуктов.

3) Синтез полимеров аминокислот с соединениями амидного (пептидного) типа.

4) Сравнение полученных таким образом соединений с природными белками.

В дальнейшем пептидная теория Фишера была многочисленно пересмотрена и дополнена.

1.2 Физико-химические свойства

- Амфотерность

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осномвные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, е-аминогруппа лизина и амидиновый остаток CNH(NH2) аргинина, в несколько меньшей степени -- имидазольный остаток гистидина). Каждый белок характеризуется изоэлектрической точкой (pI) -- кислотностью среды (pH), при которой суммарный электрический заряд молекул данного белка равен нулю и, соответственно, они не перемещаются в электрическом поле (например, при электрофорезе). В изоэлектрической точке гидратация и растворимость белка минимальны. Величина pI зависит от соотношения кислых и основных аминокислотных остатков в белке: у белков, содержащих много кислых аминокислотных остатков, изоэлектрические точки лежат в кислой области (такие белки называют кислыми), а у белков, содержащих больше основных остатков, -- в щелочной (основные белки). Значение pI данного белка также может меняться в зависимости от ионной силы и типа буферного раствора, в котором он находится, так как нейтральные соли влияют на степень ионизации химических группировок белка. pI белка можно определить, например, из кривой титрования или с помощью изоэлектрофокусирования.

В целом, pI белка зависит от выполняемой им функции: изоэлектрическая точка большинства белков тканей позвоночных лежит в пределах от 5,5 до 7,0, однако в некоторых случаях значения лежат в экстремальных областях: так, например, для пепсина -- протеолитического фермента сильнокислого желудочного сока pI ~ 1[15], а для сальмина -- белка-протамина молок лосося, особенностью которого является высокое содержание аргинина, -- pI ~ 12. Белки, связывающиеся с нуклеиновыми кислотами за счёт электростатического взаимодействия с фосфатными группами, часто являются основными белками. Примером таких белков служат гистоны и протамины.

- Растворимость

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т.п.) и фиброин, который входит в состав шёлка и паутины [16]. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Белки также делятся на гидрофильные и гидрофобные (водооталкивающие). К гидрофильным относится большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относится большинство белков, входящих в состав биологических мембран, -- интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны[17] (у этих белков, как правило, есть и гидрофильные участки).

- Денатурация

Денатурацией белка называют любые изменения в его биологической активности и/или физико-химических свойствах, связанные с потерей четвертичной, третичной или вторичной структуры (см. раздел "Структура белка"). Как правило, белки достаточно стабильны в тех условиях (температура, pH и др.), в которых они в норме функционируют в организме. Резкое изменение этих условий приводит к денатурации белка. В зависимости от природы денатурирующего агента выделяют механическую (сильное перемешивание или встряхивание), физическую (нагревание, охлаждение, облучение, обработка ультразвуком) и химическую (кислоты и щёлочи, поверхностно-активные вещества, мочевина) денатурацию.

Денатурация белка может быть полной или частичной, обратимой или необратимой. Самый известный случай необратимой денатурации белка в быту -- это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения водорастворимых белков с помощью солей аммония, и используется как способ их очистки.

1.3 Структура белков

Молекулы белков представляют собой линейные полимеры, состоящие из остатков б-L-аминокислот (которые являются мономерами), также в состав белков могут входить модифицированные аминокислотные остатки и компоненты неаминокислотной природы. Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков "всего" 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки из 5 аминокислотных остатков оно составляет уже более 3 миллионов, а цепочка из 100 аминокислотных остатков (небольшой белок) может быть представлена более чем в 10 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации -- белками, хотя это деление весьма условно.

При образовании белка в результате взаимодействия б-карбоксильной группы (-COOH) одной аминокислоты с б-аминогруппой (-NH2) другой аминокислоты образуются пептидные связи. Концы белка называют N- и C-концом, в зависимости от того, какая из групп концевого аминокислотного остатка свободна: -NH2 или -COOH, соответственно. При синтезе белка на рибосоме первым (N-концевым) аминокислотным остатком обычно является остаток метионина, а последующие остатки присоединяются к C-концу предыдущего.

