Основы пищевой химии

Понятие и структура углеводов, их классификация и типы, значение в человеческом организме, содержание в продуктах. Факторы, снижающие ингибирующее действие, принцип функционирования антиферментов. Роль кислот в формировании вкуса и запаха продуктов.

Рубрика Химия
Вид контрольная работа
Язык русский
Дата добавления 02.12.2014
Размер файла 30,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Углеводы, их классификация. Содержание в пищевых продуктах. Значение в питании

Углеводы - это органические соединения, имеющие в составе альдегидную или кетонную и спиртовую группы. Под общим названием углеводы объединяют широко распространенные в природе соединения, к которым относятся и сладкие на вкус вещества, называемые сахарами, и родственные им по химической природе, но гораздо более сложные по составу, нерастворимые и не имеющие сладкого вкуса соединения, например, крахмал и целлюлоза (клетчатка).

Углеводы являются составной частью многих пищевых продуктов, так как составляют до 80-90% сухого вещества растений. В животных организмах углеводов содержится около 2% массы тела, но значение их велико для всех живых организмов, так как входят в состав нуклеотидов, из которых построены нуклеиновые кислоты, осуществляющие биосинтез белка и передачу наследственной информации. Многие углеводы играют важную роль в процессах, препятствующих свертывание крови и проникновение болезнетворных микроорганизмов в макроорганизмы, в явлениях иммунитета.

Образование органических веществ в природе начинается с фотосинтеза углеводов зелеными частями растений их СО2 и Н2О. В листьях и других зеленых частях растений в присутствии хлорофилла из углекислого газа, поступающего из воздуха, и воды, получаемой из почвы, под действием солнечного света образуются углеводы. Синтез углеводов сопровождается поглощением большого количества солнечной энергии и выделением в окружающую среду кислорода.

Свет 12 Н2О + 6 СО2 - С6 Н12 О6 + 6О2 + 6 Н2О хлорофилл

Сахара в процессе дальнейших изменений в живых организмах дают начало другим органическим соединениям - полисахаридам, жирам, органическим кислотам, а в связи с усвоением азотистых веществ из почвы - белкам и многим другим. Многие сложные по составу углеводы в определенных условиях подвергаются гидролизу и распадаются на менее сложны; некоторые же из углеводов не разлагаются под действием воды. На этом основана классификация углеводов, которые делят на два основных класса:

1. Простые углеводы, или простые сахара, или моносахариды. Моносахариды содержат от 3 до 9 атомов углерода, наиболее распространены пентозы (5С) и гексозы (6С), а по функциональной группе альдозы и кетозы.

Широко известные моносахариды - глюкоза, фруктоза, галактоза, рабиноза, арабиноза, ксилоза и Д-рибоза.

Глюкоза (виноградный сахар) в свободном виде содержится в ягодах и фруктах (в винограде - до 8%; в сливе, черешне - 5-6%; в меде - 36%). Из молекул глюкозы построены крахмал, гликоген, мальтоза; глюкоза является основной часть сахарозы, лактозы.

Фруктоза (плодовый сахар) содержится в чистом виде в пчелином меде (до 37%), винограде (7,7%), яблоках (5,5%); является основной частью сахарозы.

Галактоза - составная часть молочного сахара (лактозы), которая содержится в молоке млекопитающих, растительных тканях, семенах.

Арабиноза содержится в хвойных растениях, в свекловичном жоме, входит в пектиновые вещества, слизи, гумми (камеди), гемицеллюлозы.

Ксилоза (древесный сахар) содержится в хлопковой шелухе, кукурузных кочерыжках. Ксилоза входит в состав пентозанов. Соединяясь с фосфором, ксилоза переходит в активные соединения, играющие важную роль во взаимопревращениях сахаров.

В ряду моносахаридов особое место занимает D-рибоза. Почему природа всем сахарам предпочла рибозу - пока не ясно, но именно она служит универсальным компонентом главных биологически активных молекул, ответственных за передачу наследственной информации, - рибонуклеиновой (РНК) и дезоксирибонуклеиновой (ДНК) кислот; входит она и в состав АТФ и АДФ, с помощью которых в любом живом организме запасается и переносится химическая энергия. Замена в АТФ одного из фосфатных остатков на пиридиновый фрагмент приводит к образованию еще одного важного агента - НАД - вещества, принимающего непосредственное участие в протекании жизненно важных окислительно-восстановительных процессов. Еще один ключевой агент - рибулоза 1,5 - дифосфат. Это соединение участвует в процессах ассимиляции углекислого газа растениями.

