Строительные материалы
Изучение конвертерного и мартеновского способов производства стали, основных свойств и марок чугуна. Анализ цветных металлов и их сплавов, защиты металлов от коррозии и огня. Классификация природных каменных, минеральных вяжущих материалов, древесины.
Рубрика | Строительство и архитектура |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 17.01.2012 |
Размер файла | 4,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Асбестоцементные изделия
Асбестоцемент - строительный материал, представляющий собой затвердевший цементный камень, армированный волокнами асбеста. Асбестоцементные изделия получают формованием смеси асбеста (10-20%), портландцемента (80-90%) и воды. Волокна асбеста выполняют роль своеобразной арматуры асбестоцементных изделий, а портландцемент марки не ниже 400, без добавок (кроме гипса), затворенный водой, является связующим веществом.
Асбест в природе встречается в основном в виде минерала - хризолит-асбеста, характеризующегося волокнистостью строения и способностью расщепляться на тончайшие и прочные волокна. Длина волокон асбеста колеблется от долей миллиметра до 40 мм. Чем длиннее волокна асбеста, тем выше его сорт. Для производства асбестоцементных изделий используют коротковолокнистый асбест 3, 4, 5 и 6 сортов. Асбест не горит, имеет малую тепло- и электропроводность.
Технологический процесс получения асбестоцементных изделий состоит в следующем: обминании и распушивании асбеста; тщательном смешивании распушенного асбеста с цементом и разжижении полученной асбестоцементной смеси водой; формовании изделий в формовочных машинах; предварительном твердении, тепловой обработке сформованных изделий и механической обработке (обрезка, волнировка) асбестоцементных изделий.
Асбестоцементные изделия обладают высокой прочностью, морозостойкостью и малой водопроницаемостью. Они теплостойки, имеют пониженную теплопроводность, их сравнительно легко обрабатывать. Под влиянием влаги они не корродируют, со временем их прочность несколько увеличивается. Недостаток асбестоцементных изделий - малое сопротивление удару и коробление.
В современном строительстве широко применяют разнообразные асбестоцементные изделия: плитки и листы (профилированные и плоские) облицовочные и кровельные, панели с теплоизоляционным слоем, напорные и безнапорные трубы, муфты, короба, подоконные и электроизоляционные доски, изделия специального назначения, малые архитектурные формы (цветочницы, вазы и пр.).
Профилированные листы изготовляют из асбестоцемента волнистыми (обыкновенного и усиленного профиля) и полуволнистыми.
Листы волнистые имеют форму прямоугольника с шестью волнами, направление гребней которых совпадает с направлением большой стороны прямоугольника. Длина волнистых листов обыкновенного профиля (ВО) 1200, ширина около 700 и толщина 5,5 мм. Листы волнистые усиленного профиля (ВУ) несколько толще, что позволяет изготовлять их больших размеров. Длина их 2800, ширина около 1000 и толщина 8 мм. В последние годы разработан новый тип асбестоцементных волнистых листов - СВ-40-250 размером 2500х1150х6 мм. По сравнению с ранее выпускаемыми листами ВО эти листы имеют большую полезную площадь и меньший расход асбестоцемента на 1 м2 полезной площади.
Листы профилированные должны быть строго прямоугольной формы, без трещин и отколов. Профилированные асбестоцементные листы применяют для устройства кровель, облицовки стен, ограждений балконов и т. п.
Плоские облицовочные асбестоцементные плиты выпускают непрессованными и прессованными повышенной прочности толщиной 4-10, шириной до 1600 и длиной до 2800 мм. В процессе формования их лицевую поверхность отделывают в зависимости от назначения декоративным асбестоцементным слоем, окрашивают водостойкими эмалями, полируют, а также делают рельефной, имитирующей керамическую глазурованную плитку. Плиты, окрашенные водостойкими эмалями, в последнее время с успехом применяют для облицовки панелей, потолков, кухонь жилых и общественных зданий.
