Железобетон

История бетона и железобетона. Изготовление монолитных конструкций. Способы натяжения арматуры. Ползучесть и усадка железобетона. Коррозия и меры защиты от нее. Три категории требований к трещиностойкости. Конструктивные схемы компоновки конструкций.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 07.01.2014
Размер файла 5,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

[Введите текст]

Содержание

Введение

История бетона

История железобетона

Составляющие и свойства ЖБИ

Изготовление монолитных железобетонных конструкций

Предварительно напряженный железобетон

Свойства железобетона

Ползучесть железобетона

Усадка железобетона

Воздействие температуры на железобетон

Коррозия железобетона и меры защиты от нее

Три категории требований к трещиностойкости железобетонных конструкций

Конструктивные схемы компоновки железобетонных конструкций

Особенности заводского производства железобетона

Области применения железобетона

Технико-экономическая оценка железобетонных конструкций

Заключение

Список литературы

Введение

В настоящее время, бетон и железобетон являются основными строительными материалами. В нашей стране производят десятки миллионов тонн железобетона и бетона, ни один дом построенный в последние 60 лет не обходится без железобетонных изделий.

Железобетон обладает рядом положительных характеристик: высокими плотностью и прочностью, износостойкостью, хорошими огнеупорными свойствами (при пожаре воздействию огня поддаются только верхние слои железобетона, в то время как каркас из стальной арматуры и внутренние слои бетона нагреваются сравнительно медленно). К отрицательным характеристикам железобетона можно отнести его низкую трещиностойкость.

Поэтому тема производства бетона и железобетона является на сегодняшний день очень важной. Важно не только знать технологию производства, качества железобетона, влияние их на жизнь человека, но и экономико-технологические показатели.

История бетона

Римляне материал, подобный бетону, называли по-разному. Так, литую кладку с каменным заполнителем они именовали греческим словом "эмплектон" (emplekton). Встречается также слово "рудус" (rudus). Однако чаще всего при обозначении таких слов, как раствор, используемый при возведении стен, сводов, фундаментов и тому подобных конструкций, в римском лексиконе употреблялось словосочетание "опус цементум" (opus caementitium), которым и стали называть римский бетон.

Трудно точно сказать, где и когда появился бетон, так как начало его зарождения уходит далеко в глубь веков. Очевидно лишь то, что он не возник таким, каким мы его знаем, а, как большинство строительных материалов, прошел длинный путь развития. Наиболее ранний бетон, обнаруженный археологами, можно отнести к 5600 г. до н.э. Он был найден на берегу Дуная в поселке Лапински Вир (Югославия) в одной из хижин древнего поселения каменного века, где из него был сделан пол толщиной 25 см. Бетон для этого пола приготавливался на гравии и красноватой местной извести.

История бетона неразрывно связана с историей цемента. Древнейшими вяжущими веществами, используемыми человеком, являлась глина и жирная земля, которые после смешивания с водой и высыхания приобретали некоторую прочность. По мере развития и усложнения строительства возрастали требования, предъявляемые к вяжущим веществам. Более чем за 3 тыс. лет до н.э. в Египте, Индии и Китае начали изготавливать искусственные вяжущие, такие, как гипс, а позднее - известь, которые получали посредством умеренной термической обработки исходного сырья.

Наиболее раннее применение бетона в Египте, обнаруженное в гробнице Тебесе (Теве) датируется 1950 г. до н.э. Бетон был применен при строительстве галерей египетского лабиринта и монолитного свода пирамиды Нима задолго до н.э.

Несомненно, на широкое распространение римского бетона определенное влияние оказала политическая и экономическая структура античного общества. Однако не в меньшей степени, а может быть, даже в большей, этому способствовал и ряд крупных технических достижений. В частности, открытие римлянами свойств пуццолановых добавок, значительное улучшение состава бетона за счет использования чистых и даже в отдельных случаях фракционированных заполнителей взамен ранее применявшегося грунта, и тщательное уплотнение бетонной смеси, которому римляне уделяли большое внимание, и которое в значительной степени способствовало улучшению качества бетона. Предположительно, в период наивысшего развития бетона (2 век н.э.) римлянами были разработаны и новые виды вяжущих веществ типа романцемента, позволившие в значительной степени улучшить физико-механические и деформативные характеристики возводимых ими бетонных сооружений. Повышению долговечности бетона способствовали и географические условия Италии с ее теплым и влажным климатом, в то время как в других странах с более суровым климатом постройки из такого же бетона сохранились плохо. Даже сегодня не потеряли своей значимости и конструктивные особенности римских бетонных дорог, полов, сводов и куполов, особенно в связи с тем, что, не умея бороться с растягивающими и изгибными напряжениями бетонных конструкций, римляне прекрасно "научили" их работать на сжатие. Большой интерес представляет и химико-минералогический состав римского цемента. Сочетание этих нововведений и явилось, видимо, основной причиной поразительной долговечности римского бетона, которую до сих пор нередко связывают с якобы утраченными секретами античных строителей.