2. Сложные углеводы, или сложные сахара, или полисахариды (крахмал, гликоген и некрахмальные полисахариды - клетчатка (целлюлоза и гемицеллюлоза, пектины).

Различают полисахариды (олигосахариды) I и II порядков (полиозы).

Олигосахариды - это полисахариды I порядка, молекулы которых содержат от 2 до 10 остатков моносахаридов, соединенных гликозидными связями. В соответствии с этим различают дисахариды, трисахариды и т.д.

Дисахариды - сложные сахара, каждая молекула которых при гидролизе распадается на две молекулы моносахаридов. Дисахариды, наряду с полисахаридами, являются одним из основных источников углеводов в пище человека и животных. По строению дисахариды являются гликозидами, в которых две молекулы моносахаридов соединены гликозидной связью.

Среди дисахаридов особенно широко известны мальтоза, сахароза и лактоза. Мальтоза, являющаяся а-глюкопиранозил - (1,4) - а-глюкопиранозой, образуется в качестве промежуточного продукта при действии амилаз на крахмал (или гликоген).

Одним из наиболее распространенных дисахаридов является сахароза - обычный пищевой сахар. Молекула сахарозы состоит из одного остатка а-Э-глюкозы и одного остатка Р-Э-фруктозы. В отличие от большинства дисахаридов, сахароза не имеет свободного полуацетального гидроксила и не обладает восстанавливающими свойствами.

Дисахарид лактоза содержится только в молоке и состоит из Р-Э-галактозы и Э-глюкозы.

Полисахариды II порядка разделяются на структурные и резервные. К первым относится целлюлоза, а к резервным - гликоген (у животных) и крахмал (у растений).

Крахмал представляет собой комплекс из линейной амилозы (10-30%) и разветвленного амилопектина (70-90%), построенных из остатков молекулы глюкозы (а-амилоза и амилопектин в линейных цепях а - 1,4 - связами, амилопектин в точках ветвления межцепочными а - 1,6 - связами), общая формула которых С6Н10О5п.

Хлеб, картофель, крупы и овощи - главный энергетический ресурс организма человека.

Гликоген - полисахарид, широко распространенный в тканях животных, близкий по своему строению амилопектину (сильно разветвленные цепочки через каждые 3-4 звена, общее количество гликозидных остатков 5-50 тыс.)

Целлюлоза (клетчатка) является распространенным растительным гомополисахаридом, выполняет роль опорного материала растений (скелет растений). Древесина наполовину состоит из клетчатки и связанного с нею лигнина, это биополимер линейного характера, содержащий 600-900 остатков глюкозы, соединенных Р - 1,4 - гликозидными связами.

К моносахаридам относят соединения, имеющие в молекуле не менее 3 атомов углерода. В зависимости от количества атомов углерода в молекуле их называют триозами, тетрозами, пентозами, гексозами и гептозами.

В питании человека и животных углеводы составляют основную массу пищи. За счет углеводов обеспечивается 1/2 суточной энергетической потребности пищевого рациона человека. Углеводы способствуют предохранению белка от трат на энергетические цели.

В сутки взрослому человеку необходимо 400-500 г. углеводов (в том числе крахмала - 350-400 г., сахаров - 50-100 г., других углеводов - 25 г.), которые должны поступать с пищевыми продуктами. При тяжелой физической нагрузке потребность в углеводах возрастает. При избыточном введении в организм человека углеводы могут превращаться в жиры или откладываться в небольших количествах в печени и мышцах в виде животного крахмала - гликогена.

