Проектирование строительства завода цинкования мелкоразмерных конструкций

Архитектурно-строительный план. Конструктивные решения производственного корпуса. Отопление и вентиляция. Характеристика основных конструкций каркаса здания. Организация строительного производства завода. Локальная смета на общестроительные работы.

Рубрика Строительство и архитектура
Вид дипломная работа
Язык русский
Дата добавления 07.08.2010
Размер файла 5,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Коэффициент продольного изгиба:

По табл. 72 СНиП II-23-81 в зависимости от ly и Ry

fy = 0,4601 .

12) Определение коэффициента с для расчета на устойчивость из плоскости изгиба по формуле (56) п. 5.31

Момент сопротивления для сжатого пояса:

Wc = Wx2 =2850,1 см3 .

Относительный эксцентриситет:

mx = (Mx/N) (A/Wc)=(907800/33575) · (186,81/2850,1) = 1,77221 .

Тип сечения - открытые.

Т.к. mx r 5:

13) Расчет по п. 5.31 СНиП II-23-81

Т.к. mx > 1:

Коэффициент:

a = 0,65+0,05 mx =0,65+0,05 · 1,77221 = 0,73861 .

14) Расчет по п. 5.31 СНиП II-23-81

Коэффициент:

lc = 3,14=3,14 · = 93,86536 .

Т.к. ly=115,5573 > lc=93,86536:

Коэффициент:

По табл. 72 СНиП II-23-81 в зависимости от lc и Ry

fc = 0,59858 .

Коэффициент:

b = == 1,1406 .

Коэффициент:

c = b/(1+a mx) =1,1406/(1+0,73861 · 1,77221) = 0,49399 (формула (57); п. 5.31 СНиП II-23-81).

15) Продолжение расчета по п. 5.31 СНиП II-23-81

Коэффициент с не должен превышать cmax, определяемого в зависимости от коэффициентов:

Коэффициент:

r = (Jx+Jy)/(A h2)=(56147+18921,9)/(186,81 · 39,42) = 0,25886 .

Коэффициент:

m = 2+0,156·Jt/(A·h2) ·ly2=2+0,156·93,25/(186,81·39,42)·115,55732 = 2,66985 .

Коэффициент:

d = 4 r/ m=4 · 0,25886/2,66985 = 0,38783 .

cmax = 2/(1+d+ =

=2/(1+0,38783+=0,62976 (формула (60); п. 5.31 СНиП II-23-81).

16) Продолжение расчета по п. 5.30 СНиП II-23-81 N/(c·fy A)=33575/(0,49399·0,4601·186,81)=790,76149 кгс/см2 r Ry·gc=2350·1=2350 кгс/см2 (33,64943% от предельного значения) - условие выполнено (формула (56); п. 5.30 СНиП II-23-81).

Коэффициент:

a = N/( fy A Ry · gc)=33575/(0,4601 · 186,81 · 2350 · 1) = 0,16622 .

Принимаем гибкость для проверки предельной гибкости:

Гибкость:

l = ly =115,5573 .

17) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 4. Основные колонны.

Т.к. a < 0,5:

Коэффициент:

a =0,5 .

l=115,5573 r 180-60·a =180-60 · 0,5=150 (77,0382% от предельного значения) - условие выполнено

Расчет колонны К2

Исходные данные:

Геометрические размеры элемента:

- Расчетная длина элемента lefx = 2326 см;

- Расчетная длина элемента lefy = 1163 см;

- Длина элемента l = 1163 см;

Нагрузка:

- Нормальная сила N = 69,683 тс = 69,683 / 0,001 = 69683 кгс;

- Изгибающий момент Mx = 11,006 тс м = 11,006 / 0,00001 = 1100600 кгс см;

- Поперечная сила на одну стенку сечения Qy = 2 тс = 2 / 0,001 = 2000 кгс;

Физические характеристики:

- Модуль упругости E = 2100000 кгс/см2;

Прочность:

(Вид металла - Фасонный прокат; Сталь и толщина металла - С235 ; От 2 до 20 мм;):

- Предел текучести стали Ryn = 2400 кгс/см2;

- Временное сопротивление стали разрыву Run = 3700 кгс/см2;

- Расчетное сопротивление растяжению, сжатию, изгибу по пределу текучести Ry = 2350 кгс/см2;

- Расчетное сопротивление растяжению, сжатию, изгибу по временному сопротивлению Ru = 3600 кгс/см2;

- Расчетное сопротивление стали сдвигу Rs = 1363 кгс/см2;

Коэффициенты надежности и условия работы:

- Коэффициент условия работы gc = 1;

- Коэффициент надежности в расчетах по временному сопротивлению gu = 1,3;

Основные характеристики сечений:

(Сечение ветви - из сортамента; Характеристики сечения - Двутавры колонные с параллельными гранями полок по СТО АСЧМ 20-93; 40 К1; Сечение - одноветьевое):

Результаты расчета:

1) Расчет на прочность внецентренно-сжатых или внецетренно-растянутых элементов

Проверка условий выполнения расчета по формуле ( 49 ):

Т.к. Ry r 5900 кгс/см 2 :

Непосредственное воздействие на элемент динамических нагрузок - отсутствует.

2) Расчет по п. 5.12 СНиП II-23-81

Ослабления стенки отверстиями - отсутствуют.

Площадь нетто:

An = A =186,81 см 2 .

Косательные напряжения:

t = Qy Sx/(Jx t) =

=2000 · 1559,3/(56147 · 1,1) = 50,49408 кгс/см 2 (формула (29); п. 5.12 СНиП II-23-81).

3) Продолжение расчета по п. 5.25 СНиП II-23-81

Т.к. все или некоторые из следующих условий:

t/Rs=50,49408/1363=0,03705r0,5 и N/(An Ry)=69683/(186,81 · 2350)=0,15873 > 0,1

- не выполнены, требуется расчет по следующим формулам СНиП II-23-81.

Расчет должен быть выполнен по формуле ( 50 ).

4) Учет ослаблений сечения

Ослабления рассматриваемого сечения - отсутствуют.

Изгиб - в одной из главных плоскостей.

N/An+Mx/Wxn1=69683/186,81+1100600/2850,1=759,18 кгс/см2 r Ry·gc=2350·1=2350 кгс/см2 (32,3055% от предельного значения) - условие выполнено (формула (50); п. 5.25 СНиП II-23-81).

5) Продолжение расчета по п. 5.25 СНиП II-23-81

Расчет на устойчивость внецентренно-сжатых элементов в плоскости действия момента

Тип сечения - сплошностенчатый стержень.

6) Определение гибкости стержня

Радиус инерции:

i = = = 17,33657 см .

Гибкость стержня относительно оси x:

lx = lefx/i=2326/17,33657 = 134,16725 .

Условная гибкость:

l = lefx/i=2326/17,33657· = 4,48819 .

7) Продолжение расчета по п. 5.27 СНиП II-23-81

Момент сопротивления для сжатого пояса:

Wc = Wx2 =2850,1 см 3 .

Относительный эксцентриситет:

m = (Mx/N) (A/Wc)=(1100600/69683) · (186,81/2850,1) = 1,03524

m r 20 (10,05925% от предельного значения) - условие выполнено.

8) Коэффициент влияния формы сечения

Тип сечения по табл. 73 СНиП II-23-85 - 5.

Коэффициент влияния формы сечения:

По табл. 73 СНиП II-23-81

h = 1,35082 .

9) Продолжение расчета по п. 5.27 СНиП II-23-81

Приведенный относительный эксцентриситет:

mef = h m =1,35082 · 1,03524 = 1,39842 (формула (52); п. 5.27 СНиП II-23-81).