История железобетона

Железобетон - один из древнейших строительных материалов. Из него построены галереи египетского лабиринта (3600 лет до н. э.), часть Великой Китайской стены (III век до н.э.), ряд сооружений на территории Индии, Древнего Рима и в других местах. Однако использование железобетона и железобетона для массового строительства началось только во второй половине XIX в., после получения и организации промышленного выпуска портландцемента, ставшего основным вяжущем веществом для бетонных и железобетонных конструкций. Вначале железобетон использовался для возведения монолитных конструкций и сооружений. Применялись жесткие и малоподвижные бетонные смеси, уплотнявшиеся трамбованием. С появлением железобетона, армированного каркасами, связанными из стальных стержней, начинают применять более подвижные и даже литые бетонные смеси, чтобы обеспечить их надлежащее распределение и уплотнение в бетонируемой конструкции. Однако применение подобных смесей затрудняло получение бетона высокой прочности, требовало повышенного расхода цемента. Поэтому большим достижением явилось появление в 30-х годах способа уплотнения бетонной смеси вибрированием, что позволило обеспечить хорошее уплотнение малоподвижных и жестких бетонных смесей, снизить расход цемента в бетоне, повысить его прочность и долговечность. В эти же годы был предложен способ предварительного напряжения арматуры в бетоне, способствовавший снижению расхода арматуры в железобетонных конструкциях, повышению их долговечности и трещиностойкости. Профессор А.Р. Шуляченко в 80-х годах XIX века разработал теорию получения и твердения гидравлических вяжущих веществ и цементов и доказал, что на их основе могут быть получены долговечные бетонные конструкции. Под его руководством было организовано производство высококачественных цементов. Профессор Н.А. Белелюбский в 1891 году провел широкие испытания, результаты которых способствовали внедрению железобетонных конструкций в строительство. Профессор И.Г. Малюга в 1895 году в своей работе "Составы и способы изготовления цементного раствора (бетона) для получения наибольшей крепости" обосновал основные законы прочности бетона. В 1912 году был издан капитальный труд Н.А. Житкевича "Бетон и бетонные работы". В начале века появляются много работ по технологии бетона и за рубежом. Из них наиболее важными были работы Р. Фере (Франция), О. Графа (Германия), И. Боломе (Швейцария), Д. Абрамса (США). Широкое развитие получила технология бетона в СССР со времени первых крупных гидротехнических строительств - Волховстроя (1924 год) и Днепростроя (1930 год). Профессора Н.М. Беляев и И.П. Александрии возглавили ленинградскую научную школу по бетону. В 30-е годы ученные московской школы бетона Б.Г. Скрамтаев, Н.А. Попов, С.А. Миронов, С.В. Шестоперов, П.М. Миклашевский и другие разработали методы зимнего бетонирования и тем самым обеспечили круглогодичное возведения бетонных и железобетонных конструкций, создали ряд новых видов бетона, разработали способы повышения долговечности бетона, основы технологии сборного железобетона. В послевоенные годы создавались новые виды вяжущих веществ и бетонов, начинали широко применяться химические добавки, улучшающие свойства бетона, совершенствовались способы проектирования состава бетона и его технология.

Составляющие и свойства ЖБИ

Железобетон - это сочетание двух основных материалов. Любой блок железобетона содержит в себе стальную арматуру, сваренную между собой и бетон. Арматура устойчива к растяжениям, а хрупкий бетонный камень - крайне устойчив к сжатию. Именно это сочетание свойств наделяют этот строительный материал уникальными свойствами.

Рис. 1 - Железобетонные плиты

Для понятия влияния каждого составляющего бетона не его результирующие свойства (свойства железобетонной конструкции в целом) - необходимо отдельно рассмотреть каждый из этих материалов и особенности их соединений.

Процесс «вживления» арматуры не так прост, как это кажется на первый взгляд. Это продиктовано инженерными требованиями к железобетонным изделиям (ЖБИ). Дело в том, что такие конструкции из бетона, как плиты перекрытий между этажами, несущие железобетонные балки испытывают колоссальную нагрузку конструкции пола. Эта нагрузка складывается из ряда составляющих: собственного веса самих конструкций, нагрузки от предметов, находящихся на этаже, и давления, которое создают стены на каркас здания. Все эти факты приводят к тому, что нижняя часть конструкции находится в чуть растянутом состоянии. Это негативно сказывается на прочности и долговечности железобетонных блоков.

Рис.2 - Железная арматура перед заливанием бетона

Инженеры нашли решение этой проблемы в применении т.н. напряжённого железобетона. Секрет его изготовления достаточно прост: в процессе изготовления железная арматура внедряется в бетон в растянутом виде и компенсирует нагрузку растяжения нижней части железобетонного блока своим стремлением сжатия.

Следует упомянуть, что арматура не всегда представляет собой стальные прутья, иногда используют жёсткие стальные пучки проволок. Существуют два типа арматуры: монтажная и рабочая. Монтажная арматура чётко закрепляет расположение стержней рабочей арматуры, создаёт объёмный скелет железобетонного изделия. Рабочую арматуру применяют в нижней части железобетонных изделий, которые работаю на изгиб.

После проектирования каркаса ЖБИ - происходит заливка изделия и придание ему требуемой геометрической формы. В пространстве между водой и бетоном, между которыми происходит химическая реакция - находится заполнитель. Например, щебень горных пород, песок. Концентрация и характер заполнителя во многом определяют конечные свойства бетона, хотя сам заполнитель является инертным, т.е. не участвует в химической реакции. По типу заполнителя бетон делят на мелкозернистый и крупнозернистый.

