Огнестойкие композиции на основе полибутилентерефталата

Анализ возможностей повышения огнестойкости вторичного полиэтилентерефталата (ПЭТФ) введением в него в качестве антипирена органоглины. Сущность современных физико-химических методов анализа полимерных материалов. Механизм действия полимерных материалов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 11.10.2010
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ПТР, характеризующий реологические свойства расплавов вторичного ЭТФ и его композиций с органоглиной, определяют на капиллярном вискози- метре ИИРТ-М (рис. 2.2.), который представляет собой стальной цилиндрический корпус 4, имеющий два продольных канала. Один канал служит для загрузки.

На верхней части поршня находится втулка 2, на которой помещен съемный груз 1. В нижней части центрального канала укреплено стандартное сопло 6, выполненное из закаленной стали. Сопло не должно выступать за пределы корпуса.

Корпус пластометра имеет электрообогрев 5, при помощи которого можно создавать в цилиндре необходимую температуру. Температура поддерживается автоматически и регулируется при помощи электронного потенциометра.

Прибор снабжен выдавливающим устройством для удаления остатков испытуемого полимера. Все поверхности пластометра, соприкасающиеся с материалом, должны быть отполированы. Пластометр устанавливают вертикально и укрепляют на металлической подставке 7 [67].

Для испытуемого материала с ПТР от 0,15 до 25 г/10 мин применяют

стандартное сопло с внутренним диаметром 2,095 ± 0,005 мм. При большой текучести полимеров (от 25 до 250 г/10 мин) применяется сопло с внутренним диаметром от 1,160 до 1,200 мм.

Полимер для определения ПТР используют в виде порошка или неболь

ших гранул.

Вес груза Р (в г) для стандартного сопла рассчитывают по формуле:

где, D - диаметр поршня, мм; d - диаметр сопла, мм.

Колебания в весе груза допускаются в пределах ±10 г.

Перед началом испытаний прибор нагревают до необходимой температуры (в данном случае - 260 °С), выдерживают в течение 15 мин, а затем в центральный канал вводят навеску испытуемого полимера и опускают поршень без груза. Спустя 3-4 мин, когда установится необходимая температура полимера,

на поршень помещают груз (в данном случае груз стандартный - 2,160 кг). Материал начинает выдавливаться через сопло пластометра. Первую выдавленную порцию загрузки (примерно 1/3) отбрасывают, а последующие порции срезают через определенные промежутки времени (5 с) и после охлаждения взвешивают.

Расчет ПТР осуществляют по следующей формуле:

М-600 ПТР = где М - масса (усредненная по пяти значениям) полимерного образца, выдавленного из сопла пластометра через каждые 5 с; 600 - стандартное время испытаний для большинства полимеров, с; Т - время опыта, с [67].

В условном обозначении ПТР верхний индекс обозначает температуру испытаний в °С, а нижний - нагрузку в кг, при которой выполнены измерения ПТР.

Рис. 2.2. Схема прибора для определения показателя текучести расплава полимера: 1 - груз; 2 - втулка; 3 - поршень; 4 - цилиндр; 5 - электрообогрев; 6 - сопло; 7 -- подставка.

2.7 Измерение плотности

Плотность литых образцов определяют методом гидростатического взвешивания согласно методике [67]. Для этого отлитую таблетку, взвешивают с точностью до 0,002 г. Погружают в жидкость, в которой исходный вторичный ПЭТФ, а также композиции на его основе не растворяются и не набухают), для удаления с поверхности таблетки пузырьков воздуха их вытирают фильтровальной бумагой. После этого образец подвешивают на очень тонкой проволоке к крючку над чашкой весов и подставляют стакан с жидкостью (с дистиллированной водой), в которой проводят определение. Стакан ставят на специальну подставку, которая не должна касаться чашки весов. Образец с проволокой погружают в воду при 20 °С и взвешивают. Затем взвешивают проволоку без образца при этом же уровне погружения. Схема прибора для определения плотно- гидростатическим взвешиванием представлена на рис. 2.3. Плотность полимерных композиций р (г/см3) вычисляют по формуле:

Ударные испытания по методу Шарпи

Ударные испытания выполнены согласно общепринятой методике Шарпи трехточечный высокоскоростной изгиб) - ГОСТ 4746-80, образцы типоразмера, имеющие следующие размеры: длина L = 50 мм, ширина В = 6 мм и толщина = 4 мм,. Ударные испытания выполнены на маятниковом копре ИТ-1/4 со малой энергии 1,0 Дж. Скорость х> ударника в момент контакта с образцом равнялась 2,9 м/с (согласно паспорту). Общий вид такой установки показан на рисунке 2.4. [69].

Ударную вязкость Ар для исходного вторичного ПЭТФ и композиций на основе вторичного ПЭТФ и органоглины определяли по формуле:

где, U - энергия разрушения образца, Дж; В - ширина образца, мм; D - толщина образца композита, мм.

Образцы для ударных испытаний получены литьем под давлением

ЮМПа на термопластавтомате «KuASY-l,6 х 2/1» (Германия) при температуре 260 °С.

Рис. 2.4. Общий вид установки для ударных испытаний по методике Шарпи.

2.9 Статистическая обработка данных

Любые измерения сопровождаются той или иной ошибкой или погрешностью, которые можно разделить на два вида: систематические и случайные. [70]

В ходе исследования физико-химических свойств полимера проводили несколько определений, которые характеризуются воспроизводимостью полученных результатов, зависящей от случайных погрешностей, и правильностью результатов, являющейся следствием систематической погрешности.

Для оценки воспроизводимости результатов эксперимента используем методы математической статистики, разработанные для малого числа измерений п.

Доверительный интервал. При отсутствии систематической погрешности среднее арифметическое значение х не совсем совпадает с истинным значением величины. Отличие носит вероятностный характер и может быть оценено с учетом несовпадения реального t-распределения погрешностей с распределением при бесконечно большом числе определений.

Численное значение ширины доверительного интервала 5 зависит как от числа выполненных определений п, так и от выбранного значения доверительной вероятности Р:

Где tpin - коэффициент Стьюдента, численные значения которого приводятся в справочной литературе.

Полученные результаты представляют в виде интервального значения определенной величины:

что равнозначно указанию четырех величин: х, S„, п, Р.

Воспроизводимость измерения выражают также в виде относительной погрешности прямого измерения Ах (%):

Все измерения следует выполнять с одинаковой относительной недостоверностью [71].

Глава 3. Обсуждение результатов исследования

Как известно, развитие современной техники невозможно без исследования пластических масс в особенности полимерных материалов с пониженной горючестью. Пожары, обусловленные воспламенением и горением полимерных материалов ежегодно наносят большой вред человеку. Во многих странах мира приняты специальные постановления об ограничении использования горючих полимерных материалов в строительстве промышленных и гражданских сооружений, при проектировании и создании транспортных средств, в электротехнике, электронике, производстве товаров бытового назначения. Принятие этих мер способствует интенсификации научных исследований по огнестойким полимерным материалам.

При этом пожарная опасность материалов и изделий из них определяется в технике следующими характеристиками: 1) горючестью, т.е. способностью материала загораться, поддерживать и распространять процесс горения; 2) дымовыделением при горении и воздействии пламени; 3) токсичностью продуктов горения и пиролиза - разложения веществ под действием высоких температур; 4) огнестойкостью конструкции, т.е. степенью сохранения физико-механических и функциональных свойств изделия при воздействии пламени [65]. Практически все полимеры можно условно разделить на 2 большие группы по отношению к тепловому воздействию:

разлагающиеся почти нацело (коксовые числа их не превышают 1-2 %);

карбонизирующиеся при нагревании. Согласно Ван Кревелену [11] достаточно коксовое число полимера довести до 10 %, чтобы кислородный индекс полимера повысился до 21.5 %. При достижении коксового числа 20-25 % полимер попадает в разряд трудногорючего или негорючего.