Т.к. mef r 20:

Коэффициент:

По табл. 74 СНиП II-23-81 в зависимости от l и mef

fe = 0,2639 .

N/(fe·A)=69683/(0,2639·186,81)=1413,47239кгс/см2r Ry·gc=2350·1=2350 кгс/см2 (60,14776% от предельного значения) - условие выполнено (формула (51); п. 5.27 СНиП II-23-81).

Коэффициент:

a = N/( fe A Ry gc)=69683/(0,2639 · 186,81 · 2350 · 1) = 0,60148.

Гибкость:

l = lx =134,1673 .

10) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 4. Основные колонны.

l=134,1673 r 180-60·a =180-60·0,60148=143,9112 (93,22923% от предельного значения) - условие выполнено .

11) Продолжение расчета по п. 5.27 СНиП II-23-81

Расчет на устойчивость внецентренно-сжатых элементов постоянного сечения из плоскости действия момента при изгибе в плоскости наибольшей жесткости, совпадающей с плоскостью симметрии (Jx>Jy)

Радиус инерции:

iy = == 10,06427 см .

Гибкость стержня относительно оси y:

ly = lefy/iy=1163/10,06427 = 115,55731 .

Коэффициент продольного изгиба:

По табл. 72 СНиП II-23-81 в зависимости от ly и Ry

fy = 0,4601 .

12) Определение коэффициента с для расчета на устойчивость из плоскости изгиба по формуле (56) п. 5.31

Момент сопротивления для сжатого пояса:

Wc = Wx2 =2850,1 см 3 .

Относительный эксцентриситет:

mx = (Mx/N) (A/Wc)=(1100600/69683) · (186,81/2850,1) = 1,03524 .

Тип сечения - открытые.

Т.к. mx r 5:

13) Расчет по п. 5.31 СНиП II-23-81

Т.к. mx > 1:

Коэффициент:

a = 0,65+0,05 mx =0,65+0,05 · 1,03524 = 0,70176 .

14) Расчет по п. 5.31 СНиП II-23-81

Коэффициент:

lc = 3,14=3,14 · = 93,86536 .

Т.к. ly=115,5573 > lc=93,86536 :

Коэффициент:

По табл. 72 СНиП II-23-81 в зависимости от lc и Ry

fc = 0,59858 .

Коэффициент:

b = == 1,1406 .

Коэффициент:

c = b/(1+ a mx ) =

=1,1406/(1+0,75059 · 1,03524) = 0,66065 (формула (57); п. 5.31 СНиП II-23-81).

15) Продолжение расчета по п. 5.31 СНиП II-23-81

Коэффициент с не должен превышать cmax, определяемого в зависимости от коэффициентов:

Коэффициент:

r = (Jx+Jy)/(A h 2)=(56147+18921,9)/(186,81 · 39,4 2) = 0,25886.

Коэффициент:

m = 2+0,156 Jt/(A h 2) ly 2=2+0,156 · 93,25/(186,81 · 39,4 2) · 115,5573 2 = 2,66985.

Коэффициент:

d = 4 r/ m=4 · 0,25886/2,66985 = 0,38783.

cmax = 2/(1+ d+ =

=2/(1+0,38783+= 0,78602 (формула (60); п. 5.31 СНиП II-23-81).

16) Продолжение расчета по п. 5.30 СНиП II-23-81

N/(c·fy A)=69683/(0,66065· 0,4601 · 186,81)=1227,16524 кгс/см2 r Ry·gc=2350·1=2350 кгс/см2 (39,08079% от предельного значения) - условие выполнено (формула (56); п. 5.30 СНиП II-23-81).

Коэффициент:

a = N/( fy A Ry gc)=69683/(0,4601 · 186,81 · 2350 · 1) = 0,34499.

Принимаем гибкость для проверки предельной гибкости:

Гибкость:

l = ly =115,5573 .

17) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 4. Основные колонны.

Т.к. a < 0,5:

Коэффициент:

a =0,5 .

l=115,5573r180-60·a =180-60 · 0,5=150 (77,0382% от предельного значения) - условие выполнено .

Расчет колонны К3

Исходные данные:

Геометрические размеры элемента:

- Расчетная длина элемента lefx = 1916 см;

- Расчетная длина элемента lefy = 958 см;

- Длина элемента l = 958 см;

Нагрузка:

- Нормальная сила N 19,17 тс =19,17 / 0,001 = 19170 кгс;

- Изгибающий момент Mx = 0,979 тс м = 0,979 / 0,00001 = 97900 кгс см;

- Поперечная сила на одну стенку сечения Qy = 0,5 тс = 0,5 / 0,001 = 500 кгс;

Физические характеристики:

- Модуль упругости E = 2100000 кгс/см2;

Прочность:

(Вид металла - Фасонный прокат; Сталь и толщина металла - С235 ; От 2 до 20 мм; ):

- Предел текучести стали Ryn = 2400 кгс/см2;

- Временное сопротивление стали разрыву Run = 3700 кгс/см2;

- Расчетное сопротивление растяжению, сжатию, изгибу по пределу текучести Ry = 2350 кгс/см2;

- Расчетное сопротивление растяжению, сжатию, изгибу по временному сопротивлению Ru = 3600 кгс/см2;

- Расчетное сопротивление стали сдвигу Rs = 1363 кгс/см2;

Коэффициенты надежности и условия работы:

- Коэффициент условия работы gc = 1 ;

- Коэффициент надежности в расчетах по временному сопротивлению gu = 1,3 ;

Основные характеристики сечений:

(Сечение ветви - из сортамента; Характеристики сечения - Двутавры колонные с параллельными гранями полок по СТО АСЧМ 20-93; 30 К1; Сечение - одноветьевое):

Результаты расчета:

1) Расчет на прочность внецентренно-сжатых или внецетренно-растянутых элементов

Проверка условий выполнения расчета по формуле ( 49 ):

Т.к. Ry r 5900 кгс/см 2 :

Непосредственное воздействие на элемент динамических нагрузок - отсутствует.

2) Расчет по п. 5.12 СНиП II-23-81

Ослабления стенки отверстиями - отсутствуют.

Площадь нетто:

An = A =110,8 см2 .

Касательные напряжения:

t = Qy Sx/(Jx t) =

=500 · 694,7/(18849 · 0,9) = 20,47559 кгс/см2 (формула (29); п. 5.12 СНиП II-23-81).

3) Продолжение расчета по п. 5.25 СНиП II-23-81

Т.к. все или некоторые из следующих условий:

t/Rs=20,47559/1363=0,01502 r 0,5 и N/(An Ry)=19170/(110,8 2350)=0,07362 > 0,1

- не выполнены, требуется расчет по следующим формулам СНиП II-23-81.

Расчет должен быть выполнен по формуле ( 50 ).

4) Учет ослаблений сечения

Ослабления рассматриваемого сечения - отсутствуют.

Изгиб - в одной из главных плоскостей.

N/An+Mx/Wxn1=19170/110,8+97900/1265,1=250,39963 кгс/см2 r Ry·gc=2350·1=2350 кгс/см (10,6553% от предельного значения) - условие выполнено (формула (50); п. 5.25 СНиП II-23-81).

5) Продолжение расчета по п. 5.25 СНиП II-23-81

Расчет на устойчивость внецентренно-сжатых элементов в плоскости действия момента

Тип сечения - сплошностенчатый стержень.

6) Определение гибкости стержня

Радиус инерции:

i = = = 13,0429 см .