Изготовление монолитных железобетонных конструкций

Защита железобетонных конструкций полимерными материалами.

Для защиты железобетонных конструкций применяются специальные полимерные составы, позволяющие изолировать поверхностный слой железобетона от негативных влияний внешней среды (химические агенты, механические воздействия). Для защиты железобетонного основания применяют различные типы защитных конструкций, позволяющих модифицировать эксплуатационные свойства минеральной поверхности - увеличить износостойкость, уменьшить пылеотделение, придать декоративные свойства (цвет и степень блеска), улучшить химическую стойкость. Полимерные покрытия, наносимые на железобетонные основания, классифицируют по типам: обеспыливающие пропитки, тонкослойные покрытия, наливные полы, высоконаполенные покрытия.

Другой метод защиты железобетонных конструкций заключается в покрытии арматуры фосфатом цинка. Фосфат цинка медленно реагирует с коррозирующим химикатом (например, щёлочью) образуя устойчивое апатитное покрытие.

Предварительно напряжённый железобетон

Предварительно напряжённый железобетон (преднапряжённый железобетон) - это строительный материал, предназначенный для преодоления неспособности бетона сопротивляться значительным растягивающим напряжениям.

При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается специальным устройством и заливается бетонной смесью. После схватывания сила предварительного натяжения освобождённой стальной проволоки или троса передаётся окружающему бетону, так что он оказывается сжатым. Такое создание напряжений сжатия позволяет частично или полностью устранить растягивающие напряжения от нагрузки.

Способы натяжения арматуры:

Механический способ - натяжение, как правило, с использованием гидравлических или винтовых домкратов

Электротермический способ натяжения - натяжение с использованием электротока для разогрева арматуры, при котором арматура удлиняется до определенных значений

Электротермомеханический - способ комбинирующий механический и электротермический.

Предварительное напряжение может производиться не только до, но и после схватывания бетонной смеси. Чаще этот метод применяется при строительстве мостов с большими пролётами, где один пролёт изготавливается в несколько этапов (захваток). Материал из стали (трос или арматура) укладывается в форму для бетонирования в чехле (гофрированная тонкостенная металлическая или пластиковая труба). После изготовления монолитной конструкции трос (арматуру) специальными механизмами (домкратами) натягивают до определённой степени. После чего в чехол с тросом (арматурой) закачивается жидкий цементный (бетонный) раствор. Таким образом обеспечивается прочное соединение сегментов пролёта моста.

Предварительно напряжённый железобетон является главным материалом междуэтажных перекрытий высотных зданий и бетонных камер ядерных реакторов, а также колонн и стен зданий повышенной сейсмо- и взрывоопасности.

Придавленная, как прессом, весом высокого аттика стена Колизея в Риме является свидетельством того, что еще архитекторы в древнем Риме понимали преимущества преднапряжения каменных конструкций, предназначенных для работы в условиях возможных землетрясений.

Рис. 3 - Преднапряженная своим весом стена Колизея в Риме

железобетон арматура ползучесть усадка

Рис. 4 - Мост в ботаническом саду Гренобля, 1855, самый первый бетонный мост в Мире, Франция

Свойства железобетона

Свойства железобетона определяются:

физико-техническими свойствами используемого специалистами бетонно-растворного узла при производстве железобетона бетонного раствора;

свойствами используемой стальной арматуры (обычно для производства железобетона используют рифленую арматуру, а также сварные сетки и каркасы из такой арматуры);

количеством используемой арматуры и способом ее размещения в железобетонной конструкции.

Критерии, классификации бетона это:

Средняя плотность (D).

Прочность (B, Bt, Btb).

Морозостойкость (F).

Водонепроницаемость (W).

Средняя плотность железобетона

Средняя плотность тяжелого железобетона при укладке бетонной смеси с вибрированием равна 2500 кг/M3, при укладке бетонной смеси без вибрирования - 2400 кг/M3. При значительном содержании арматуры (свыше 3%) плотность железобетона определяют как сумму масс бетона и арматуры в 1 M3 объема конструкции. Средняя плотность легкого железобетона определяется так же, как сумма масс бетона и арматуры в 1 M3 объема конструкции.

Сам бетон принято разделять по плотности на 4 типа: особо лёгкий, лёгкий, тяжёлый и особо тяжёлый. Плотность тяжёлого класса бетона может достигать 2,5 тонн на м3. На основе тяжёлого бетона изготавливают такие ЖБИ, как плиты перекрытий, элементы оград, детали колодцев и столбы освещения. По средней плотности (D) бетон определяется фактическим показателем массы бетона в сухом состоянии к объёму (кг/м3).