Кровельные и стеновые панели. Кровельная панель - слоистая конструкция, состоящая из двух асбестоцементных листов, склеенных между собой по контуру асбестоцементной мастикой и образующих замкнутую оболочку, внутри которой уложен минераловатный утеплитель. Масса панели не превышает 100 кг. Применяют эти панели для покрытия кровель производственных и культурно-бытовых зданий с уклоном не менее 5-7о. Размеры плит панелей покрытий позволяют перекрывать пролеты до 3 м.
Стеновая панель представляет собой трехслойную конструкцию: наружный и внутренний облицовочный слои ее состоят из прессованного асбестоцемента, а средний слой - из теплоизоляционного материала (пеностекло, минераловатные плиты, цементный фибролит, пенопласт и др.). Стеновые панели можно изготовлять с каркасом из металла, асбестоцемента, древесины или без каркаса. В зависимости от вида утеплителя толщина асбестоцементной панели колеблется в пределах 12-20см, 1м2 такой панели имеет массу 120-180 кг, что значительно меньше массы любой стеновой панели.
Стеновые асбестоцементные панели применяют при строительстве каркасно-панельных зданий.
Трубы и короба. Применяют для водопроводов (напорные трубы), канализации (безнапорные трубы), газопроводов и сетей механизированного орошения полей.
Трубы имеют длину 2950 - 3950, внутренний диаметр 50 - 500, толщину стенок 9 - 43,5 мм. Трубы должны быть прямыми, строго цилиндрической формы, с гладкой внутренней поверхностью и без трещин. Напорные трубы выпускают нескольких марок с рабочим давлением от 0,3 до 1,2 МПа. Длина канализационных труб 2500-4000, внутренний диаметр 50-600, толщина стенок 7-18 мм. Для соединения водопроводных и канализационных труб используют соединительные асбестоцементные муфты.
Вентиляционные короба изготавливают круглого и прямоугольного сечения, безраструбные или с раструбом на одном конце.
Изделия на основе магнезиальных вяжущих
Материалы на основе магнезиальных вяжущих получают, используя в качестве органических заполнителей древесные опилки, шерсть или стружки.
Магнезиальные вяжущие вещества (каустические магнезит или доломит), затворенные раствором хлористого магния, надежно соединяются с органическими заполнителями и защищают их от гниения. Их применяют для изготовления ксилолита и фибролита.
Ксилолит - искусственный каменный материал, полученный в результате затвердевания смеси древесных опилок и магнезиального вяжущего, затворенного раствором хлористого магния. В смесь вводят также добавки, улучшающие свойства материала - тальк, асбест, кварцевый песок и красители. Его применяют для устройства бесшовных полов. Ксилолитовые полы относят к теплым, бесшумным покрытиям, гладким, хорошо сопротивляющимся истиранию и динамическим нагрузкам. Однако они имеют низкую водостойкость. Из ксилолита можно изготовлять путем прессования квадратные или шестиугольные плитки для полов, подоконники и другие изделия. Поверхность ксилолитовых изделий окрашивают и отделывают под мрамор, малахит и т. п.
Фибролит представляет собой теплоизоляционный материал, изготовленный из древесной стружки или шерсти, связанной магнезиальным вяжущим. Фибролитовые плиты применяют для утепления стен, перекрытий или для заполнения стен, перекрытий и перегородок каркасных зданий.
ИСКУССТВЕННЫЕ КАМЕННЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯНА ОСНОВЕ МИНЕРАЛЬНЫХ ВЯЖУЩИХ ВЕЩЕСТВ
Силикатные материалы и изделия
Силикатными материалами и изделиями называются необожженные материалы и изделия на основе минеральных вяжущих - асбестоцементные, гипсовые и гипсобетонные, силикатные (на основе извести) и магнезиальные с заполнителями (кварцевым песком, шлаком, золой, пемзой, опилками и т. д.). Области применения их чрезвычайно обширны - от несущих и ограждающих конструкций до отделки зданий и сооружений.
Силикатные изделия получают в результате формования и последующей автоклавной обработки смеси извести или других вяжущих веществ на ее основе, тонкодисперсных кремнеземистых добавок, песка и воды.
Силикатный кирпич - искусственный каменный материал, изготовляемый из смеси кварцевого песка и извести путем прессования под большим давлением и последующего твердения в автоклаве. Исходными материалами являются воздушная известь - 6-8% в расчете на СаО, кварцевый песок - 92-94% и вода - 7-8% по массе сухой смеси.