Гибкость стержня относительно оси x:

lx = lefx/i=1916/13,0429 = 146,89985 .

Условная гибкость:

l = lefx/i=1916/13,0429 · = 4,91412 .

7) Продолжение расчета по п. 5.27 СНиП II-23-81

Момент сопротивления для сжатого пояса:

Wc = Wx2 =1265,1 см3 .

Относительный эксцентриситет:

m = (Mx/N) (A/Wc)=(97900/19170) · (110,8/1265,1) = 0,44728 .

m r 20 (2,2364% от предельного значения) - условие выполнено .

8) Коэффициент влияния формы сечения

Тип сечения по табл. 73 СНиП II-23-85 - 5.

Коэффициент влияния формы сечения:

По табл. 73 СНиП II-23-81

h = 1,30954 .

9) Продолжение расчета по п. 5.27 СНиП II-23-81

Приведенный относительный эксцентриситет:

mef = h·m =1,30954 · 0,44728 = 0,58573 (формула (52); п. 5.27 СНиП II-23-81).

Т.к. mef r 20 :

Коэффициент:

По табл. 74 СНиП II-23-81 в зависимости от l и mef

fe = 0,29494 .

N/(fe A)=19170/(0,29494·110,8)=586,60894 кгс/см2 r Ry·gc=2350·1=2350 кгс/см2 (24,96208% от предельного значения) - условие выполнено (формула (51); п. 5.27 СНиП II-23-81).

Коэффициент:

a = N/( fe A Ry gc)=19170/(0,29494 · 110,8 · 2350 · 1) = 0,24962 .

Гибкость:

l = lx =146,8999 .

10) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 4. Основные колонны.

Т.к. a < 0,5:

Коэффициент:

a =0,5 .

l=146,8999 r 180-60·a =180-60 · 0,5=150 (97,93327% от предельного значения) - условие выполнено .

11) Продолжение расчета по п. 5.27 СНиП II-23-81

Расчет на устойчивость внецентренно-сжатых элементов постоянного сечения из плоскости действия момента при изгибе в плоскости наибольшей жесткости, совпадающей с плоскостью симметрии (Jx>Jy)

Радиус инерции:

iy = == 7,50505 см .

Гибкость стержня относительно оси y:

ly = lefy/iy=958/7,50505 = 127,64738 .

Коэффициент продольного изгиба:

По табл. 72 СНиП II-23-81 в зависимости от ly и Ry

fy = 0,39213 .

12) Определение коэффициента с для расчета на устойчивость из плоскости изгиба по формуле (56) п. 5.31

Момент сопротивления для сжатого пояса:

Wc = Wx2 =1265,1 см3 .

Относительный эксцентриситет:

mx = (Mx/N) (A/Wc)=(97900/19170) · (110,8/1265,1) = 0,44728 .

Тип сечения - открытые.

Т.к. mx r 5:

13) Расчет по п. 5.31 СНиП II-23-81

Т.к. mx r 1 :

Коэффициент:

a = 0,7 .

14) Расчет по п. 5.31 СНиП II-23-81

Коэффициент:

lc = 3,14=3,14 · = 93,86536

Т.к. ly=127,6474 > lc=93,86536:

Коэффициент:

По табл. 72 СНиП II-23-81 в зависимости от lc и Ry

fc = 0,59858 .

Коэффициент:

b = == 1,23551 .

Коэффициент

c = b/(1+ a mx ) =

=1,23551/(1+0,7 · 0,44728) = 0,94091 (формула (57); п. 5.31 СНиП II-23-81).

15) Продолжение расчета по п. 5.31 СНиП II-23-81

Коэффициент с не должен превышать cmax, определяемого в зависимости от коэффициентов:

Коэффициент:

r = (Jx+Jy)/(A h2)=(18849+6240,9)/(110,8 · 29,8 2) = 0,25499 .

Коэффициент:

m = 2+0,156 Jt/(A h 2) ly2=2+0,156 · 33,91/(110,8 · 29,82) · 127,64742 = 2,876 .

Коэффициент:

d = 4 r/ m=4 · 0,25499/2,876 = 0,35465 .

cmax = 2/(1+ d+ =

=2/(1+0,35465+= 0,94512 (формула (60); п. 5.31 СНиП II-23-81).

16) Продолжение расчета по п. 5.30 СНиП II-23-81

N/(c·fy A)=19170/(0,94091 · 0,39213 · 110,8)=468,92588кгс/см2 r Ry·gc=2350 ·1=2350 кгс/см2 (19,95429% от предельного значения) -условие выполнено (формула (56); п. 5.30 СНиП II-23-81).

Коэффициент:

a = N/( fy A Ry gc)=19170/(0,39213 · 110,8 · 2350 · 1) = 0,18775 .

Принимаем гибкость для проверки предельной гибкости:

Гибкость:

l = ly =127,6474 .

17) Проверка по условию предельной гибкости сжатых элементов

По таблице 19 СНиП II-23-81:

Тип элемента - 4. Основные колонны.

Т.к. a < 0,5 :

Коэффициент:

a =0,5 .

l=127,6474 r 180-60·a =180-60 · 0,5=150 (85,09827% от предельного значения) - условие выполнено .

Принимаем сечения колонн:

· К1 - 40К1 по СТО АСЧМ 20-93;

· К2 - 40К1 по СТО АСЧМ 20-93;

· К3 - 30К1 по СТО АСЧМ 20-93;

8.4.2 Расчет консоли колонн.

Расчет произведен программой Norm CAD.

Рис. 8.19 К расчету консоли колонн К1 иК2.

Расчет сварного соединения с угловыми швами на одновременное действие продольной и поперечной сил и момента соединяемого консоль с колонной.

Исходные данные:

Нагрузка:

N =0 тс = 0/0,001 = 0 кгс; Mx =11,261 тс м = 11,261 /0,00001 = 1126100 кгс см; My = 0 тс м = 0 / 0,00001 = 0 кгс см; Mxy = 0 тс м = 0 /0,00001 = 0 кгс см; Qx = 0 тс = 0 /0,001 = 0 кгс; Qy = 25,025 тс = 25,025 /0,001 = 25025 кгс; F = 0 тс = 0 /0,001 = 0 кгс;

Физические характеристики:

E = 2100000 кгс/см2;

Прочность:

(Вид металла - Фасонный прокат; Сталь и толщина металла - С235 ; От 2 до 20 мм; ]): Ryn = 2400 кгс/см2; Run = 3700 кгс/см2; Ry = 2350 кгс/см2; Ru = 3600 кгс/см2; Rs = 1363 кгс/см2;

Коэффициенты надежности и условия работы:

gc = 1 ; gu = 1,3 ;

Основные характеристики сечений:

h = 39,4 см; b = 39,8 см; t = 1,1 см; tf = 1,8 см;

Характеристики сечения ветви:

hb = 39,4 см; bb = 39,8 см; tb = 1,1 см; tfb = 1,8 см; Ab= 186,81 см2; Jxb = 56147 см4; Jyb = 18921,9 см4; Wx1b = 2850,1 см3; Wx2b = 2850,1 см3; Wy1b = 950,8 см3; Wy2b = 950,8 см3;

Параметры сварного соединения:

kf = 6 мм; l = 235,8 см; t= 1,1 см; tmax = 1,8 см;

Характеристики сечения сварного соединения:

(Тип сечения - полоса; Сечение ветви - из сортамента; Характеристики сечения - Двутавры колонные с параллельными гранями полок по СТОАСЧМ 20-93; 40 К1; Сечение - одноветьевое): Aw = 186,81 см2; Jwx = 56147 см4; Jwy = 18921,9 см4; Wwx1 = 2850,1 см3; Wwx2 = 2850,1 см3; Wwy1 = 950,8 см3; Wwy2 = 950,8 см3; x = 19,90103м; y = 19,70001 см;

Результаты расчета:

1) Расчетное сопротивление сварных соединений

Шов - угловой.