Рис. 2. Уровни структуры белков

1.3.1 Первичная структура

Первичная структура представляет собой последовательность аминокислот в полипептидной цепи (рис. 3). Структура каждого индивидуального белка закодирована в участке ДНК, называемом геном. В процессе синтеза белка, информация, находящаяся в гене, сначала переписывается на мРНК в качестве матрицы, на рибосоме происходит сборка первичной структуры белка.

Каждый из 50 000 индивидуальных белков организма человека имеет уникальную для данного белка первичную структуру.

Изучая порядок чередования аминокислотных остатков в индивидуальных белках и сопоставляя эти знания с особенностями пространственного расположения молекулы, можно выявить общие фундаментальные закономерности формирования пространственной структуры белков.

Рис. 3. Первичная структура белка

1.3.2 Вторичная структура

Вторичной структурой белка называют пространственную структуру, образующуюся в результате взимодействий между функциональными группами, вхоядщими в состав пептидного остова. При этом пептидные цепи могут приобретать регулярные структуры двух типов: б-спирали (рис. 4) и в-структруа (рис. 5).

Под б-спиралью понимают структуру, в которой пептидный остов закручивается в виде спирали за счёт образрвания водородных связей между атомами кислорода карбонильных групп и атомами азота аминогрупп, входящих в состав пептидных групп через 4 аминокислотных остатка.

б-Спираль наиболее устойчивая комформация пептидного остова, это обусловлено наличием множества водородных связей, "стягивающих" б-спираль.

Под в-структурой понимают фигуру, подобную листу, сложенному "гармошкой". Фигура формируется за счет образования множества водородных связей между атомами пептидных групп линейных областей одной полипептидной цепи, делающей изгибы, или между разными полипептидными группами. В отличие от б-спиралей, разрыв водородных связей, формирующих в-структуры, не вызывает удлинения данных участков полипептидныхцепей.

Рис. 4. б-Спираль

Рис. 5. в-складчатый слой

1.3.3 Третичная структура

Третичная структура белка представляет собой трехмерную пространственную структуру, образующаяся за счёт взаимодействий между радикалами аминокислот, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи (рис. 6).

Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль.

Рис. 6. Третичная структура белка.

При взаимодействии с окружающими молекулами воды белковая молекула "стремится" свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

1.3.4 Четвертичная структура

Четвертичной структурой называют взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса (рис. 7)

Рис. 7. Четвертичная структура белка.

Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

1.4 Простые и сложные белки

Помимо пептидных цепей, в состав многих белков входят и неаминокислотные группы, и по этому критерию белки делят на две большие группы -- простые и сложные белки (протеиды). Простые белки состоят только из полипептидных цепей, сложные белки содержат также неаминокислотные, или простетические, группы. В зависимости от химической природы простетических групп среди сложных белков выделяют следующие классы:

Гликопротеины, содержащие в качестве простетической группы ковалентно связанные углеводные остатки; гликопротеины, содержащие остатки мукополисахаридов относятся к подклассу протеогликанов. В образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины относится к гликопротеинам. В протеогликанах углеводная часть составляет ~95% от общей массы молекулы белка, они являются основным компонентом межклеточного матрикса;

Липопротеины, содержащие в качестве простетической части нековалентно связанные липиды. Липопротеины, образованные белками-аполипопротеинами и связывающимися с ними липидами, используются для транспорта липидов в крови;

Металлопротеиды, содержащие негемовые координационно связанные ионы металлов. Среди металлопротеидов есть белки, выполняющие депонирующие и транспортные функции (например, железосодержащие ферритин и трансферрин) и ферменты (например, цинксодержащая карбоангидраза и различные супероксиддисмутазы, содержащие в активных центрах ионы меди, марганца, железа и других металлов);

Нуклеопротеиды, содержащие нековалентно связанные ДНК или РНК. К нуклеопротеидам относится хроматин, из которого состоят хромосомы;

Фосфопротеины, содержащие в качестве простетической группы ковалентно связанные остатки фосфорной кислоты. В образовании сложноэфирной связи с фосфатом участвуют гидроксильные группы серина, треонина и тирозина. Фосфопротеином, в частности, является казеин молока;

Хромопротеиды, содержащие окрашенные простетические группы различной химической природы. К ним относится множество белков с металлсодержащей порфириновой простетической группой, выполняющие разнообразные функции: гемопротеины (белки, содержащие в качестве простетической группы гем, например, гемоглобин и цитохромы), хлорофиллы, флавопротеиды с флавиновой группой и др.