Эффективным методом понижения горючести полимерных материалов является применение огнегасящих добавок - антипиренов. Антипирены - это вещества, которые влияют на химию процессов в конденсированной или газовой фазе, или на поверхности раздела фаз.

Действие антипиренов проявляется в следующих характеристиках:

изменение состава летучих продуктов пиролиза полимеров;

вменение выхода кокса;

способность выделятся из полимерного субстрата в процессе горения;

зависимость эффекта замедления горения от природы окисли-

теля и структуры полимера.

В случае, если не удается изменить направление реакций термического разложения полимера в сторону образования кокса, наиболее эффективным путем снижения горючести является применение антипиренов газофазного действия.

Универсальных антипиренов для разных полимеров не существует, что объясняется, прежде всего, специфическим взаимодействием полимера с антипиреном, индивидуальными термическими характеристиками полимера и добавок.

Снижение горючести полимерных материалов можно проводить двумя путями: физические и химические меры воздействия на процесс го

рения. Но они используются для подавления уже возникшего процесса горения.

Методы снижения горючести полимерных материалах основаны на таких принципах как:

1)изменение теплового баланса пламени за счет увеличения раз- личного рода теплопотерь;

снижение потока тепла от пламени на полимер за счет создания защитных слоев, например из образующегося кокса;

уменьшение скорости газификации полимера;

изменение соотношения горючих и негорючих продуктов разложения материалов в пользу негорючих.

Учитывая эти принципы, а также экологическую сторону проблемы, достаточно перспективным направлением в области снижения горючести полимерных материалов является, применение в качестве антипиренов органомодифицированные глины. В связи с этим в работе в качестве ан-типирена для вторичного полиэтилентерефталата, использован органомо-дифицированный монтмориллонит. Выбор органоглины еще обусловлен отсутствием их негативного воздействия на окружающую среду, дешевизной и доступностью.

3.1 Оценка горючести композитов ВПЭТФ + органомодифицированный ММТ по скорости горения

Для оценки огнестойкости полимерных материалов нами были использованы такие характеристики как линейная скорость выгорания образцов и коксовый остаток.

Для определения линейной скорости выгорания применяли стандартные пластины с размерами 100x10x1 мм, высота пламени 100 мм.

Как показали наши исследования, горение исходного вторичного ПЭТФ сопровождается достаточно сильным капанием расплава полимера, образованием черного дыма, интенсивным горением. В отличие от него композиты, содержащие органомодифицированный монтмориллонит горят значительно медленнее, с незначительным образованием капель расплава полимера и дыма. Последнее обстоятельство играет важную роль в предотвращении попадания вредных продуктов разложения полимерных материалов в окружающую природную среду. Уменьшение линейной скорости выгорания и незначительное образование капель расплава в композитах ВПЭТФ + органоглина, очевидно, связано со снижением доступа кислорода из воздуха в зону пламени или с образованием коксовой корки органоглины на поверхности полимерного материала. Это образование снижает, во-первых, выход горючих продуктов в газовую фазу, во-вторых, уменьшает поток горючих газов к пламени. В свою очередь эти обстоятельства препятствуют распространению пламени, снижая тем самым скорость горения материала. Действительно, углерод, остающийся в твердой фазе, мог бы попасть в пламя и окислиться до углекислого таза с большим тепловым эффектом. Конечно, в большом пожаре этим все дело и кончится, и никакой пользы от образования кокса мы не получим, разве, что снижение выбросов загрязняющих веществ. Но следует заметить, что в данном случае опасность исходит от слабых источников зажигания, поэтому эффект от образования кокса так важен.

При этом следует отметить, что образующаяся в поверхностной зоне корка ММТ способствует охлаждению поверхностных слоев материала, т. е. температура поверхности композиционного материала при горении ниже температуры пламени. Последнее обстоятельство приводит к большим тепловым потерям, и скорость горения материала становится малой. Кроме того, следует отметить, что корка монтмориллонита будет препятствовать переходу активных различных частиц из материала в пламенную зону тем самым снижая, горючесть данного материала. В результате этого композиты остывают раньше, чем превращаются в газообразные продукты горения.