Существуют две схемы производства силикатного кирпича: силосная и барабанная. По силосной схеме известь, совместно с песком, гасят в силосах в течение 4-8 ч. По барабанной схеме известь, совместно с песком, гасят во вращающихся барабанах с подводом пара под избыточным давлением до 0,5 МПа благодаря чему процесс гашения длится 30-40 мин.
Погашенная смесь извести и песка увлажняется, перемешивается и прессуется под давлением 15-20 МПа, в результате получается сырец, который укладывают на вагонетки и направляют в автоклавы на 10-14 ч для запаривания под давлением насыщенного пара 0,8 МПа (изб.) при температуре около 175оС. Прочность силикатного кирпича растет в течение некоторого времени и после выгрузки из автоклава (на воздухе).
Силикатный кирпич выпускают двух видов: одинарный (размером 250х120х65 мм) и модульный (размером 250х120х88 мм). Модульный кирпич изготавливают с технологическими пустотами, замкнутыми с одной стороны. Цвет кирпича светло-серый, но он может быть и цветным за счет введения в состав смеси щелочестойких минеральных пигментов.
Благодаря прессованию под большим давлением и отсутствию усадочных явлений размеры силикатного кирпича выдержаны более точно, чем у глиняного. Плотность его несколько выше, чем у керамического кирпича - 1800-1900 кг/м3, теплопроводность - 0,82 - 0,87 Вт/(м оС). В зависимости от предела прочности при сжатии и изгибе силикатный кирпич изготавливают шести марок: 75, 100, 125, 150, 200 и 250. Морозостойкость силикатного кирпича не ниже Мрз 15, водопоглощение 8-16% по массе.
Области применения силикатного кирпича такие же, как и керамического кирпича. Однако он не рекомендуется для кладки фундаментов и стен в условиях высокой влажности, так как воздействие грунтовых и сточных вод вызывает его разрушение. Нельзя использовать силикатный кирпич в конструкциях, подверженных действию высоких температур (в печах, дымовых трубах и т. п.).
Силикатными бетонами называют большую группу бетонов автоклавного твердения, получаемых на основе известково-песчаного, известково-зольного или других известково-кремнеземистых вяжущих. Кроме того, в качестве вяжущего могут использовать молотые доменные шлаки.
Плотный мелкозернистый силикатный бетон, в отличие от тяжелого бетона, в своем составе не содержит крупного заполнителя (гравия или щебня). Структура силикатного бетона более однородна, а стоимость значительно ниже.
Прочность его при сжатии колеблется в довольно широких пределах (15-60 МПа) и зависит от состава смеси, режима автоклавной обработки и других факторов. Водостойкость силикатного бетона удовлетворительная. При полном водонасыщении снижение их прочности не превышает 25%. Морозостойкость - 25-50 циклов, а при добавке портландцемента она повышается до 100 циклов.
Из плотного силикатного бетона выполняют крупные стеновые блоки наружных стен с щелевыми пустотами и внутренних несущих стен, панели и плиты перекрытий, колонны, балки и прогоны, лестничные площадки и марши, цокольные блоки и другие армированные изделия.
В легких силикатных бетонах в качестве заполнителей используют керамзит, гранулированный шлак, шлаковую пемзу и другие пористые материалы в виде гравия и щебня. Из легких силикатных бетонов на пористых заполнителях изготовляют блоки и панели наружных стен жилых зданий.
Ячеистые силикатные бетоны, в зависимости от способа образования пористой структуры, разделяют на пено- и газосиликаты. Их получают при автоклавной обработке известково-песчаной пластичной смеси, в состав которой вводят устойчивую пену (пеносиликат) или алюминиевую пудру и другие газообразователи (газосиликат).
По назначению легкие и ячеистые силикатные бетоны делят на : теплоизоляционные, конструкционно-теплоизоляционные и конструкционные.
Изделия из силикатобетона не рекомендуются для конструкций, подверженных значительному увлажнению (фундаментов, цоколей, подоконников, карнизов и др.).