С точки зрения пищевой ценности углеводы подразделяются на усваиваемые и неусваиваемые. Усваиваемые углеводы - моно и дисахариды, крахмал, гликоген. Неусваиваемые - целлюлоза, гемицеллюлозы, инулин, пектин, гумми, слизи. В пищеварительном тракте человека усваиваемые углеводы (за исключением моносахаридов) расщепляются под действием ферментов до моносахаридов, которые через стенки кишечника всасываются в кровь и разносятся по всему телу. При избытке простых углеводов и отсутствии расхода энергии часть углеводов превращается в жир или откладывается в печени как запасной источник энергии на временное хранение в виде гликогена. Неусваиваемые углеводы организмом человека не утилизируются, но они чрезвычайно важны для пищеварения и составляют так называемые «пищевые волокна». Пищевые волокна стимулируют моторную функцию кишечника, препятствуют всасыванию холестерина, играют положительную роль в нормализации состава микрофлоры кишечника, в ингибировании гнилостных процессов, способствуют выведению из организма токсичных элементов.

Суточная норма пищевых волокон составляет 20-25 г. Животные продукты содержат мало углеводов, поэтому основным источником углеводов для человека служит растительная пища. Углеводы составляют три четверти сухой массы растений и водорослей, они содержатся в зерновых, фруктах, овощах. В растениях углеводы накапливаются как запасные вещества (например, крахмал) или они грают роль опорного материала (клетчатка).

Главными усваиваемыми углеводами в питании человека являются крахмал и сахароза. На долю крахмала приходится примерно 80% всех потребляемых человеком углеводов. Крахмал является главным энергетические ресурсом человека. Источники крахмала - зерновые, бобовые, картофель. Моносахариды и олигосахариды присутствуют в зерновых в относительно малых количествах. Сахароза обычно поступает в организм человека с продуктами, в которые она добавляется (кондитерские изделия, напитки, мороженое). Продукты с высоким содержанием сахара являются наименее ценными из всех углеводных продуктов. Известно, что необходимо увеличивать содержание в рационе пищевых волокон. Источником пищевых волокон являются ржаные и пшеничные отруби, овощи, фрукты. Хлеб из цельного зерна с точки зрения содержания пищевых волокон гораздо более ценен, чем хлеб из муки высших сортов. Углеводы плодов представлены в основном сахарозой, глюкозой, фруктозой, а также клетчаткой и пектиновыми веществами. Имеются продукты, состоящие почти из одних углеводов: крахмал, сахар, мед, карамель. Животные продукты содержат значительно меньше углеводов, чем растительные. Одним из главнейших представителей животных крахмалов является гликоген. Мясной и печеночный гликоген своим строением похожи на крахмал. А молоке содержится лактоза: 4,7% - в коровьем, 6,7% - в человеческом.

Свойства углеводов и их превращения имеют большое значение при хранении и производстве пищевых продуктов. Так, во время хранения плодов и овощей происходит потеря массы в результате расхода углеводов на процессы дыхания. Превращения пектиновых веществ обуславливают изменение консистенции плодов.

2. Антиферменты. Содержание в пищевых продуктах. Принцип действия. Факторы, снижающие ингибирующее действие

Антиферменты (ингибиторы протенназ). Вещества белковой природы, блокирующие активность ферментов. Содержатся в сырых бобовых, яичном белке, пшенице, ячмене, других продуктах растительного и животного происхождения, не подвергшихся тепловой обработке. Изучено воздействие антиферментов на пищеварительные ферменты, в частности пепсин, трипсин, а-амилазу. Исключение составляет трипсин человека, который находится в катионной форме и поэтому не чувствителен к антипротеазе бобовых.

В настоящее время изучено несколько десятков природных ингибиторов протеиназ, их первичная структура и механизм действия. Трипсиновые ингибиторы, в зависимости от природы содержащейся в них диаминомонокарбоновой кислоты, подразделяются на два типа: аргининовый и лизиновый. К аргинино-вому типу относят: соевый ингибитор Кунитца, ингибиторы пшеницы, кукурузы, ржи, ячменя, картофеля, овомукоид куриного яйца и др., к лизиновому - соевый ингибитор Баумана-Бирка, овомукоиды яиц индейки, пингвинов, утки, а также ингибиторы, выделенные из молозива коровы.

Механизм действия этих антиалиментарных веществ заключается в образовании стойких энзимингибиторных комплексов и подавлении активности главных протеолитических ферментов поджелудочной железы: трипсина, химотрипсина и эластазы. Результатом такой блокады является снижение усвоения белковых веществ рациона.