Ползучесть железобетона

Ползучесть железобетона является следствием ползучести бетона. Стальная арматура, как и при усадке, становится внутренней связью, препятствующей свободным деформациям ползучести. В железобетонном элементе под нагрузкой стесненная ползучесть приводит к перераспределению усилий между арматурой и бетоном. Процесс перераспределения усилий интенсивно протекает в течение первых нескольких месяцев, а затем в течение длительного времени (более года) постепенно затухает. Продольные деформации арматуры и бетона центральнo-сжатой железобетонной призмы благодаря сцеплению материалов одинаковы

Релаксация напряжений в бетоне железобетонной призмы наблюдается и при постоянных напряжениях в арматуре. Напряжения в бетоне с течением времени уменьшаются, так как коэффициент с течением времени уменьшается.

На работу коротких сжатых железобетонных элементов ползучесть бетона оказывает положительное влияние, обеспечивая полное использование прочности бетона и арматуры; в гибких сжатых элементах ползучесть вызывает увеличение начальных эксцентриситетов, что может снижать их несущую способность; в изгибаемых элементах ползучесть вызывает увеличение прогибов; в предварительно напряженных конструкциях ползучесть приводит к потере предварительного напряжения. Ползучесть и усадка железобетона протекают одновременно и совместно влияют на работу конструкции.

Усадка железобетона

В железобетонных конструкциях стальная арматура вследствие ее сцепления с бетоном становится внутренней связью, препятствующей свободной усадке бетона. Согласно опытным данным, усадка и набухание железобетона в ряде случаев вдвое меньше, чем усадка и набухание бетона. Стесненная деформация усадки бетона приводит к появлению в железобетонном элементе начальных, внутренне уравновешенных напряжений растягивающих в бетоне и сжимающих в арматуре. Под влиянием разности деформаций свободной усадки бетонного элемента и стесненной усадки армированного элемента возникают средние растягивающие напряжения в бетоне.

При усадке железобетона растягивающие напряжения в бетоне зависят от свободной усадки бетона, коэффициента армирования , класса бетона. С увеличением содержания арматуры в бетоне растягивающие напряжения увеличиваются, и, если они достигают временного сопротивления при растяжении, возникают усадочные трещины. Растягивающие напряжения в бетоне при стесненной усадке элемента, армированного односторонней несимметричной арматурой, возрастает вследствие внецентренного приложения к сечению усилия в арматуре.

Начальные растягивающие напряжения в бетоне от усадки способствуют более раннему образованию трещин в тех зонах железобетонных элементов, которые испытывают растяжение от нагрузки. Однако с появлением трещин влияние усадки уменьшается. В стадии разрушения усадка не влияет на несущую способность статически определимого железобетонного элемента. В статически неопределимых железобетонных конструкциях (арках, рамах и т. п.) лишние связи препятствуют усадке железобетона и поэтому усадка вызывает появление дополнительных внутренних усилий. Влияние усадки эквивалентно понижению температуры на определенное число градусов. Для того чтобы уменьшить дополнительные усилия от усадки, железобетонные конструкции промышленных и гражданских зданий большой протяженности делят усадочными швами на блоки.

Воздействие температуры на железобетон

Под воздействием температуры в железобетоне возникают внутренние взаимно уравновешенные напряжения, вызванные некоторым различием в значениях коэффициента линейной температурной деформации цементного камня, зерен заполнителей и стальной арматуры. При воздействии на конструкцию температуры до 50°С внутренние напряжения невелики и практически не приводят к снижению прочности бетона. В условиях систематического воздействия технологических температур (порядка 60-200°С) необходимо учитывать некоторое снижение механической прочности бетона (примерно на 30 %) При длительном нагреве до 500-600 °С и последующем охлаждении бетон разрушается.

Основными причинами разрушения бетона при воздействии высоких технологических температур являются значительные внутренние растягивающие напряжения, возникающие вследствие разности температурных деформаций цементного камня и зерен заполнителей, а также вследствие увеличения в объеме свободной извести, которая выделяется при дегидратации минералов цемента и гасится влагой воздуха.

Для конструкций, испытывающих длительное воздействие высоких технологических температур, применяют специальный жаростойкий бетон. Прочность сцепления арматуры периодического профиля с бетоном снижается при температуре до 500°С на 30%. Однако прочность сцепления гладкой арматуры с бетоном начинает резко снижаться уже при 250 °С.

В статически неопределимых железобетонных конструкциях под воздействием сезонных изменений температур возникают дополнительные усилия, которые при большой протяженности конструкции становятся весьма значительными. Чтобы уменьшить дополнительные усилия от изменения температуры, здания большой протяженности делят на отдельные блоки температурными швами, которые обычно совмещают с усадочными швами.

Коррозия железобетона и меры защиты от нее

Коррозионная стойкость элементов железобетонных конструкций зависит от плотности бетона и степени агрессивности среды. Коррозия бетона, имеющего недостаточную плотность, может происходить от воздействия фильтрующейся воды, которая растворяет составляющую часть цементного камня - гидрат окиси кальция. Наибольшей растворяющей способностью обладает мягкая вода. Внешним признаком такой коррозии бетона являются белые хлопья на его поверхности. Другой вид коррозии бетона возникает под влиянием газовой или жидкой агрессивной среды: кислых газов в сочетании с повышенной влажностью, растворов кислот, сернокислых солей и др. При взаимодействии кислоты с гидратом окиси кальция цементного камня бетон разрушается. Продукты химического взаимодействия агрессивной среды и бетона, кристаллизуясь, постепенно заполняют поры и каналы бетона. Рост кристаллов приводит к разрыву стенок пор, каналов и быстрому разрушению бетона. Наиболее вредны для бетона соли ряда кислот, особенно серной кислоты; они образуют в цементе сульфат кальция и алюминия. Сульфатоалюминат кальция, растворяясь, вытекает и образует белые подтеки на поверхности бетона. Весьма агрессивны грунтовые воды, содержащие сернокислотный кальций, а также воды с магнезиальными и аммиачными солями.