1.5 Функция белков в организме

Так же как и другие биологические макромолекулы (полисахариды, липиды и нуклеиновые кислоты), белки являются необходимыми компонентами всех живых организмов и играют важную роль в жизнедеятельности клетки. Белки осуществляют процессы обмена веществ. Они входят в состав внутриклеточных структур -- органелл и цитоскелета, секретируются во внеклеточное пространство, где могут выступать в качестве сигнала, передаваемого между клетками, участвовать в гидролизе пищи и образовании межклеточного вещества.

Классификация белков по их функциям является достаточно условной, так как один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза -- фермент из класса аминоацил-тРНК-синтетаз, которая не только присоединяет остаток лизина к тРНК, но и регулирует транскрипцию нескольких генов. Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин, регуляторные белки протеинкиназы, транспортный белок натрий-калиевая аденозинтрифосфатаза и др.

1.5.1 Каталитическая функция

Наиболее хорошо известная функция белков в организме -- катализ различных химических реакций. Ферменты -- это белки, обладающие специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), в том числе репликацию и репарацию ДНК и матричный синтез РНК. К 2013 году было описано более 5000 тысяч ферментов. Ускорение реакции в результате ферментативного катализа может быть огромным: например, реакция, катализируемая ферментом оротидин-5'-фосфатдекарбоксилазой, протекает в 1017 раз быстрее некатализируемой (период полуреакции декарбоксилирования оротовой кислоты составляет 78 миллионов лет без фермента и 18 миллисекунд с участием фермента). Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислотных остатков, только небольшая часть из них взаимодействует с субстратом, и ещё меньшее количество -- в среднем 3--4 аминокислотных остатка, часто расположенные далеко друг от друга в первичной структуре -- напрямую участвуют в катализе. Часть молекулы фермента, которая обеспечивает связывание субстрата и катализ, называется активным центром.

Международный союз биохимии и молекулярной биологии в 1992 году предложил окончательный вариант иерархической номенклатуры ферментов, основанной на типе катализируемых ими реакций. Согласно этой номенклатуре названия ферментов всегда должны иметь окончание -аза и образовываться от названий катализируемых реакций и их субстратов. Каждому ферменту приписывается индивидуальный код, по которому легко определить его положение в иерархии ферментов. По типу катализируемых реакций все ферменты делят на 6 классов:

· Оксидоредуктазы, катализирующие окислительно-восстановительные реакции;

· Трансферазы, катализирующие перенос химических групп с одной молекулы субстрата на другую;

· Гидролазы, катализирующие гидролиз химических связей;

· Лиазы, катализирующие разрыв химических связей без гидролиза с образованием двойной связи в одном из продуктов;

· Изомеразы, катализирующие структурные или геометрические изменения в молекуле субстрата;

· Лигазы, катализирующие образование химических связей между субстратами за счёт гидролиза дифосфатной связи АТФ или сходного трифосфата.

1.5.2 Структурная функция

Структурные белки цитоскелета, как своего рода арматура, придают форму клеткам и многим органоидам и участвуют в изменении формы клеток. Большинство структурных белков являются филаментозными: например, мономеры актина и тубулина -- это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин -- основные компоненты межклеточного вещества соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

1.5.3 Защитная функция

Существует несколько видов защитных функций белков:

ь Физическая защита. Физическую защиту организма обеспечивают коллаген -- белок, образующий основу межклеточного вещества соединительных тканей (в том числе костей, хряща, сухожилий и глубоких слоёв кожи (дермы)); кератин, составляющий основу роговых щитков, волос, перьев, рогов и др. производных эпидермиса. Обычно такие белки рассматривают как белки со структурной функцией. Примерами белков этой группы служат фибриногены и тромбины, участвующие в свёртывании крови.