Тип электрода - Э42, Э42А.

По табл. 56 СНиП II-23-81

Rwf = 1800 кгс/см2 .

Rwz = 0,45 Run=0,45 · 3700 = 1665 кгс/см2 .

Rws = Rs =1363 кгс/см2 .

2) Расчет сварных соединений с угловыми швами на одновременное действие продольной и поперечной сил и момента

lw = l -1=235,8-1 = 234,8 см .

3) Расчет по п. 11.2 СНиП II-23-81

Т.к. Ryn r 5400 кгс/см2 :

Коэффициенты bf и gz принимаются по табл. 34.

Вид сварки - полуавтоматическая.

Сварка проволокой - порошковой.

bf=0,7.

bz=1.

4) Расчет по п. 11.2 СНиП II-23-81

Климатический район строительства - кроме I1, I2, II2 или II3.

gwf=1.

gwz=1.

5) Проверка условий для Rwf и Rwz.

Размеры шва - установлены расчетом.

Т.к. Ryn r 2900 кгс/см2:

Вид сварки - полуавтоматическая.

Rwf=1800 кгс/см2 > Rwz=1665 кгс/см2 (108,10811% от предельного значения) - условие выполнено .

Rwf=1800 кгс/см2 r Rwz bz/ bf=1665 · 1/0,7=2378,57143 кгс/см2 (75,67568% от предельного значения) - условие выполнено .

6) Продолжение расчета по п. 11.5 СНиП II-23-81

Определяем напряжения в расчетном сечении, равные геометрическим суммам напряжений, вызываемых продольной и поперечной силами и моментом.

Изгибающие моменты действуют - из плоскости шва.

Wwx = min(Wwx1 ; Wwx2)=min(2850,1;2850,1) = 2850,1 см3 .

Wwy = min(Wwy1 ; Wwy2)=min(950,8;950,8) = 950,8 см3 .

tf ==

==565,01149 кгс/см 2 .

tz = =

== 395,50805 кгс/см2 .

tf=565,0115 кгс/см2 r Rwf gwfgc=1800 · 1 · 1=1800 кгс/см2 (31,38953% от предельного значения) - условие выполнено (формула (126); п. 11.5 СНиП II 23-81).

tz=395,5081 кгс/см2 r Rwz gwz gc=1665 · 1 · 1=1665 кгс/см2 (23,75424% от предельного значения) - условие выполнено (формула (126); п. 11.5 СНиП II 23-81).

7) Конструктивные требования к сварным соединениям

По п. 12.8 а:

kf=0,6 см r1,2 t=1,2·1,1=1,32 см (45,45455% от предельного значения) - условие выполнено.

8) По п. 12.8 б:

Вид соединения - тавровое с двухсторонними угловыми швами.

Вид сварки - полуавтоматическая.

По табл. 38 СНиП II-23-81 в зависимости от Ryn и tmax

kf, min = 6 мм .

9) Продолжение расчета по п. 12.8 СНиП II-23-81

Группа конструкций - 1, 2 или 3.

По п.2 примеч. к табл. 38 для конструкций групп 1, 2 и 3 минимальный катет шва не уменьшается.

kf=6 мм t kf, min=6 мм (100% от предельного значения) - условие выполнено.

10) По п. 12.8 в:

lw = l -1=235,8-1 = 234,8 см .

lw=234,8 см t 4 kf=4·0,6=2,4см (9783,33333% от предельного значения) - условие выполнено

lw t 4 см (5870% от предельного значения) - условие выполнено.

11) По п. 12.8 г:

Вид шва - фланговый.

Усилие действует - на всем протяжении шва.

Проверки по п. 12.8г не требуется.

8.4.3 Конструирование и расчет базы и оголовка колонн.

Колонны К1 и К2.

Примем класс прочности бетона на сжатие В20, что соответствует Rпр=11,5 МПа.

Расчетное сопротивление бетона смятию

где Rпр - расчетное сопротивление бетона осевому сжатию;

Требуемая площадь плиты в плане

Ширину плиты В назначаем конструктивно, принимая консольный свес плиты с=40 мм.

где 40 - округленная высота сечения прокатного профиля;

c - консольный участок плиты, с = 40…120 мм.

Принимаем В = 500 мм, С = 50 мм.

Тогда длина плиты будет L=500мм.

Фактическая площадь плиты

, что больше требуемой, равной 466,12 см2 .

Фактическое давление фундамента на плиту

Согласно принятой конструкции плита имеет два участка для определения изгибающих моментов

Участок 1 - опирание плиты на три канта.

Расчет произведен программным пакетом SCAD OFFICE.

Группа конструкции по таблице 50* СНиП:

Расчетное сопротивление стали Ry= 23,544 кН/см2

Коэффициент условий работы 1,1

Коэффициент надежности по ответственности 1,15

Тип опирания

Размеры:

a = 24,35 см

b = 35,8 см

Нагрузка 0,279 кН/см2

Коэффициент ответственности 1,15

Коэффициент условий работы 1,1

Расчетное сопротивление стали по пределу текучести Ry= 23,544 кН/см2

Требуемая толщина плиты 30,0 мм

Участок 3 - консольный.

Расчет произведен программным пакетом SCAD OFFICE.

Группа конструкции по таблице 50* СНиП:

Расчетное сопротивление стали Ry= 23,544 кН/см2

Коэффициент условий работы 1,1

Коэффициент надежности по ответственности 1,15

Тип опирания

Размеры:

a = 50,0 см

b = 5,0 см

Нагрузка 0,279 кН/см2

Коэффициент ответственности 1,15

Коэффициент условий работы 1,1

Расчетное сопротивление стали по пределу текучести Ry= 23,544 кН/см2

Требуемая толщина плиты 10,0 мм

Примем толщину плиты 30мм. Проведем расчет сварных швов, прикрепляющих колонну к плите базы. Назначим полуавтоматическую сварку проволокой диаметром 1,4-2,0 мм, для которой вz = 1.0, вf= 0.8 при Kf=9…12 мм, Rwz=166.5 МПа , Rwf=180 МПа.

При вfRwf = 0,8*180 = 144 МПа < вzRwz = 1.0*165.5 = 166.5 МПа расчет выполняем по металлу шва.

В расчетную длину сварных швов включаются длина швов, прикрепляющих колонну по контуру:

Требуемый катет шва

Принимаем катет шва Kf = 7 мм.

kf=7 мм t kf, min=7 мм (100% от предельного значения) - условие выполнено.

Колонна К3 .

Примем класс прочности бетона на сжатие В20, что соответствует Rпр=11,5 МПа.

Расчетное сопротивление бетона смятию

где Rпр - расчетное сопротивление бетона осевому сжатию;

Требуемая площадь плиты в плане

Ширину плиты В назначаем конструктивно, принимая консольный свес плиты с=40 мм.

где 30 - округленная высота сечения прокатного профиля;

c - консольный участок плиты, с = 40…120 мм.

Принимаем В = 400 мм, С = 50 мм.

Тогда длина плиты будет L=400мм.

Фактическая площадь плиты

, что больше требуемой, равной 128,23 см2 .