Морская вода при систематическом воздействии оказывает вредное влияние на бетон, поскольку содержит сульфатомагнезит, хлористую магнезию и другие вредные соли.

Коррозия арматуры (ржавление) происходит в результате химического и электролитического воздействия окружающей среды; обычно она протекает одновременно с коррозией бетона, но может протекать и независимо от коррозии бетона. Товар коррозии арматуры имеет в несколько раз больший объем, чем арматурная сталь, и создает значительное радиальное давление на окружающий слой. При этом вдоль арматурных стержней возникают трещины и отколы бетона с частичным обнажением арматуры.

Мерами защиты от коррозии железобетонных конструкций, находящихся в условиях агрессивной среды, в зависимости от степени агрессии являются: снижение фильтрующей способности бетона введением специальных добавок, повышение плотности бетона, увеличение толщины защитного слоя бетона, а также применение лакокрасочных или мастичных покрытий, оклеечной изоляции, замена портландцемента глиноземистым цементом, применение специального кислотостойкого бетона.

Три категории требований к трещиностойкости железобетонных конструкций

Трещиностойкостью железобетонной конструкции называют ее сопротивление образованию трещин в стадии I напряженно-деформированного состояния или сопротивление раскрытию трещин в стадии II напряженно-деформированного состояния.

К трещиностойкости железобетонной конструкции или ее частей предъявляются при расчете различные требования в зависимости от вида применяемой арматуры. Эти требования относятся к нормальным и наклонным к продольной оси элемента трещинам и подразделяются на три категории:

первая категория - не допускается образование трещин;

вторая категория - допускается ограниченное по ширине непродолжительное раскрытие трещин при условии их последующего надежного закрытия (зажатия);

третья категория - допускается ограниченное по ширине непродолжительное и продолжительное раскрытие трещин.

Непродолжительным считается раскрытие трещин при действии постоянных, длительных и кратковременных нагрузок; продолжительным считается раскрытие трещин при действии только постоянных и длительных нагрузок. Предельная ширина раскрытия трещин, при которой обеспечиваются нормальная эксплуатация зданий, коррозионная стойкость арматуры и долговечность конструкции, в зависимости от категории требований по трещиностойкости не должна превышать 0,05- 0,4 мм.

Предварительно напряженные элементы, находящиеся под давлением жидкости или газов (резервуары, напорные трубы и т.п.), при полностью растянутом сечении со стержневой или проволочной арматурой, а также при частично сжатом сечении с проволочной арматурой диаметром 3 мм и менее должны отвечать требованиям первой категории. Другие предварительно напряженные элементы в зависимости от условий рабйты конструкции и вида арматуры должны отвечать требованиям второй или третьей категории.

Порядок учета нагрузок при расчете по трещиностойкости зависит от категории требований по трещиностойкости: при требованиях первой категории расчет ведут по расчетным нагрузкам с коэффициентом надежности по нагрузке (как при расчете на прочность); при требованиях второй и третьей категорий расчет ведут на действие нагрузок с коэффициентом. Расчет по образованию трещин для выяснения необходимости проверки по кратковременному раскрытию трещин при требованиях второй категории выполняют на действие расчетных нагрузок с коэффициентом; расчет по образованию трещин для выяснения необходимости проверки по раскрытию трещин при требованиях третьей категории выполняют на действие нагрузок с коэффициентом. В расчете по трещиностойкости учитывают совместное действие всех нагрузок, кроме особых. Особые нагрузки учитывают в расчете по образованию трещин в тех случаях, когда трещины приводят к катастрофическому положению. Расчет по закрытию трещин при требованиях второй категории производят на действие постоянных и длительных нагрузок с коэффициентом. На концевых участках предварительно напряженных элементов в пределах длины зоны передачи напряжений с арматуры на бетон 1Р не допускается образование трещин при совместном действии всех нагрузок (кроме особых), вводимых в расчет с коэффициентом. Это требование вызвано тем, что преждевременное образование трещин в бетоне на концевых участках элементов может привести к выдергиванию арматуры из бетона под нагрузкой и внезапному разрушению. Трещины, если они возникают при изготовлении, транспортировании и монтаже в зоне, которая, впоследствии под нагрузкой будет сжатой, приводят к снижению усилий образования трещин в растянутой при эксплуатации зоне, увеличению ширины их раскрытия и увеличению прогибов. Влияние этих трещин учитывается в расчетах конструкций. Для элементов, работающих в условиях действия многократно повторных нагрузок и рассчитываемых на выносливость, образование таких трещин не допускается.