ь Химическая защита. Связывание токсинов белковыми молекулами может обеспечивать их детоксикацию. Особенно важную роль в детоксикации у человека играют ферменты печени, расщепляющие яды или переводящие их в растворимую форму, что способствует их быстрому выведению из организма.

ь Иммунная защита. Белки, входящие в состав кров и других биологических жидкостей, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Белки системы комплемента и антитела (иммуноглобулины) относятся к белкам второй группы; они нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами.

1.5.4 Регуляторная функция

Многие процессы внутри клеток регулируются белковыми молекулами, которые не служат ни источником энергии, ни строительным материалом для клетки. Эти белки регулируют продвижение клетки по клеточному циклу, транскрипцию, трансляцию, сплайсинг, активность других белков и многие другие процессы. Регуляторную функцию белки осуществляют либо за счёт ферментативной активности (например, протеинкиназы), либо за счёт специфичного связывания с другими молекулами. Так, факторы транскрипции, белки-активаторы и белки-репрессоры, могут регулировать интенсивность транскрипции генов, связываясь с их регуляторными последовательностями. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов.

Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы и протеинфосфатазы -- ферменты, которые активируют или подавляют активность других белков путём присоединения к ним или отщепления фосфатных групп.

1.5.5 Сигнальная функция

Сигнальная функция белков -- способность белков служить сигнальными веществами, передавая сигналы между клетками, тканями, омрганами и организмами. Часто сигнальную функцию объединяют с регуляторной, так как многие внутриклеточные регуляторные белки тоже осуществляют передачу сигналов.

Сигнальную функцию выполняют белки-гормоны, цитокины, факторы роста и др.

Гормоны переносятся кровью. Большинство гормонов животных -- это белки или пептиды. Связывание гормона с его рецептором является сигналом, запускающим ответную реакцию клетки. Гормоны регулируют концентрации веществ в крови и клетках, рост, размножение и другие процессы. Примером таких белков служит инсулин, который регулирует концентрацию глюкозы в крови.

Клетки взаимодействуют друг с другом с помощью сигнальных белков, передаваемых через межклеточное вещество. К таким белкам относятся, например, цитокины и факторы роста.

Цитокины -- пептидные сигнальные молекулы. Они регулируют взаимодействия между клетками, определяют их выживаемость, стимулируют или подавляют рост, дифференцировку, функциональную активность и апоптоз, обеспечивают согласованность действий иммунной, эндокринной и нервной систем. Примером цитокинов может служить фактор некроза опухоли, который передаёт сигналы воспаления между клетками организма.

1.5.6 Транспортная функция

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (аффинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться через мембрану.

Многие ионные каналы специализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. "Электростанция клетки" -- АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам.

1.5.7 Запасная (резервная) функция

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений (например, глобулины 7S и 11S) и яйцеклетках животных.

Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

1.5.8 Рецепторная функция

Белковые рецепторы могут находиться как в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, которым чаще всего служит химическое вещество, а в некоторых случаях -- свет, механическое воздействие (например, растяжение) и другие стимулы. При воздействии сигнала на определённый участок молекулы -- белок-рецептор -- происходят её конформационные изменения. В результате меняется конформация другой части молекулы, осуществляющей передачу сигнала на другие клеточные компоненты. Существует несколько механизмов передачи сигнала. Некоторые рецепторы катализируют определённую химическую реакцию; другие служат ионными каналами, которые при действии сигнала открываются или закрываются; третьи специфически связывают внутриклеточные молекулы-посредники. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, -- внутри.

1.5.9 Моторная (двигательная) функция

Целый класс моторных белков обеспечивает движения организма, например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), движение ресничек и жгутиков, а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят молекулы и органоиды из периферических частей клетки по направлению к центросоме, кинезины -- в противоположном направлении. Динеины также отвечают за движение ресничек и жгутиков эукариот. Цитоплазматические варианты миозина могут принимать участие в транспорте молекул и органоидов по микрофиламентам.