Рассматриваемые ингибиторы растительного происхождения характеризуются относительно высокой термической устойчивостью, что нехарактерно для белковых веществ. Нагревание сухих растительных продуктов, содержащих указанные ингибиторы, до 130° С или получасовое кипячение не приводят к существенному снижению их ингибирующих свойств. Полное разрушение соевого ингибитора трипсина достигается 20-минутным автоклавированием при 115° С или кипячением соевых бобов в течение 2-3 ч.

Ингибиторы животного происхождения более чувствительны к тепловому воздействию. Вместе с тем потребление сырых яиц в большом количестве может оказать отрицательное влияние на усвоение белковой части рациона.

Отдельные ингибиторы ферментов могут играть в организме специфическую роль при определенных условиях и отдельных стадиях развития организма, что в целом определяет пути их исследования. Тепловая обработка продовольственного сырья приводит к денатурации белковой молекулы антифермента, т.е. он влияет на пищеварение только при потреблении сырой пищи.

Вещества, блокирующие усвоение или обмен аминокислот. Это влияние на аминокислоты, в основном лизин, со стороны редуцирующих Сахаров. Взаимодействие протекает в условиях жесткого нагревания по реакции Майяра, поэтому щадящая тепловая обработка и оптимальное содержание в рационе источников редуцирующих Сахаров обеспечивают хорошее усвоение незаменимых аминокислот.

углевод вкус антифермент кислота

3. Роль кислот в формировании вкуса и запаха продуктов питания. Применение пищевых кислот в производстве продуктов питания.

Почти во всех пищевых продуктах содержатся кислоты или их кислые и средние соли. В продуктах переработки кислоты переходят из сырья, но их часто добавляют в процессе производства или они образуются при брожении. Кислоты придают продуктам специфический вкус и тем самым способствуют их лучшему усвоению.

Пищевые кислоты представляют собой разнообразную по своим свойствам группу веществ органической и неорганической природы. Состав и особенности химического строения пищевых кислот различны и зависят от специфики пищевого объекта, а также природы кислотообразования.

В растительных продуктах чаще всего встречаются органические кислоты - яблочная, лимонная, винная, щавелевая, пировиноградная, молочная. В животных продуктах распространены молочная, фосфорная и другие кислоты. Кроме того, в свободном состоянии в небольших количествах находятся жирные кислоты, которые иногда ухудшают вкус и запах продуктов. Как правило, в пищевых продуктах содержатся смеси кислот.

Благодаря наличию свободных кислот и кислых солей многие продукты и их водные вытяжки обладают кислой реакцией.

Кислый вкус пищевого продукта обусловливают ионы водорода, образующиеся в результате электролитической диссоциации содержащихся в нем кислот и кислых солей. Активность ионов водорода (активная кислотность) характеризуется показателем рН (отрицательный логарифм концентрации водородных ионов).

Практически все пищевые кислоты являются слабыми и в водных растворах диссоциируют незначительно. Кроме того, в пищевой системе могут находиться буферные вещества, в присутствии которых активность ионов водорода будет сохраняться примерно постоянной из-за ее связи с равновесием диссоциации слабых электролитов. Примером такой системы является молоко. В связи с этим, суммарная концентрация в пищевом продукте веществ, имеющих кислотный характер, определяется показателем потенциальной, общей или титруемой (щелочью) кислотности. Для разных продуктов эта величина выражается через различные показатели. Например, в соках определяют общую кислотность в г на 1 л, в молоке - в градусах Тернера и т.д.

Пищевые кислоты в составе продовольственного сырья и продуктов выполняют различные функции, связанные с качеством пищевых объектов. В составе комплекса вкусоароматических веществ они участвуют в формировании вкуса и аромата, принадлежащих к числу основных показателей качества пищевого продукта. Именно вкус, наряду с запахом и внешним видом, по сей день оказывает более существенное влияние на выбор потребителем того или иного продукта по сравнению с такими показателями, как состав и пищевая ценность. Изменения вкуса и аромата часто оказываются признаками начинающейся порчи пищевого продукта или наличия в его составе посторонних веществ.

Главное вкусовое ощущение, вызываемое присутствием кислот в составе продукта, - кислый вкус, который в общем случае пропорционален концентрации ионов Н+ (с учетом различий в активности веществ, вызывающих одинаковое вкусовое восприятие). Например, пороговая концентрация (минимальная концентрация вкусового вещества, воспринимаемая органами чувств), позволяющая ощутить кислый вкус, составляет для лимонной кислоты 0,017%, для уксусной - 0,03%.