Гипсовые и гипсобетонные материалы и изделия
Гипсовые изделия получают из гипсового теста. Для улучшения свойств изделий в гипсовое тесто вводят в небольшом количестве тонкомолотые минеральные или органические наполнители.
Гипсобетоны - в них помимо гипса и воды применяют пористые заполнители - минеральные (топливные и доменные шлаки, ракушечник и др.) и органические (опилки, сечка из соломы, камыш и др.). Они обладают достаточно высокой прочностью, низкой теплопроводностью и высокими звукоизоляционными свойствами. Кроме того, они хорошо поддаются механической обработке и легко окрашиваются.
Имеется довольно широкая номенклатура гипсовых и гипсобетонных изделий: гипсокартонные листы, плиты и панели для перегородок, панели для основания пола и др.
Гипсокартонные листы представляют листовой отделочный материал, изготовляемый из строительного гипса с минеральными или органическими добавками (или без них) и оклеенный с обеих поверхностей картоном (в том числе декоративным).
Гипсокартонные листы выпускают шириной 1,2, длиной 2,5-3,3 м и толщиной 8-12 мм. Листы обладают большой плотностью, малой тепло- и звукопроводностью, не горят, их легко резать. Однако они плохо сопротивляются изгибу и разрушаются под действием влаги, поэтому влажность листов не должна превышать 2 %.
Применяют для внутренней отделки каменных и деревянных стен, перегородок и потолков в помещениях с относительной влажностью воздуха до 60%.
Гипсовые плиты для перегородок могут быть гипсовыми и гипсобетонными, их выпускают сплошными и пустотелыми шириной 400-800, толщиной 80-100 мм. Лицевые поверхности плит гладкие или рифленые. Плотность их 1000-1300 кг/м3, прочность при сжатии 3-4 МПа, влажность - не более 8% по массе. Они огнестойки, гигроскопичны, обладают хорошими теплозвукоизоляционными свойствами. Перегородочные плиты применяют для устройства не несущих перегородок гражданских и промышленных зданий при отсутствии систематического увлажнения.
Гипсобетонные панели широко используют в индустриальном строительстве для устройства самонесущих перегородок, а также для основания полов и других целей.
Перегородочные панели представляют собой плоские плиты длиной на комнату или на часть комнаты, шириной, равной высоте этажа, толщина панели обычно 80-100 мм. Они могут быть сплошными или с проемами для дверей.
Панели для основания пола выполняют из гипсобетона на гипсоцементно-пуццолановых вяжущих и армируют деревянным каркасом. Панели выпускают толщиной 50-60 мм и размером по длине и ширине на комнату или на часть комнаты при больших размерах помещений. Качество их поверхности должно быть таким, чтобы можно было без дополнительных затрат укладывать линолеум, плитки или выполнять покрытия мастичными материалами.
Асбестоцементные изделия
Асбестоцемент - строительный материал, представляющий собой затвердевший цементный камень, армированный волокнами асбеста. Асбестоцементные изделия получают формованием смеси асбеста (10-20%), портландцемента (80-90%) и воды. Волокна асбеста выполняют роль своеобразной арматуры асбестоцементных изделий, а портландцемент марки не ниже 400, без добавок (кроме гипса), затворенный водой, является связующим веществом.
Асбест в природе встречается в основном в виде минерала - хризолит-асбеста, характеризующегося волокнистостью строения и способностью расщепляться на тончайшие и прочные волокна. Длина волокон асбеста колеблется от долей миллиметра до 40 мм. Чем длиннее волокна асбеста, тем выше его сорт. Для производства асбестоцементных изделий используют коротковолокнистый асбест 3, 4, 5 и 6 сортов. Асбест не горит, имеет малую тепло- и электропроводность.
Технологический процесс получения асбестоцементных изделий состоит в следующем: обминании и распушивании асбеста; тщательном смешивании распушенного асбеста с цементом и разжижении полученной асбестоцементной смеси водой; формовании изделий в формовочных машинах; предварительном твердении, тепловой обработке сформованных изделий и механической обработке (обрезка, волнировка) асбестоцементных изделий.