1.6 Белки в обмене веществ

Большинство микроорганизмов и растений могут синтезировать 20 стандартных аминокислот, а также дополнительные (нестандартные) аминокислоты, например, цитруллин. Но если аминокислоты есть в окружающей среде, даже микроорганизмы сохраняют энергию путём транспорта аминокислот внутрь клеток и выключения их биосинтетических путей.

Аминокислоты, которые не могут быть синтезированы животными, называются незаменимыми. Основные ферменты в биосинтетических путях, например, аспартаткиназа, которая катализирует первый этап в образовании лизина, метионина и треонина из аспартата, отсутствуют у животных.

Животные, в основном, получают аминокислоты из белков, содержащихся в пище. Белки разрушаются в процессе пищеварения, который обычно начинается с денатурации белка путём помещения его в кислотную среду и гидролиза с помощью ферментов, называемых протеазами. Некоторые аминокислоты, полученные в результате пищеварения, используются для синтеза белков организма, а остальные превращаются в глюкозу в процессе глюконеогенеза или используются в цикле Кребса. Использование белка в качестве источника энергии особенно важно в условиях голодания, когда собственные белки организма, в особенности мускулов, служат источником энергии. Аминокислоты также являются важным источником азота в питании организма.

Единых норм потребления белков человеком нет. Микрофлора толстого кишечника синтезирует аминокислоты, которые не учитываются при составлении белковых норм.

2. Тирозин

Тирозимн (б-амино-в-(п-гидроксифенил)пропионовая кислота, сокр.: Тир, Tyr, Y) -- ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах -- L и D и в виде рацемата (DL). По строению соединение отличается от фенилаланина наличием фенольной гидроксильной группы в пара-положении бензольного кольца. Известны менее важные с биологической точки зрения мета- и орто- изомеры тирозина.

L-тирозин является протеиногенной аминокислотой и входит в состав белков всех известных живых организмов. Тирозин входит в состав ферментов, во многих из которых именно тирозину отведена ключевая роль в ферментативной активности и её регуляции. Местом атаки фосфорилирующих ферментов протеинкиназ часто является именно фенольный гидроксил остатков тирозина. Остаток тирозина в составе белков может подвергаться и другим посттрансляционным модификациям. В некоторых белках (резилин насекомых) присутствуют молекулярные сшивки, возникающие в результате посттрансляционной окислительной конденсации остатков тирозина с образованием дитирозина и тритирозина.

Окрашивание в результате ксантопротеиновой качественной реакции на белки определяется преимущественно нитрованием остатков тирозина (нитруются также остатки фенилаланина, триптофана, и гистидина).

- Качественная реакция

Желтое окрашивание при нагревании с крепкой азотной кислотой, которое при последующем подщелачивании переходит в оранжевое. Такую реакцию дают белки и пептиды, содержащие в структуре циклические аминокислоты (фенилаланин, тирозин, триптофан). Продукта реакции -- нитропроизводные циклических аминокислот -- образуются по схеме

Эта реакция получила название ксантопротеиновой.

- Реакция замещения

Белки, содержащие в своей структуре тирозин, взаимодействуют с реактивом Миллона (раствор ртути в азотной кислоте, содержащей азотистую кислоту). При этом выпадает осадок коричневокрасного цвета:

- Реакция разложения

В результате кипячения растворов белков в присутствии сильной кислоты или щелочи пептидные связи подвергаются гидролизу, в результате чего образуются свободные аминокислоты. Пептидные связи могут быть гидролизованы также под действием протеолитических ферментов:

Продуктами реакции в случае использования кислот или щелочей являются аминокислоты независимо от их набора и последовательности соединения в цепях. При использовании протеолитических ферментов расщепление пептидных связей происходит избирательно в соответствии со специфичностью конкретного фермента. Результатом такого гидролиза является смесь аминокислот и пептидов. Способность пептидной связи к расщеплению с участием воды нашло широкое применение в пищевой технологии, в практике анализа химической структуры белков. По типу гидролитического расщепления происходит превращение белков в желудочно-кишечном тракте в процессе пищеварения животный организмов и т.д.