Фактическое давление фундамента на плиту

Согласно принятой конструкции плита имеет два участка для определения изгибающих моментов

Участок 1 - опирание плиты на три канта.

Расчет произведен программным пакетом SCAD OFFICE.

Группа конструкции по таблице 50* СНиП:

Расчетное сопротивление стали Ry= 23,544 кН/см2

Коэффициент условий работы 1,1

Коэффициент надежности по ответственности 1,15

Тип опирания

Размеры:

a = 19,5 см

b = 27,0 см

Нагрузка 0,12 кН/см2

Коэффициент ответственности 1,15

Коэффициент условий работы 1,1

Расчетное сопротивление стали по пределу текучести Ry= 23,544 кН/см2

Требуемая толщина плиты 16,0 мм

Участок 3 - консольный.

Расчет произведен программным пакетом SCAD OFFICE.

Группа конструкции по таблице 50* СНиП:

Расчетное сопротивление стали Ry= 23,544 кН/см2

Коэффициент условий работы 1,1

Коэффициент надежности по ответственности 1,15

Тип опирания

Размеры:

a = 40,0 см

b = 5,0 см

Нагрузка 0,12 кН/см2

Коэффициент ответственности 1,15

Коэффициент условий работы 1,1

Расчетное сопротивление стали по пределу текучести Ry= 23,544 кН/см2

Требуемая толщина плиты 8,0 мм

Примем толщину плиты 16мм.

Проведем расчет сварных швов, прикрепляющих колонну к плите базы.

Назначим полуавтоматическую сварку проволокой диаметром 1,4-2,0 мм, для которой вz = 1.0, вf= 0.8 при Kf=9…12 мм, Rwz=166.5 МПа , Rwf=180 МПа.

При вfRwf = 0,8*180 = 144 МПа < вzRwz = 1.0*165.5 = 166.5 МПа расчет выполняем по металлу шва.

В расчетную длину сварных швов включаются длина швов, прикрепляющих колонну по контуру:

Требуемый катет шва

Принимаем катет шва Kf = 5 мм.

kf=5 мм t kf, min=5 мм (100% от предельного значения) - условие выполнено.

Оголовок колонн примем t=16мм. Размеры для колонн К1 и К2- 450х450мм; для колонны К3 -350х350мм. Ребро оголовка принимаем t=10мм, L= 200мм.

8.4.4 Расчет анкерных болтов колонн

Расчёт анкерных болтов колонны К1.

М=17,73кНм; N=85,5 кН.

С учётом перехода от расчётной нагрузки к нормативной, а затем опять к расчётной, N необходимо домножить на коэффициент 0,8.

N/=85,5.0,8=68,4кН;

Принимаем два болта (n=2), тогда усилие в одном болте:

Требуемая площадь сечения болта нетто:

где Rbn=185 МПа - расчётное сопротивление растяжению фундаментных болтов из стали марки ВСт3кп2;

Окончательно принимаем 2 болта 20 мм, с Аbn=2,45 см2.

Расчёт анкерных болтов колонны К2.

М=17,46кНм; N=193,74 кН.

С учётом перехода от расчётной нагрузки к нормативной, а затем опять к расчётной, N необходимо домножить на коэффициент 0,8.

N/=193,74 . 0,8=154,99кН;

Принимаем два болта (n=2), тогда усилие в одном болте:

Требуемая площадь сечения болта нетто

где Rbn=185 МПа - расчётное сопротивление растяжению фундаментных болтов из стали марки ВСт3кп2;

Окончательно принимаем 2 болта 30 мм, с Аbn=5,60 см2.

Расчёт анкерных болтов колонны К3.

М=10,88кНм; N=45,9 кН.

С учётом перехода от расчётной нагрузки к нормативной, а затем опять к расчётной, N необходимо домножить на коэффициент 0,8.

N/=45,9.0,8=36,72кН;

Принимаем два болта (n=2), тогда усилие в одном болте:

Требуемая площадь сечения болта нетто

где Rbn=185 МПа - расчётное сопротивление растяжению фундаментных болтов из стали марки ВСт3кп2;

Окончательно принимаем 2 болта 16 мм, с Аbn=1,57 см2.

Оголовок колонн примем t=16мм. Размеры для колонн К1 и К2 450х450мм; для колонны К3 -350х350мм.

8.5 Основания и фундаменты

8.5.1 Оценка инженерно-геологических условий

Плотность грунта

(p. г /10)

p1 = 1.8 т/м3

p2 = 1.86 т/м3

p3 = 1.97 т/м3

Плотность частиц грунта

( ps = гs/10)

ps1 =2.62 т/м3

ps2 =2.64 т/м3

ps3 =2.72т/м3

Коэффициент пористости

e = ps( 1+ W) / p - 1.0

e 1= ps( 1+ W) / p - 1.0 = 2.62( 1+ 0.074) / 1.8 - 1.0 = 0.56

e 2= ps( 1+ W) / p - 1.0 = 2.64( 1+ 0.262) / 1.86 - 1.0 = 0.79

e 3= ps( 1+ W) / p - 1.0 = 2.72( 1 + 0.802) / 1.97 - 1.0 = 1.49

Коэффициент водонасыщения

Sr = Wps /epw

Sr2 = Wps /epw = 0.262 * 2.64 / 0.79 * 1.0 = 0.88

Число пластичности для глинистых грунтов

Jp = We - Wp

Jp1 = We - Wp = 0.26 - 0.16 = 0.1

Jp3= We - Wp = 0.42 - 0.23 = 0.19

Показатель консистенции для глинистых грунтов

JL = W - Wp / We- Wp

JL1 = W - Wp / We- Wp = 0.074 - 0.16 / 0.1 = -0.86

JL 3= W - Wp / We- Wp = 0.803 - 0.23 / 0.19 = 3.02

Литологическое описание грунта.

1 слой - супесь твёрдой консистенции

2 слой - песок крупный, рыхлый, насыщенный водой (если понадобится в расчётах, применяем цементизацию и доводим до средней плотности )

3 слой - глина тягучей консистенции

4 слой - скальный грунт-гранит

8.5.2 Проектирование фундамента под колонну К

Рис. 8.20. Схема к определению несущей способности сваи под колонну К1.

1. Исходные данные.

Наиболее невыгодное сочетание нагрузок на уровне обреза фундамента

N=335,75кН, М= 58,10кН*м, Q=18кН.

2. Выбор глубины заложения ростверка, несущего слоя грунта и конструкции сваи.

Глубину заложения ростверка принимаем из конструктивных соображений dr=1,5м, высота ростверка 1,3м и расположение обреза ростверка ниже поверхности грунта на 0,2м. Принятая глубина заложения ростверка больше расчетной глубине промерзания грунта df=1,4м.

Наиболее благоприятным грунтом для использования в качестве несущего слоя является супесь, но мощности слоя не достаточно. Используем в качестве несущего слоя песок. Принимаем глубину заделки сваи в ростверк z=0.05м, в несущий слой грунта hz=2,95м. Требуемую длину сваи определяем по формуле 9,4/

Учитывая возможность погружения свай забивкой и не значительные нагрузки на фундамент, принимаем сваи сечением 30х30см. марка сваи С5-30, бетон кл. В15, рабочая арматура - 412, кл. A-I.