На рисунке 3.1. приведена зависимость линейной скорости выгорания полученных композитов от содержания антипирена. Как видно из рисунка, введение органоглины способствует уже при концентрации АП 0,5

масс. % значительному снижению горючести полимера. А при введении органомодифицированного монтмориллонита во ВПЭТФ в количестве 2 и 5 масс. % данные композиционные материалы гаснут сразу и через 40 с, соответственно. При этом следует отметить, что горение данных композитов сопровождалось незначительным каплеобразованием и присутствием черного дыма. Однако композиты ВПЭТФ + органоглина по значениям времени линейной скорости выгорания лучше исходного вторичного ПЭТФ.

В полученных композитах вследствие снижения теплового эффекта процесса горения и катализа процесса коксования, количество коксового остатка всегда увеличивается, как будет показано ниже.

Анализ литературных источников показал, что антипирены на основе органоглин считаются более экологически чистыми, чем широко применяемые в промышленности галогенсодержащие соединения, при разложении которых в процессе горения образуются токсические вещества.

Оценка горючести композитов ВПЭТФ + органомодифицированный ММТ по коксовому остатку

Для подтверждения понижения горючести полученных композитов нами был определен коксовый остаток по данным термических исследований.

Анализ результатов термических исследований полученных нами композитов показывает, что введение во вторичный ПЭТФ органоглины способствует увеличению коксового остатка по сравнению с исходным полимером. Причем для композитов на основе ВПЭТФ и органоглины в количестве 1 и 2 масс. % характерно значительное коксовое число 34 %, 38 %, соответственно (рис. 3.2.).

Результаты определения КО согласуются со значениями линейной скорости выгорания композитов. Как видно, из рис. 3.2, добавка органоглины в той или иной мере повышает огнестойкость ВПЭТФ.

Кроме того, важно отметить, что при повышенных температурах органоглина не разлагается с выделением токсичных веществ в окружающую среду. В этом плане органоглина весьма перспективная добавка к полимерным материалам не только для повышения их огнестойкости, но и в качестве экологически чистого антипирена, продукты разложения которой не представляют опасности для людей. Исследования в этом направлении в настоящее время интенсивно ведутся.

Оценка физико-механических свойств композитов ВПЭТФ + органомодифицированный ММТ

Перед исследователями стоит проблема найти оптимальное количество антипирена, так чтобы остальные физико-механические показатели материала не ухудшались бы.

Для анализа влияния органомодифицированного монтмориллонита (антипирена) на эксплуатационные характеристики вторичного ПЭТФ и нахождения оптимальной концентрации, которая не оказывает негативное воздействие на исходный комплекс физико-механических характеристик, нами были проведены реологические и механические исследования полученных композитов.

Информативными и надежными методами оценки реологических и механических свойств полученных композиций являются определение показателя текучести расплава (ПТР) и деформационно-прочностных характеристик.

Характеристикой практической значимости для полимерных материалов служит показатель текучести расплава. По изменению ПТР можно судить о структурных и реологических изменениях, об изменении молекулярной массы полимера, происходящих в полимерной матрице после введения антипиренов.

Можно предположить, что при смешении полимера и органоглины образуется эксфолированная структура. В целом значения ПТР полученных композитов выше, чем у исходного полимера и близки к значениям ПТР промышленного ПЭТФ.

Важным критерием при выборе антипиренов является сохранение механических свойств исходного полимера. С этой целью нами было исследовано влияние органоглины на ударную вязкость ВПЭТФ.

Кроме того, одной из характеристик полимера, на что следует обратить внимание - это надмолекулярная структура. При этом, одним из параметров характеризующих надмолекулярную структуру и во многом определяющей механические свойства, является плотность. Плотность оценивали гидростатическим взвешиванием.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.