Конструктивные схемы компоновки железобетонных конструкций

Конструкции промышленных и гражданских зданий состоят из отдельных элементов, связанных в единую систему. Здание в целом должно надежно сопротивляться деформированию в горизонтальном направлении от действия различных нагрузок и воздействий, т.е. должно обладать достаточной пространственной жесткостью. При загружении одного из элементов здания в работу включаются и другие элементы, происходит пространственная работа. Отдельные элементы зданий - плиты и балки перекрытий, колонны, стены и др.- должны обладать прочностью и устойчивостью, достаточной жесткостью и трещиностойкостью и участвовать в общей работе здания. Учет пространственной работы зданий приводит к более экономичным конструкциям.

Конструктивные схемы зданий, удовлетворяющие изложенным требованиям, могут быть каркасными и панельными (бескаркасными), многоэтажными и одноэтажными. Каркас многоэтажного здания образуется из основных вертикальных и горизонтальных элементов - колонн и ригелей. В каркасном здании горизонтальные воздействия (циклон, сейсмика и т. п.) могут восприниматься совместно каркасом и вертикальными связевыми диафрагмами, соединенными перекрытиями в единую пространственную систему, или же только каркасом, как рамной конструкцией, при отсутствии вертикальных диафрагм. В многоэтажном панельном здании горизонтальные воздействия воспринимаются совместно поперечными и продольными стенами, также соединенными перекрытиями в пространственную систему. Каркас одноэтажного здания образуется из колонн, заделанных в фундамент, и ригелей, шарнирно или жестко соединенных с колоннами.

Железобетонные конструкции при всех возможных конструктивных схемах зданий должны быть индустриальными и экономичными. Их проектируют так, чтобы максимально использовались машины и механизмы при изготовлении и монтаже зданий и сводились к минимуму расхода ручного труда и строительных материалов. В наибольшей степени этим требованиям отвечают сборные железобетонные конструкции заводского изготовления.

С изменением температуры железобетонные конструкции деформируются - укорачиваются или удлиняются, а вследствие усадки бетона укорачиваются. При неравномерной осадке основания части конструкций взаимно смещаются в вертикальном направлении.

В большинстве случаев железобетонные конструкции представляют собой статически неопределимые системы, и поэтому от изменения температуры, усадки бетона, а также от неравномерной осадки фундаментов в них возникают дополнительные усилия, что может привести к появлению трещин или к разрушению части конструкции.

Чтобы уменьшить усилия от температуры и усадки, железобетонные конструкции делят по длине и ширине температурно-усадочными швами на отдельные части - деформационные блоки.

Для железобетонных конструкций одноэтажных каркасных зданий допускается увеличивать расстояния между температурно-усадочными швами на 20 % сверх значений, указанных в таблице. Расстояния между температурными швами, указанные в таблице, допустимы при расположении вертикальных связей каркасных зданий в середине деформационного блока. Если же связи расположены по краям деформационного блока, то работа здания при температурно-усадочных деформациях приближается по характеру к работе сплошных конструкций.

Температурно-усадочные швы выполняются в надземной части здания - от кровли до верха фундамента, разделяя при этом перекрытия и стены. Ширина температурно-усадочных швов обычно составляет 2-3 см, она уточняется расчетом в зависимости от длины температурного блока и температурного перепада. Наиболее четкий температурно-усадочный шов конструкции здания создается устройством парных колонн и парных балок по ним.

Осадочные швы устраивают между частями зданий разной высоты или в зданиях, возводимых на участке с разнородными грунтами; такими швами делят и фундаменты. Осадочные швы можно устраивать также с помощью вкладного пролета из плит и балок. Осадочный шов служит одновременно и температурно-усадочным швом здания.

Особенности заводского производства железобетона

При проектировании железобетонных элементов предусматривают возможность высокопроизводительного изготовления их на специальных заводах и удобного монтажа на строительных площадках путем выбора оптимальных габаритов, экономичных форм сечения, рациональных способов армирования. Конструктивное решение элементов и технология заводского изготовления находятся в тесной взаимосвязи. Элементы, конструкция которых допускает их массовое изготовление на заводе или на полигоне с использованием высокопроизводительных машин и механизмов без трудоемких ручных операций, являются технологичными. Производство сборных железобетонных элементов ведется по нескольким технологическим схемам.

Конвейерная технология. Элементы изготовляют в формах, установленных на вагонетках и перемещаемых по рельсам конвейера от одного агрегата к другому. По мере передвижения вагонетки последовательно выполняют необходимые технологические операции: установку арматурных каркасов, натяжение арматуры предварительно напряженных элементов, установку вкладышей-пустотообразователей для элементов с пустотами, укладку бетонной смеси и ее уплотнение, извлечение вкладышей, термовлажностную обработку предмета торговли для ускорения твердения бетона. Все формы-вагонетки перемещаются с установленным принудительным ритмом. Высокопроизводительная конвейерная технология применяется на крупных заводах при массовом выпуске элементов относительно малой массы.

Поточно-агрегатная технология. Технологические операции производят в соответствующих отделениях завода, а форма с предметом торговли перемещается от одного агрегата к другому кранами. Технологический ритм перемещения форм заранее не установлен и не является принудительным.