3. Определение несущей способности и силы сопротивления сваи по материалу и по грунту. Силу расчетного сопротивления сваи по материалу определяем по формуле 9,5 [9], учитывая, что гс=1 (при d0,2м); ц=1 (для низкого ростверка); гсd=1 (для забивных свай); Rb=8500кПа (для бетона В15); Ab=0,3х0,3=0,09м2; Rsc=225000кПа (для арматуры A-I);

As = 4рr2 = 4*3,14*0,0062 = =0,452х10-

3м2,

По характеру работы свая относится к висячей, так как опирается на сжимаемый грунт ( модуль деформации несущего слоя грунта Е=30МПа<50МПа). Поэтому несущую способность сваи по грунту определяем по формуле 9,10 [9] при гс=1; R=6600кПа (принято по таблице 9,3 с учетом интерполяции) [9]; A=0,3х0,3=0,09м2; u=4*0,3=1,2м; У гсffihi=254,05кПа (см. таблицу на рис.8.20.); fi-расчетное сопротивление i-го слоя грунта, кПа, принимаемое по табл. 9,4[9]; hi-толщина i-го слоя грунта, м; гсR=1, гсf=1 при забивке свай молотом (см. таблицу 9,5) [9].

Силу расчетного сопротивления сваи по грунту находим по формуле 9,1для коэффициента надежности гk=1,4

В дальнейших расчетах используем меньшее значение силы расчетного сопротивления сваи FR=RRs=642,04кН

4. Определение приближенного веса ростверка и числа свай.

По формулам 9,23[9] и 9,24[9] определяем соответственно среднее давление под подошвой ростверка pg, площадь подошвы ростверка Ag и приближенный вес ростверка с грунтом на уступах Ng, учитывая, что здание без подвала, среднее значение удельного веса материала ростверка и грунта на его уступах гm = 20кН/м3,

Число свай определяем по формуле 9,25[9]

где ==1,5 - коэффициент учитывающий действие момента;

Принимаем число свай 1шт.

5. Конструирование ростверка.

Габаритные размеры ростверка (подколонника) в плане равны 0,6х0,6м, по высоте - 1,3м.

Вес ростверка Ng и грунта Ngg на его уступах определяем по формулам 9,27[9] и 9,28[9], учитывая , что гf=1,1-коэффициент надежности по нагрузке для собственного веса материала;

;

гb=24 кН/м3 - удельный вес железобетона;

;

г1=16 кН/м3 - удельный вес насыпного грунта, расположенного выше ростверка,

Армирование ростверка конструктивное, сеткой с ячейками 200х200 12, кл. A-I.

6. Проверка усилий передаваемых на сваи.

При действии момента, наиболее нагруженными оказываются сваи, максимально удаленные от центра тяжести свайного поля (в рассматриваемом случае yi=0). Вычисляем суммарную расчетную нагрузку на сваю в уровне подошвы ростверка и момент в уровне подошвы ростверка.

Расчетное усилие, передаваемое на сваю, определяем по формуле 9,29

Свая сжата, расчетное усилие на сваю не превышает силы расчетного сопротивления сваи.

7. Расчет осадок фундамента.

Проверку давления на грунт выполняем от условного фундамента ABCD (см. рис. 8.21.). определяем средневзвешенное значение угла внутреннего трения цIImt и размеры подошвы условного фундамента bc и lc соответственно по формулам 9,39[9] и 9,40[9], учитывая, что для отдельных слоев грунта толщиной hi, м, расчетные значения угла внутреннего трения цIIi, град (см. рис. 8.21.) и расстояния между наружными гранями крайних рядов свай b0=0,3м, l0=0,3м

Вес условного фундамента Nc и давление на грунт по его подошве pII вычисляемпо формулам 9,41[9] и 9,42[9], используя значения удельного веса гIIi отдельных слоев грунта толщиной hi, в пределах глубины заложения условного фундамента dc (см. рис.8.21.) и нагрузку на фундамент II группы предельных состояний NII=NIf=349,38/1,2=291,15кН (где гf=1,2 - среднее значение коэффициента надежности по нагрузке),

асчетное сопротивление грунта R, расположенного ниже условного фундамента, определяем по формуле 4,8[9], принимая d=dc и b=bc и учитывая, что гс1=1,25 (табл. 4,6 [9]); гс2=1,0 (табл. 4,6 [9]);k=1; kz=1;My=1,81, Mq=8,24, Mc=9,97(для цII=36° несущего слоя табл. 4,7 [9]);bc=0,96м; гII=18,6кН/м3-удельный вес грунта, расположенного под подошвой условного фундамента; dc=6,45м;

средневзвешенное значение удельного веса грунта в пределах глубины заложения условного фундамента dc; сII=2 кПа - параметр сцепления несущего слоя грунта,

Проверяем давление на грунт по подошве фундамента pII=432,79кПа<R=1396,04кПа. Требование по п.2,41 СНиП 2.02.01-83 удовлетворено. Расчет осадки основания можно выполнять, используя решения теории упругости. Так как ширина подошвы фундамента меньше 10м, для расчета осадки фундамента используем метод послойного суммирования.

Природное давление на уровне подошвы условного фундамента

Дополнительное давление по подошве условного фундамента

Вычисляем природные и дополнительные напряжения в основании (таблица 8.15.) и строим эпюры этих напряжений (см. рис. 8.21.) для з=lc/bc=1 и hi=0,4bc =0,384м.

Вычисление природных и дополнительных напряжений под подошвой условного фундамента колонны К1.

Таблица 8.15

№ границ слоев

Грунт

z,м

m=2z/ bc

б

уzg, кПа

уzр, кПа

уzр,m, кПа

0

Песок

Е0=30МПа

0

0

1,000

116,87

315,92

-

1

0,384

0,8

0,800

124,01

252,70

284,29

2

0,768

1,6

0,449

131,15

141,83

197,27

3

1,152

2,4

0,257

138,30

81,18

111,51

4

1,536

3,2

0,160

145,44

50,54

65,86

5

1,92

4,0

0,108

152,58

34,11

42,33

Мощность сжимаемого слоя Yc=1,92м, так как на границе его выполняется условие 6,15[9] 0,2уzg=0,2*152,58=30,52кПа ? уzр=34,11кПа. Осадку вычисляем по формуле 6,14

Осадка фундамента 0,7см меньше предельно допустимой осадки фундаментов su=12см производственных зданий с металическим каркасом.

Рис. 8.21 Расчетная схема к определению осадки свайного фундамента под колонну К1.

8.5.3 Проектирование фундамента под колонну К2.

1. Исходные данные.

Наиболее невыгодное сочетание нагрузок на уровне обреза фундамента

N=696,83кН, М= 76,79кН*м, Q=20кН.

2. Выбор глубины заложения ростверка, несущего слоя грунта и конструкции сваи.

Расчет см. п.8.5.2.

3. Определение несущей способности и силы сопротивления сваи по материалу и по грунту.

Расчет см. п.8.5.2.

4. Определение приближенного веса ростверка и числа свай.

По формулам 9,23[9] и 9,24[9] определяем соответственно среднее давление под подошвой ростверка pg, площадь подошвы ростверка Ag и приближенный вес ростверка с грунтом на уступах Ng, учитывая, что здание без подвала, среднее значение удельного веса материала ростверка и грунта на его уступах гm = 20кН/м3,

Число свай определяем по формуле 9,25[9]

где ==1,5 - коэффициент учитывающий действие момента;

Принимаем число свай 3шт.

5. Конструирование ростверка.

Расстояние от края ростверка до внешней стороны сваи:

е = 0,2·d +5 = 0,2·0,3 + 5 = 11см =0,11м.

Ширина ростверка: 2·е + d = 2·11 + 30 = 52см = 0,52м.

Высота ростверка: h = h1 + h2 ; h2 = 5см = 0,05м.