Асбестоцементные изделия обладают высокой прочностью, морозостойкостью и малой водопроницаемостью. Они теплостойки, имеют пониженную теплопроводность, их сравнительно легко обрабатывать. Под влиянием влаги они не корродируют, со временем их прочность несколько увеличивается. Недостаток асбестоцементных изделий - малое сопротивление удару и коробление.
В современном строительстве широко применяют разнообразные асбестоцементные изделия: плитки и листы (профилированные и плоские) облицовочные и кровельные, панели с теплоизоляционным слоем, напорные и безнапорные трубы, муфты, короба, подоконные и электроизоляционные доски, изделия специального назначения, малые архитектурные формы (цветочницы, вазы и пр.).
Профилированные листы изготовляют из асбестоцемента волнистыми (обыкновенного и усиленного профиля) и полуволнистыми.
Листы волнистые имеют форму прямоугольника с шестью волнами, направление гребней которых совпадает с направлением большой стороны прямоугольника. Длина волнистых листов обыкновенного профиля (ВО) 1200, ширина около 700 и толщина 5,5 мм. Листы волнистые усиленного профиля (ВУ) несколько толще, что позволяет изготовлять их больших размеров. Длина их 2800, ширина около 1000 и толщина 8 мм. В последние годы разработан новый тип асбестоцементных волнистых листов - СВ-40-250 размером 2500х1150х6 мм. По сравнению с ранее выпускаемыми листами ВО эти листы имеют большую полезную площадь и меньший расход асбестоцемента на 1 м2 полезной площади.
Листы профилированные должны быть строго прямоугольной формы, без трещин и отколов. Профилированные асбестоцементные листы применяют для устройства кровель, облицовки стен, ограждений балконов и т. п.
Плоские облицовочные асбестоцементные плиты выпускают непрессованными и прессованными повышенной прочности толщиной 4-10, шириной до 1600 и длиной до 2800 мм. В процессе формования их лицевую поверхность отделывают в зависимости от назначения декоративным асбестоцементным слоем, окрашивают водостойкими эмалями, полируют, а также делают рельефной, имитирующей керамическую глазурованную плитку. Плиты, окрашенные водостойкими эмалями, в последнее время с успехом применяют для облицовки панелей, потолков, кухонь жилых и общественных зданий.
Кровельные и стеновые панели. Кровельная панель - слоистая конструкция, состоящая из двух асбестоцементных листов, склеенных между собой по контуру асбестоцементной мастикой и образующих замкнутую оболочку, внутри которой уложен минераловатный утеплитель. Масса панели не превышает 100 кг. Применяют эти панели для покрытия кровель производственных и культурно-бытовых зданий с уклоном не менее 5-7о. Размеры плит панелей покрытий позволяют перекрывать пролеты до 3 м.
Стеновая панель представляет собой трехслойную конструкцию: наружный и внутренний облицовочный слои ее состоят из прессованного асбестоцемента, а средний слой - из теплоизоляционного материала (пеностекло, минераловатные плиты, цементный фибролит, пенопласт и др.). Стеновые панели можно изготовлять с каркасом из металла, асбестоцемента, древесины или без каркаса. В зависимости от вида утеплителя толщина асбестоцементной панели колеблется в пределах 12-20см, 1м2 такой панели имеет массу 120-180 кг, что значительно меньше массы любой стеновой панели.
Стеновые асбестоцементные панели применяют при строительстве каркасно-панельных зданий.
Трубы и короба. Применяют для водопроводов (напорные трубы), канализации (безнапорные трубы), газопроводов и сетей механизированного орошения полей.
Трубы имеют длину 2950 - 3950, внутренний диаметр 50 - 500, толщину стенок 9 - 43,5 мм. Трубы должны быть прямыми, строго цилиндрической формы, с гладкой внутренней поверхностью и без трещин. Напорные трубы выпускают нескольких марок с рабочим давлением от 0,3 до 1,2 МПа. Длина канализационных труб 2500-4000, внутренний диаметр 50-600, толщина стенок 7-18 мм. Для соединения водопроводных и канализационных труб используют соединительные асбестоцементные муфты.
Вентиляционные короба изготавливают круглого и прямоугольного сечения, безраструбные или с раструбом на одном конце.