Стендовая технология. Ее особенность состоит в том, что предмета торговли в процессе изготовления и тепловой обработки остаются неподвижными, а агрегаты, выполняющие необходимые технологические операции, перемещаются вдоль неподвижных форм. Стенды оборудованы передвижными кранами, подвижными бетоноукладчиками, а также вибраторами для уплотнения бетонной смеси, элементы изготовляют в гладких или профилированных матрицах или кассетах. По стендовой технологии изготовляют крупноразмерные и предварительно апряженные элементы промышленных зданий (фермы, балки покрытий, подкрановые балки, колонны и др.). При изготовлении плит перекрытий и панелей стен гражданских зданий широко применяется кассетный способ. Элементы изготовляют на неподвижном стенде в пакете вертикальных металлических кассет, вмещающем одновременно несколько панелей. Сборка и разборка кассет механизированы. Арматурные каркасы на панель устанавливают в отсеках кассеты. Бетонирует подвижной бетонной смесью, подаваемой пневматическим транспортом по трубам. Благодаря формованию предметов торговли в вертикальном положении поверхность плит и панелей получается ровной и гладкой. При вибропрокатном способе плиты перекрытий и фланели стен изготовляют на непрерывно движущейся ленте, гладкая или рифленая поверхность которой служит формой предмета торговли. После укладки арматурного каркаса бетонная смесь, поданная на ленту, вибрируется и уплотняется с помощью расположенных сверху валиков. Последовательно прокатываемые предмета торговли, укрытые сверху и подогреваемые снизу, за время перемещения по ленте (в течение нескольких часов) набирают необходимую прочность и после охлаждения на стеллажах транспортируются на склад готовой продукции. Технологические операции подчинены единому ритму - скорости движения формующей ленты.

Изготовить весь комплекс сборных предметов торговли, необходимых для возведения здания, по одной технологической схеме нельзя. Поэтому на заводах сборных железобетонных предметов торговли одновременно используют несколько технологических схем. Разработка новых прогрессивных конструкций в ряде случаев вызывает необходимость совершенствования технологической схемы или создания новой технологии, что, в свою очередь, может потребовать определенного приспособления конструкции к технологическим требованиям.

Области применения железобетона

Железобетонные конструкции являются базой современного индустриального строительства. Из железобетона возводят промышленные одноэтажные и многоэтажные здания, гражданские здания различного назначения, в том числе жилые дома, сельскохозяйственные здания различного назначения. Железобетон широко применяют при возведении тонкостенных покрытий (оболочек) промышленных н общественных зданий больших пролетов, инженерных сооружений: силосов, бункеров, резервуаров, дымовых труб, в транспортном строительстве для метрополитенов, мостов, туннелей на автомобильных и железных дорогах; в энергетическом строительстве для гидроэлектростанций (ГЭС), атомных установок и реакторов; в гидромелиоративном строительстве для и ирригационных устройств; в горной промышленности для надшахтных сооружений и крепления подземных выработок н т. д. На изготовление железобетонных стержневых конструкций расходуется в 2,5-3,5 раза меньше металла, чем на стальные конструкции. На изготовление настилов, труб, бункеров и т. п. железобетонных конструкций требуется металла в 10 раз меньше, чем на аналогичные стальные листовые конструкции.

Рациональное сочетание применения железобетонных, металлических и других конструкций с наиболее рациональным использованием лучших свойств каждого материала имеет большое народнохозяйственное значение.

По способу выполнения различают железобетонные конструкции сборные, изготовляемые на заводах стройиндустрии и затем монтируемые на строительных площадках, монолитные, возводимые на месте строительства, и сборно-монолитные, которые образуются из сборных железобетонных элементов и монолитного бетона.

Сборные железобетонные конструкции в наибольшей степени отвечают требованиям индустриализации строительства. Применение сборного железобетона позволяет существенно улучшить качество конструкций, снизить по сравнению с монолитным железобетоном трудоемкость работ на монтаже в несколько раз, уменьшить, а во многих случаях и полностью устранить издержка материалов на устройство подмостей и опалубки, а также резко сократить сроки строительства. Монтаж зданий и сооружений из сборного железобетона можно производить и в зимний период без существенного его удорожания, в то время как возведение конструкций из монолитного железобетона зимой требует значительных дополнительных издержек (на обогрев бетона при твердении и др.).

Технико-экономическая оценка железобетонных конструкций

Для технико-экономической оценки отдельных элементов и конструкций в целом при проектировании служат следующие показатели: затрата арматуры, бетона; трудоемкость изготовления и монтажа, чел.-дн.; цена, российский рубль. Расчетной единицей измерения служит одна конструкция. Кроме того, показатели рассчитывают на одну единицу измерения - на 1 мі или на 1 мІ, или на 1 м длины и т. д. Основным экономическим показателем железобетонных конструкций является цена, которая слагается из стоимости материала и работ по изготовлению и монтажу конструкции, стоимости энергии, топлива и материалов на технологические нужды, а также цеховых и общезаводских затрат, отражающих капиталовложения по организации производства и эксплуатационные расходы предприятия.