Заключение

Белки по праву можно назвать основой жизни всех организмов. Так как без них нормальное функционирование любого организма невозможно. Все многочисленные функции организма напрямую зависят от них.

Без белков или их составных частей - аминокислот - не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов.

Белки - основная и необходимая часть всех организмов. Белки осуществляют обмен веществ и энергетические превращения, они неразрывно связаны с активными биологическими функциями. Если исключить из рациона питания белковую пищу, то организм начнет слабеть, и при длительном отсутствии белковой пищи погибнет.

Фридрих Энгельс дал следующее определение жизни: "Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка".

Список использованных источников

1. Белки - основа жизни [Электронный документ] http://www.km.ru/referats/332549-belki---osnova-zhizni# Проверено: 14.05.2014

2. Белки (протеины, полипептиды) [Электронный документ] http://ru.wikipedia.org/wiki/Белки Проверено 14.05.2014

3. Ю.А. Овчинников. Биоорганическая химия. - М: Просвещение, 1987 - 815 с.: ил.

4. Химические свойства белков [электронный документ] http://tweetbot.ru/himiya-pischi/1287-himicheskie-svoystva-belkov.html Проверено: 28.05.2014.

Размещено на Allbest.ru


Подобные документы

  • Белки – высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Наследственная информация сосредоточена в молекуле ДНК. С помощью белков реализуется генетическая информация. Классификация аминокислот.

    реферат [21,6 K], добавлен 17.01.2009

  • Характеристика белков как высокомолекулярных соединений, их структура и образование, физико–химические свойства. Ферменты переваривания белков в пищеварительном тракте. Всасывание продуктов распада белков и использование аминокислот в тканях организма.

    реферат [66,2 K], добавлен 22.06.2010

  • Белки как высокомолекулярные природные соединения, состоящие из остатков аминокислот, которые соединены пептидной связью. Качественный состав белков, их структура и функции. Процессы гидролиза (кислотно-основного, ферментативного) и денатурация белков.

    презентация [212,1 K], добавлен 11.02.2015

  • Общие пути обмена аминокислот. Значение и функции белков в организме. Нормы белка и его биологическая ценность. Источники и пути использования аминокислот. Азотистый баланс. Панкреатический сок. Переваривание сложных белков. Понятие трансаминирования.

    презентация [6,6 M], добавлен 05.10.2011

  • Роль в живой природе. Состав и свойства белков. Классификация белков. Определение строения белков. Определение наличия белка. Идентификация белков и полипептидов. Синтез пептидов. Искусственное получение белка. Аминокислоты.

    реферат [16,2 K], добавлен 01.12.2006

  • Пути внедрения ферментативных методов синтеза в химическое производство. Способ определения содержания аминокислот триптофана и цистеина в составе белков. Специфика строения и состава структурных белков биологической мембраны. Характеристика видов РНК.

    контрольная работа [522,0 K], добавлен 18.05.2011

  • Оценка сложившегося административно-территориального устройства России. Исследование белков. Классификация белков. Состав и строение. Химические и физические свойства. Химический синтез белков. Значение белков.

    реферат [537,6 K], добавлен 13.04.2003

  • Понятие и основатели химии белка. Состав, уровень организации, структура белка. Денатурация, биуретовая реакция, гидролиз белков. Полноценные и неполноценные белки. Белки, жиры и углеводы - основа питания, их необходимое количество для человека.

    презентация [7,4 M], добавлен 26.01.2011

  • Электрохимические методы анализа веществ. Общие физико-химические свойства аминокислот и белков, их функции в клетках живых организмов. Использование методов полярографии и амперометрии в исследовании кинетики химических процессов в аминокислотах.

    курсовая работа [2,5 M], добавлен 18.07.2014

  • Основные химические элементы, входящие в состав белков. Белки - полимеры, мономерами которых являются аминокислоты. Строение аминокислот, уровни организации белковых молекул. Структуры белка, основные свойства белков. Денатурация белка и ее виды.

    презентация [1,7 M], добавлен 15.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.