Высоту h1 определяем из условия прочности на продавливание ростверка сваей:

h = 0,34 + 0,05 = 0,39м.

Размещаем сваи в плане таким образом, чтобы рассояние между их центрами было не менее 3d. Тогда размеры плиты ростверка в плане оказываются равными 1,6х1,6м. По высоте принимаем h=0,5м, высоту подколонника 0,8м (см. рис. 8.22.).

Рис. 8.22 Конструкция ростверка свайного фундамента под колонну К1.

Вес ростверка Ng и грунта Ngg на его уступах определяем по формулам 9,27[9] и 9,28[9], учитывая , что гf=1,1-коэффициент надежности по нагрузке для собственного веса материала;

;

гb=24 кН/м3 - удельный вес железобетона;

;

г1=16 кН/м3 - удельный вес насыпного грунта, расположенного выше ростверка,

Армирование ростверка конструктивное, сеткой с ячейками 200х200 12, кл. A-I.

6. Проверка усилий передаваемых на сваи.

При действии момента, наиболее нагруженными оказываются сваи, максимально удаленные от центра тяжести свайного поля (в рассматриваемом случае yi=0,522). Вычисляем суммарную расчетную нагрузку на сваю в уровне подошвы ростверка и момент в уровне подошвы ростверка.

Расчетное усилие, передаваемое на сваю, определяем по формуле 9,2

Проверку расчетных усилий, передаваемых на сваи, выполняем по условию 9,1

Np max=259,41+51,79=311,2кН< RRs=642,04кН, Np min=259,41 51,79=207,62кН

Все сваи сжаты, максимальное расчетное усилие на сваю не превышает силы расчетного сопротивления сваи.

7. Расчет осадок фундамента.

Проверку давления на грунт выполняем от условного фундамента ABCD (см. рис. 8.23.). определяем средневзвешенное значение угла внутреннего трения цIImt и размеры подошвы условного фундамента bc и lc соответственно по формулам 9,39[9] и 9,40[9], учитывая, что для отдельных слоев грунта толщиной hi, м, расчетные значения угла внутреннего трения цIIi, град (см. рис. 8.23.) и расстояния между наружными гранями крайних рядов свай b0=1,1м, l0=1,08м

Вес условного фундамента Nc и давление на грунт по его подошве pII вычисляемпо формулам 9,41[9] и 9,42[9], используя значения удельного веса гIIi отдельных слоев грунта толщиной hi, в пределах глубины заложения условного фундамента dc (см. рис.8.23.) и нагрузку на фундамент II группы предельных состояний NII=NIf=778,23/1,2=648,53кН (где гf=1,2 - среднее значение коэффициента надежности по нагрузке),

Расчетное сопротивление грунта R, расположенного ниже условного фундамента, определяем по формуле 4,8[9], принимая d=dc и b=bc и учитывая, что гс1=1,25 (табл. 4,6 [9]); гс2=1,0 (табл. 4,6 [9]);k=1; kz=1;My=1,81, Mq=8,24, Mc=9,97(для цII=36° несущего слоя табл. 4,7 [9]);bc=0,96м; гII=18,6кН/м3-удельный вес грунта, расположенного под подошвой условного фундамента; dc=6,45м;

Cредневзвешенное значение удельного веса грунта в пределах глубины заложения условного фундамента dc; сII=2 кПа - параметр сцепления несущего слоя грунта

Проверяем давление на грунт по подошве фундамента pII=328,64кПа<R=1396,04кПа. Требование по п.2,41 СНиП 2.02.01-83 удовлетворено. Расчет осадки основания можно выполнять, используя решения теории упругости. Так как ширина подошвы фундамента меньше 10м, для расчета осадки фундамента используем метод послойного суммирования.

Природное давление на уровне подошвы условного фундамента

Дополнительное давление по подошве условного фундамента

Вычисляем природные и дополнительные напряжения в основании (таблица 8.16.) и строим эпюры этих напряжений (см. рис. 8.23.) для з=lc/bc?1 и hi=0,4bc =0,704м.

Вычисление природных и дополнительных напряжений под подошвой условного фундамента колонны К1.

Таблица 8.16.

№ границ слоев

Грунт

z,м

m=2z/ bc

б

уzg, кПа

уzр, кПа

уzр,m, кПа

0

Песок Е0=30МПа

0

0

1,000

116,87

211,77

-

1

0,704

0,8

0,800

129,96

169,42

190,60

2

1,408

1,6

0,449

143,06

95,08

132,25

3

2,112

2,4

0,257

156,15

54,42

74,75

4

2,816

3,2

0,160

169,25

33,88

44,15

Мощность сжимаемого слоя Yc=2,816м, так как на границе его выполняется условие 6,15[9] 0,2уzg=0,2*169,25=33,85кПа ? уzр=34,11кПа. Осадку вычисляем по формуле 6,14

Осадка фундамента 0,8см меньше предельно допустимой осадки фундаментов su=12см производственных зданий с металлическим каркасом.

Неравномерность осадков в пролете А-Б

Рис. 8.23 Расчетная схема к определению осадки свайного фундамента под колонну К2.

8.5.4 Проектирование фундамента под колонну К3.

1. Исходные данные.

Наиболее невыгодное сочетание нагрузок на уровне обреза фундамента

N=191,7кН, М= 9,79кН*м, Q=5кН.

2. Выбор глубины заложения ростверка, несущего слоя грунта и конструкции сваи.

Расчет см. п.8.5.2.

3. Определение несущей способности и силы сопротивления сваи по материалу и по грунту.

Расчет см. п.8.5.2.

4. Определение приближенного веса ростверка и числа свай.

По формулам 9,23[9] и 9,24[9] определяем соответственно среднее давление под подошвой ростверка pg, площадь подошвы ростверка Ag и приближенный вес ростверка с грунтом на уступах Ng, учитывая, что здание без подвала, среднее значение удельного веса материала ростверка и грунта на его уступах гm = 20кН/м3,

Число свай определяем по формуле 9,25[9]

где ==1,5 - коэффициент учитывающий действие момента;

Принимаем число свай 1шт.

5. Конструирование ростверка.

Расчет см. п.8.5.2.

6. Проверка усилий передаваемых на сваи.

При действии момента, наиболее нагруженными оказываются сваи, максимально удаленные от центра тяжести свайного поля (в рассматриваемом случае yi=0). Вычисляем суммарную расчетную нагрузку на сваю в уровне подошвы ростверка и момент в уровне подошвы ростверка.

Расчетное усилие, передаваемое на сваю, определяем по формуле 9,29

Свая сжата, расчетное усилие на сваю не превышает силы расчетного сопротивления сваи.

7. Расчет осадок фундамента.