В случае органических кислот на восприятие кислого вкуса оказывает влияние и анион молекулы. В зависимости от природы последнего могут возникать комбинированные вкусовые ощущения, например, лимонная кислота имеет кисло-сладкий вкус, а пикриновая - кисло-горький. Изменение вкусовых ощущений происходит и в присутствии солей органических кислот. Так, соли аммония придают продукту соленый вкус. Естественно, что наличие в составе продукта нескольких органических кислот в сочетании с вкусовыми органическими веществами других классов обусловливают формирование оригинальных вкусовых ощущений, часто присущих исключительно одному, конкретному виду пищевых продуктов.

Участие органических кислот в образовании аромата в различных продуктах неодинаково. Доля органических кислот и их лактонов в комплексе ароматообразующих веществ, например земляники, составляет 14%, в помидорах - порядка 11%, в цитрусовых и пиве - порядка 16%, в хлебе - более 18%, тогда как в формировании аромата кофе на кислоты приходится менее 6%.

В состав ароматообразующего комплекса кисломолочных продуктов входят молочная, лимонная, уксусная, пропионовая и муравьиная кислоты.

Качество пищевого продукта представляет собой интегральную величину, включающую, помимо органолептических свойств (вкуса, цвета, аромата), показатели, характеризующие его коллоидную, химическую и микробиологическую стабильность.

Формирование качества продукта осуществляется на всех этапах технологического процесса его получения. При этом многие технологические показатели, обеспечивающие создание высококачественного продукта, зависят от активной кислотности (рН) пищевой системы.

В общем случае величина рН оказывает влияние на следующие технологические параметры:

- образование компонентов вкуса и аромата, характерных для конкретного вида продукта;

- коллоидную стабильность полидисперсной пищевой системы (например, коллоидное состояние белков молока или комплекса белково-дубильных соединений в пиве);

- термическую стабильность пищевой системы (например, термоустойчивость белковых веществ молочных продуктов, зависящую от состояния равновесия между ионизированным и коллоидно распределенным фосфатом кальция);

- биологическую стойкость (например, пива и соков);

- активность ферментов;

- условия роста полезной микрофлоры и ее влияние на процессы созревания (например, пива или сыров).

Наличие пищевых кислот в продукте может являться следствием преднамеренного введения кислоты в пищевую систему в ходе технологического процесса для регулирования ее рН. В этом случае пищевые кислоты используются в качестве технологических пищевых добавок.

Обобщенно можно выделить три основные цели добавления кислот в пищевую систему:

- придание определенных органолептических свойств (вкуса, цвета, аромата), характерных для конкретного продукта;

- влияние на коллоидные свойства, обусловливающие формирование консистенции, присущей конкретному продукту;

- повышение стабильности, обеспечивающей сохранение качества продукта в течение определенного времени.

Уксусная кислота (ледяная) Е460 является наиболее известной пищевой кислотой и выпускается в виде эссенции, содержащей 70-80% собственно кислоты. В быту используют разбавленную водой уксусную эссенцию, получившую название столовый уксус. Использование уксуса для консервирования пищевых продуктов - один из наиболее старых способов консервирования. В зависимости от сырья, из которого получают уксусную кислоту, различают винный, фруктовый, яблочный, спиртовой уксус и синтетическую уксусную кислоту. Уксусную кислоту получают путем уксуснокислого брожения. Соли и эфиры этой кислоты имеют название ацетаты. В качестве пищевых добавок используются ацетаты калия и натрия (Е461 и Е462).

Наряду с уксусной кислотой и ацетатами, применение находят диацетаты натрия и калия. Эти вещества состоят из уксусной кислоты и ацетатов в молярном соотношении 1:1. Уксусная кислота - бесцветная жидкость, смешивающаяся с водой во всех отношениях. Диацетат натрия - белый кристаллический порошок, растворимый в воде, с сильным запахом уксусной кислоты.

Уксусная кислота не имеет законодательных ограничений; ее действие основано, главным образом, на снижении рН консервируемого продукта, проявляется при содержании выше 0,5% и направлено, главным образом, против бактерий. Основная область использования - овощные консервы и маринованные продукты. Применяется в майонезах, соусах, при мариновании рыбной продукции и овощей, ягод и фруктов. Уксусная кислота широко используется также как вкусовая добавка.