При проектировании зданий и сооружений чаще всего применяют вариантный метод сравнения стоимости железобетонных конструкций. Этим методом оценку экономичности железобетонных конструкций производят сопоставлением технико-экономических показателей нескольких вариантов конструктивных решений. Сравниваемые варианты конструктивных решений отвечают одной и той же программе, одним и тем же требованиям, но отличаются конструктивной схемой, иногда геометрическими размерами, формой сечения элементов, способами армирования и т. п. Показатели определяются на основе чертежей конструкций, разработанных на той стадии проектирования, на которой производится сравнение вариантов. Наиболее достоверные показатели можно получить на основании рабочих чертежей конструкций.

Вопросы экономики железобетонных конструкций следует решать совместно с вопросами прочности на протяжении всего процесса проектирования: при выборе объемно-планировочной и конструктивной схемы здания; членении конструкции на сборные элементы и выборе формы и размеров сечения элементов; назначении класса бетона, класса стальной арматуры; установлении способов армирования и т.д.

Заключение

При работе с рефератом я узнала об истории возникновения бетона, свойствах железобетона, о таких понятиях как предварительно напряженный железобетон, усадка и ползучесть. Выявила особенности заводского производства железобетона, технико-экономические показатели железобетонных конструкций. Поняла, что бетонные и железобетонные конструкции обладают высокой конструктивной прочностью, в то же время исходный материал этих конструкций хорошо поддается укладке в различные формы, что позволяет возводить из него самые разнообразные по очертанию элементы сооружений.

Список литературы

1. Баженов Ю.М., Комар А.Г. «Технология бетонных и железобетонных изделий» М. «Стройиздат» 1984г.267 с.

2. Евдокимов Н.И «Технология монолитного бетона и железобетона». М. «Стройиздат» 1980г.467 с.

3. Миронов С.А. «Теория и методы зимнего бетонирования»3-изд. М. «Стройиздат 1975г.750 с.

4. Третьяков А.К., Роженко М.П. «Арматурные и бетонные работы». М. «Высшая школа» 1895 г. 590 с.

5. Учебник для Втузов под ред. Бадьина Г.М. «Технология строительного производства». М. «Стройиздат» 1987 г. 606 с.

6. Башлай А.Г.«Справочник строителя: Бетонные и железобетонные работы». М. «Стройиздат» 1987г.320 с.

7. Хаютин Ю.Б. «Монолитный бетон». М. «Стройиздат»1984 г. 168 с.

Размещено на Allbest.ru


Подобные документы

  • Концепция развития бетона и железобетона, значение этих материалов для прогресса в области строительства. Особенности технологий расчета и проектирования железобетонных конструкций. Направления и источники экономии бетона и железобетона в строительстве.

    реферат [30,2 K], добавлен 05.03.2012

  • Сущность железобетона, его особенности как строительного материала. Физико-механические свойства материалов железобетонных конструкций и арматуры. Достоинства и недостатки железобетона. Технология изготовления сборных конструкций, области их применения.

    презентация [4,6 M], добавлен 11.05.2014

  • Армирование как способ компенсации недостатков бетона. Основные виды арматуры в железобетонных конструкциях. Принципы получения конструкций из железобетона, критерии их классификации. История изобретения предварительно напряженного железобетона.

    реферат [315,2 K], добавлен 01.05.2017

  • Бетоны на основе неорганических вяжущих веществ. Определение коррозии железобетона. Химическая, биологическая коррозия бетона. Методы защиты бетона от коррозии. Цементизация, силикатизация, битумизация и смолизация. Твердение гидросиликата и кремнезема.

    реферат [28,0 K], добавлен 08.06.2011

  • Виды разрушения материалов и конструкций. Способы защиты бетонных и железобетонных конструкций от разрушения. Основные причины, механизмы и последствия коррозии бетонных и железобетонных сооружений. Факторы, способствующие коррозии бетона и железобетона.

    реферат [39,1 K], добавлен 19.01.2011

  • Особенности заводского производства сборных железобетонных элементов, которое ведется по нескольким технологическим схемам. Коррозия железобетона и меры защиты от нее. Характеристика методов разрушения железобетонных конструкций, применяемое оборудование.

    контрольная работа [21,7 K], добавлен 06.08.2013

  • Технология процессов монолитного бетона и железобетона. Содержание и структура комплексного процесса бетонирования. Опалубочные и арматурные работы. Уплотнение бетонных смесей. Подбор монтажных кранов. Калькуляция затрат труда и машинного времени.

    курсовая работа [32,0 K], добавлен 22.02.2012

  • Железобетон как комбинированный материал, состоящий из бетона и арматуры. Принцип работы железобетона. Особенности расчета железобетонных конструкций. Сжатые и растянутые железобетонные элементы, их трещиностойкость и перемещение. Кривизна оси при изгибе.

    реферат [1,6 M], добавлен 17.02.2014

  • Применение железобетона в строительстве. Теории расчета железобетонных конструкций. Физико-механические свойства бетона, арматурных сталей. Примеры определения прочности простых элементов с использованием допустимых значений нормативов согласно СНиП.

    учебное пособие [4,1 M], добавлен 03.09.2013

  • Биографические данные о жизни и деятельности Огюста Пере. История возникновения и применения железобетона. Использование железобетона как средства архитектурного выражения. Создание Театра Елисейских полей в Париже, церкви ле Ренсе и башни Перре.

    презентация [7,0 M], добавлен 12.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.