Изделия на основе магнезиальных вяжущих
Материалы на основе магнезиальных вяжущих получают, используя в качестве органических заполнителей древесные опилки, шерсть или стружки.
Магнезиальные вяжущие вещества (каустические магнезит или доломит), затворенные раствором хлористого магния, надежно соединяются с органическими заполнителями и защищают их от гниения. Их применяют для изготовления ксилолита и фибролита.
Ксилолит - искусственный каменный материал, полученный в результате затвердевания смеси древесных опилок и магнезиального вяжущего, затворенного раствором хлористого магния. В смесь вводят также добавки, улучшающие свойства материала - тальк, асбест, кварцевый песок и красители. Его применяют для устройства бесшовных полов. Ксилолитовые полы относят к теплым, бесшумным покрытиям, гладким, хорошо сопротивляющимся истиранию и динамическим нагрузкам. Однако они имеют низкую водостойкость. Из ксилолита можно изготовлять путем прессования квадратные или шестиугольные плитки для полов, подоконники и другие изделия. Поверхность ксилолитовых изделий окрашивают и отделывают под мрамор, малахит и т. п.
Фибролит представляет собой теплоизоляционный материал, изготовленный из древесной стружки или шерсти, связанной магнезиальным вяжущим. Фибролитовые плиты применяют для утепления стен, перекрытий или для заполнения стен, перекрытий и перегородок каркасных зданий.
Размещено на Allbest.ru
Подобные документы
Внешние, внутренние факторы, определяющие поведение строительных материалов в условиях пожара. Способы повышения стойкости металлов к воздействию пожара. Особенности поведения искусственных каменных материалов при нагревании. Способы огнезащиты древесины.
контрольная работа [1,1 M], добавлен 29.03.2012Классификация искусственных строительных материалов. Основные технологические операции при производстве керамических материалов. Теплоизоляционные материалы и изделия, применение. Искусственные плавленые материалы на основе минеральных вяжущих бетонных.
презентация [2,4 M], добавлен 14.01.2016Общие сведения о строительных материалах, их основные свойства и классификация. Классификация и основные виды природных каменных материалов. Минеральные вяжущие вещества. Стекло и стеклянные изделия. Технологическая схема производства керамической плитки.
реферат [20,3 K], добавлен 07.09.2011Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.
курсовая работа [8,9 M], добавлен 16.12.2010Основные сведения теории коррозии металлов и исследование общих положений по защите от коррозии строительных конструкций. Анализ степени агрессивного воздействия среды. Способы защиты от поверхностной и закладной коррозии в железобетонных конструкциях.
курсовая работа [30,4 K], добавлен 01.02.2011Декоративные и отделочные материалы из горных пород, керамики, стекла, минеральных вяжущих веществ, древесины и полимеров, применяемые в отделке фасадов зданий. Декоративные бетоны и растворы. Материалы для внутренней и внешней облицовки.
курсовая работа [62,3 K], добавлен 17.11.2011Создание новой шкалы классов бетонов по прочности. Необходимые свойства искусственных каменных облицовочных плит. Рассмотрение основных способов формования плотных бетонов. Использование пропиточных составов для насыщения пористых строительных материалов.
контрольная работа [20,0 K], добавлен 12.12.2012Металлы и неметаллические материалы, используемые в системах теплогазоснабжения и вентиляции (ТГВ). Способы испытания металлов и сплавов. Изделия и материалы (трубы, арматура), применяемые в системах ТГВ. Характеристика вспомогательных материалов.
курс лекций [3,5 M], добавлен 08.02.2015Оценка эксплуатационных свойств и назначения материалов. Обзор способов улучшения эстетических свойств отделочных материалов. Изучение методов сокращения ресурсопотребления при строительстве и эксплуатации жилого дома. Классификация кровельных материалов.
контрольная работа [114,8 K], добавлен 25.09.2012Свойства кровельных и гидроизоляционных материалов на основе органических вяжущих. Виды и применение теплоизоляционных материалов. Требования к зданиям; принципы проектирования генерального плана. Системы отопления и водопровода; канализационные сети.
контрольная работа [100,3 K], добавлен 08.01.2015