Молочная кислота выпускается в двух формах, отличающихся концентрацией: 40%-й раствор и концентрат, содержащий не менее 70% кислоты. Получают молочнокислым брожением сахаров. Ее соли и эфиры называются лактатами. В виде пищевой добавки Е270 используется в производстве безалкогольных напитков, карамельных масс, кисломолочных продуктов. Молочная кислота имеет ограничения к применению в продуктах детского питания.

Лимонная кислота - продукт лимоннокислого брожения сахаров. Имеет наиболее мягкий вкус по сравнению с другими пищевыми кислотами и не оказывает раздражающего действия на слизистые оболочки пищеварительного тракта. Соли и эфиры лимонной кислоты - цитраты. Применяется в кондитерской промышленности, при производстве безалкогольных напитков и некоторых видов рыбных консервов (пищевая добавка Е330).

Яблочная кислота обладает менее кислым вкусом, чем лимонная и винная. Для промышленного использования эту кислоту получают синтетическим путем из малеиновой кислоты, в связи с чем критерии чистоты включают ограничения по содержанию в ней примесей токсичной малеиновой кислоты. Соли и эфиры яблочной кислоты называются малатами. Яблочная кислота обладает химическими свойствами оксикислот. При нагревании до 100°С превращается в ангидрид. Применяется в кондитерском производстве и при получении безалкогольных напитков (пищевая добавка Е296).

Винная кислота является продуктом переработки отходов виноделия (винных дрожжей и винного камня). Не обладает каким-либо существенным раздражающим действием на слизистые оболочки желудочно-кишечного тракта и не подвергается обменным превращениям в организме человека. Основная часть (около 80%) разрушается в кишечнике под действием бактерий. Соли и эфиры винной кислоты называются тартратами. Применяется в кондитерских изделиях и в безалкогольных напитках (пищевая добавка Е334).

Янтарная кислота представляет собой побочный продукт производства адипиновой кислоты. Известен также способ ее выделения из отходов янтаря. Обладает химическими свойствами, характерными для дикарбоновых кислот, образует соли и эфиры, которые получили название сукцинаты. При 235°С янтарная кислота отщепляет воду, превращаясь в янтарный ангидрид. Используется в пищевой промышленности для регулирования рН пищевых систем (пищевая добавка Е363).

Янтарный ангидрид является продуктом высокотемпературной дегидратации янтарной кислоты. Получают также каталитическим гидрированием малеинового ангидрида. Плохо растворим в воде, где очень медленно гидролизуется в янтарную кислоту.

Адипиновая кислота получается в промышленности, главным образом, двухстадийным окислением циклогексана. Обладает всеми химическими свойствами, характерными для карбоновых кислот, в частности, образует соли, большинство из которых растворимо в воде. Легко этерифицируется в моно- и диэфиры. Соли и эфиры адипиновой кислоты получили название адипинаты. Является пищевой добавкой (Е355), обеспечивающей кислый вкус продуктов, в частности, безалкогольных напитков.

Фумаровая кислота содержится во многих растениях и грибах, образуется при брожении углеводов в присутствии Aspergillus fumaricus. Промышленный способ получения основан на изомеризации малеиновой кислоты под действием НС1, содержащей бром. Соли и эфиры называются фумаратами. В пищевой промышленности фумаровую кислоту используют как заменитель лимонной и винной кислот (пищевая добавка Е297). Обладает токсичностью, в связи с чем суточное потребление с продуктами питания лимитировано уровнем 6 мг на 1 кг массы тела.

Глюконо-дельта-лактон - продукт ферментативного аэробного окисления (, D-глюкозы. В водных растворах глюконо-дельта-лактон гидро-лизуется в глюконовую кислоту, что сопровождается изменением рН раствора. Используется в качестве регулятора кислотности и разрыхлителя (пищевая добавка Е575) в десертных смесях и продуктах на основе мясных фаршей, например, в сосисках.