Проверку давления на грунт выполняем от условного фундамента ABCD (см. рис. 8.24.). определяем средневзвешенное значение угла внутреннего трения цIImt и размеры подошвы условного фундамента bc и lc соответственно по формулам 9,39[9] и 9,40[9], учитывая, что для отдельных слоев грунта толщиной hi, м, расчетные значения угла внутреннего трения цIIi, град (см. рис. 8.24.) и расстояния между наружными гранями крайних рядов свай b0=0,3м, l0=0,3м

Вес условного фундамента Nc и давление на грунт по его подошве pII вычисляемпо формулам 9,41[9] и 9,42[9], используя значения удельного веса гIIi отдельных слоев грунта толщиной hi, в пределах глубины заложения условного фундамента dc (см. рис.8.24.) и нагрузку на фундамент II группы предельных состояний NII=NIf=205,33/1,2=171,11кН (где гf=1,2 - среднее значение коэффициента надежности по нагрузке),

Расчетное сопротивление грунта R, расположенного ниже условного фундамента, определяем по формуле 4,8[9], принимая d=dc и b=bc и учитывая, что гс1=1,25 (табл. 4,6 [9]); гс2=1,0 (табл. 4,6 [9]);k=1; kz=1;My=1,81, Mq=8,24, Mc=9,97(для цII=36° несущего слоя табл. 4,7 [9]);bc=0,96м; гII=18,6кН/м3-удельный вес грунта, расположенного под подошвой условного фундамента; dc=6,45м;

средневзвешенное значение удельного веса грунта в пределах глубины заложения условного фундамента dc; сII=2 кПа - параметр сцепления несущего слоя грунта,

Проверяем давление на грунт по подошве фундамента pII=302,54кПа<R=1396,04кПа. Требование по п.2,41 СНиП 2.02.01-83 удовлетворено. Расчет осадки основания можно выполнять, используя решения теории упругости. Так как ширина подошвы фундамента меньше 10м, для расчета осадки фундамента используем метод послойного суммирования.

Природное давление на уровне подошвы условного фундамента

Дополнительное давление по подошве условного фундамента

Вычисляем природные и дополнительные напряжения в основании (таблица 8.16.) и строим эпюры этих напряжений (см. рис. 8.24.) для з=lc/bc=1 и hi=0,4bc =0,384м.

Вычисление природных и дополнительных напряжений под подошвой условного фундамента колонны К1.

Таблица 8.16

№ границ слоев

Грунт

z,м

m=2z/ bc

б

уzg,

кПа

уzр,

кПа

уzр,m,

кПа

0

Песок

Е0=30МПа

0

0

1,000

116,87

185,67

-

1

0,384

0,8

0,800

124,01

148,54

167,11

2

0,768

1,6

0,449

131,15

83,37

115,96

3

1,152

2,4

0,257

138,30

47,72

65,55

4

1,536

3,2

0,160

145,44

29,71

38,72

Мощность сжимаемого слоя Yc=1,92м, так как на границе его выполняется условие 6,15[9] 0,2уzg=0,2*145,44=29,09кПа ? уzр=29,71кПа. Осадку вычисляем по формуле 6,14

Осадка фундамента 0,4см меньше предельно допустимой осадки фундаментов su=12см производственных зданий с металлическим каркасом.

Неравномерность осадков в пролете Б-В

Рис. 8.24 Расчетная схема к определению осадки свайного фундамента под колонну К3.

Сваи и ростверк под фахверковые стойки и колонны бытового корпуса принимаем такие же, как под колонну К3.

9. Технология, организация, планирование и управление строительства

Организация строительного производства должна обеспечивать направленность организационных, технических и технологических решений на достижение конечного результата ввода объекта в эксплуатацию с необходимым качеством и в установленные сроки.

Для выполнения строительно-монтажных работ эффективным способом и с высокими технико-экономическими показателями разрабатывается организационно-технологическая документация - проект организации строительства (ПОС) и проект производства работ (ППР). Как уже отмечалось, ППР на строительство новых, расширение и реконструкцию предприятий, зданий или сооружении разрабатываются подрядными организациями.

На отдельные виды общестроительных, монтажных и специальных строительных работ ППР разрабатываются организациями, выполняющими эти работы. ПНР по заказу генеральной подрядной или субподрядной строительно-монтажной организации могут разрабатываться проектными, проектно-конструкторскими организациями, а также проектно-технологическими и научно-исследовательскими институтами.

В зависимости от продолжительности строительства объекта и объемов работ по решению строительной организации ППР разрабатывается на строительство здания или сооружения в целом, на возведение их отдельных частей (подземные и наземные части, секция, пролет, этаж, ярус и т.п.), на выполнение отдельных технически сложных строительных, монтажных и специальных строительных работ, а также работ подготовительного периода и передан на строительную площадку до начала возведения тех частей здания (сооружения) или начала выполнения тех работ, на которые составлен ППР.

Исходными материалами для разработки ППР служат:

* задание на разработку, выдаваемое строительной организацией как заказчиком ППР, с обоснованием необходимости разработки его на здание (сооружения) в целом, его часть или вид работ и с указанием сроков разработки;

* ПОС;

* необходимая рабочая документация;

* условия поставки конструкций, готовых изделий, материалов и оборудования; использования строительных машин и транспортных средств, обеспечение рабочими кадрами строителей по основным профессиям, производственно-технологической комплектации и перевозки строительных грузов, а в необходимых случаях также условия организации строительства и выполнения работ вахтовым методом;


Подобные документы

  • Генеральный план, объемно-планировочные решения здания, внутренняя и наружная отделка. Инженерное оборудование (канализация и водоснабжение, отопление). Определение объема строительно-монтажных работ. Локальная смета на общестроительные работы.

    курсовая работа [379,1 K], добавлен 18.10.2010

  • Расчет общественно-необходимых затрат на возведение объекта. Харктеристика здания, план, разрез. Ведомость объемов работ. Спецификация сборных элементов и конструкций. Локальная смета на общестроительные работы. Акт cдачи-приемки выполненных работ.

    курсовая работа [219,7 K], добавлен 17.01.2010

  • Место расположения проектируемого интернет-кафе. Характеристика архитектурно-планировочного решения здания и основных его помещений. Конструктивная схема здания, выбор строительных материалов. Затраты на работы, объектная смета на строительство кафе.

    курсовая работа [29,1 K], добавлен 05.05.2011

  • Разработка объёмно-планировочного решения производственного здания. Расчет вспомогательных помещений административно-бытового здания кузнечно-штамповочного цеха машиностроительного завода. Укрупнение сборных железобетонных и металлических конструкций.

    курсовая работа [609,6 K], добавлен 14.11.2016

  • Конструктивные решения здания. Подсчет количества монтажных элементов. Выбор методов ведения работ. Определение затрат труда и машинного времени на возведение здания. Стоимость строительно-монтажных работ. Приемы безопасности при монтаже конструкций.

    курсовая работа [636,2 K], добавлен 18.05.2013

  • Проектирование основных несущих конструкций сборного железобетонного каркаса многоэтажного производственного здания. Проектирование железобетонных конструкций, на примере проекта железобетонной плиты перекрытия, неразрезного ригеля, колонны и фундамента.

    курсовая работа [2,4 M], добавлен 12.05.2019

  • Климатические характеристики района строительства. Расчетные параметры воздуха в помещениях. Теплотехнический расчет наружных ограждающих конструкций гражданского здания. Определение теплопотерь. Конструирование и расчет систем отопления и вентиляции.

    курсовая работа [208,2 K], добавлен 10.10.2013

  • Тепловой режим и теплопотери помещений здания. Расчет термических сопротивлений ограждающих конструкций. Выбор системы отопления здания и параметров теплоносителя. Расчет нагревательных приборов и оборудования. Проектирование системы вентиляции здания.

    курсовая работа [753,8 K], добавлен 22.04.2019

  • Предпроектный анализ, объемно–планировочное и архитектурно-конструктивное решения строительства вокзала. Расчёт и проектирование стройгенплана, локальная смета на внутренние сантехнические, электромонтажные работы. Сводный расчёт стоимости строительства.

    дипломная работа [2,7 M], добавлен 15.02.2016

  • Архитектурно-планировочное решение проектируемого здания. Расчет ограждающих конструкций, наружной стены, плиты перекрытия и фундаментов. Характеристика условий строительства, составление стройгенплана. Методы производства строительно-монтажных работ.

    дипломная работа [1,5 M], добавлен 14.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.