Фосфорная кислота и ее соли - фосфаты (калия, натрия и кальция) широко распространены в пищевом сырье и продуктах его переработки. В высоких концентрациях фосфаты содержатся в молочных, мясных и рыбных продуктах, в некоторых видах злаков и орехов. Фосфаты (пищевые добавки Е339 - 341) вводятся в безалкогольные напитки и кондитерские изделия. Допустимая суточная доза, в пересчете на фосфорную кислоту, соответствует 5-15 мг на 1 кг массы тела (поскольку избыточное количество ее в организме может стать причиной дисбаланса кальция и фосфора).

Список используемой литературы

1. Нечаев А.П. Пищевая химия/ А.П. Нечаев, С.Е. Траубенберг, А.А. Кочеткова и др.; под. Ред. А.П. Нечаева. СПб.: ГИОРД, 2012. - 672 с.

2. Дудкин М.С. Новые продукты питания/М.С. Дудкин, Л.Ф. Щелкунов. М.: МАИК «Наука», 1998. - 304 с.

3. Николаева М.А. Теоретические основы товароведения/ М.А. Николаева. М.: Норма, 2007. - 448 с.

4. Рогов И.А. Химия пищи./ И.А. Рогов, Л.В. Антипова, Н.И. Дунченко. - М.: Колосс, 2007. - 853 с.

5. Химический состав российских продуктов питания/под ред. И.М. Скурихина. М.: ДеЛипринт, 2002. - 236 с.

Размещено на Allbest.ru


Подобные документы

  • Биологическая роль углеводов, действие ферментов пищеварительного тракта на углеводы. Процесс гидролиза целлюлозы (клетчатки), всасывание продуктов распада углеводов. Анаэробное расщепление и реакция гликолиза. Пентозофосфатный путь окисления углеводов.

    реферат [48,6 K], добавлен 22.06.2010

  • Содержание пищевых кислот в продуктах питания и методы их определения. Характеристика некоторых из пищевых кислот. Обоснование титрования, определения и расчета количества аскорбиновой кислоты, динамика изменения её содержания при термообработке.

    дипломная работа [1,3 M], добавлен 03.07.2015

  • Загрязнение пищевых продуктов тяжелыми металлами. Токсическое действие соединений мышьяка. Методы идентификации и количественного определения йода в продуктах, продовольственном сырье и биологически активных добавках. Определение кислотности молока.

    курсовая работа [160,7 K], добавлен 04.01.2013

  • Общая формула углеводов, их первостепенное биохимическое значение, распространенность в природе и роль в жизни человека. Виды углеводов по химической структуре: простые и сложные (моно- и полисахариды). Произведение синтеза углеводов из формальдегида.

    контрольная работа [602,6 K], добавлен 24.01.2011

  • Контроль качества пищевых продуктов как основная задача аналитической химии. Особенности применения атомно-абсорбционного метода определения свинца в кофе. Химические свойства свинца, его физиологическая роль. Пробоподготовка, методики определения свинца.

    курсовая работа [195,2 K], добавлен 25.11.2014

  • Применение консервантов для наиболее важных групп продуктов. Сущность метода определения сорбиновой и бензойной кислот в пищевых продуктах. Подготовка средств измерений, оборудования и реактивов. Приготовление подвижной фазы хроматографической системы.

    презентация [1,1 M], добавлен 01.11.2016

  • Химические свойства металлов, их присутствие в организме человека. Роль в организме макроэлементов (калия, натрия, кальция, магния) и микроэлементов. Содержание макро- и микроэлементов в продуктах питания. Последствия дисбаланса определенных элементов.

    презентация [2,2 M], добавлен 13.03.2013

  • История открытия витаминов. Роль и значение витаминов в питании человека. Потребность в витаминах (авитаминоз, гиповитаминоз, гипервитаминоз). Классификация витаминов. Содержание витаминов в пищевых продуктах. Промышленное производство витаминов.

    курсовая работа [58,6 K], добавлен 24.05.2002

  • Характеристика свойств брома как химического элемента. История его открытия, уникальность воздействия этого металла на протекание биологических процессов в организме. Последствия недостатка брома в организме, его содержание в некоторых продуктах.

    презентация [321,0 K], добавлен 20.12.2012

  • Органические вещества, в состав которых входит углерод, кислород и водород. Общая формула химического состава углеводов. Строение и химические свойства моносахаридов, дисахаридов и полисахаридов. Основные функции углеводов в организме человека.

    презентация [1,6 M], добавлен 23.10.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.