Строительные материалы

Виды санитарно-технической керамики. Сырьё, технология ее изготовления. История возникновения и производства стекла. Свойства акустических материалов и применение их в строительстве. Основные свойства строительных растворов. Физические свойства древесины.

Рубрика Строительство и архитектура
Вид контрольная работа
Язык русский
Дата добавления 12.09.2012
Размер файла 41,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Контрольная работа

«Строительные материалы»

1. Определить расход глины, необходимый для изготовления 25000 шт. керамического полнотелого кирпича формата 1НФ со средней плотностью 1850 кг/м3. Влажность глины 13%, при обжиге потери при прокаливании составляют 10% от массы сухой глины. Во время изготовления, выгрузки и погрузки кирпича брак составляет 1.5% всей партии

Решение: 1.Определяем массу 25000 шт. кирпича:

Мкм . Vk= 1850 ·(0.25 ·0.12·0.065)·25000=90187.5 кг.

2.Учитывая потери при обжиге, вычисляем массу сухой глины:

Мс.г.=90187.5·(1+0.1)=99206.25 кг.

3.Определяем массу сырой глины влажностью13%:

Мг = 99206.25·(1+0.13)= 112103.06 кг.

2. Определить массу листов оконного стекла толщиной 5 мм, размером 400х400 мм, плотностью2200 кг/м3 и полотен витринного стекла толщиной 10 мм, размером 1600х2200 мм, плотностью 2500 кг/м3

Решение:

Определяем массу листов оконного стекла:

Млслс · Vлс = 2200 · (0.4·0.4·0.005)=1.76 кг.

Определяем массу витринного стекла:

Мвсвс · Vвс =2500 · (1.6 · 2.2 · 0.01)=88 кг

3. Определить номинальный состав бетона (по массе) с прочностью на сжатие 30МПа. Известны следующие данные: Rц = 46 МПа, осадка конуса бетонной смеси - 2 см, наибольшая крупность зёрен щебня - 20 мм, объём межзерновых пустот щебня - 0.46, насыпная плотность: цемента снц = 1200 кг/м3, песка снп= 1550 кг/м3. щебня снщ= 1550 кг/м3. Истинная плотность: цемента сц= 3100 кг/м3, песка 2650 кг/м3, щебня сщ= 2700 кг/м3. Масса образца стандартных размеров, вырезанного из сосны, равняя 7.2 г, при сжатии вдоль волокон предел прочности 35 МПа. Определить влажность, плотность, предел прочности сосны при сжатии с влажностью 12%, если масса высушенного образца составила 6 г

Решение:

1. Определяем влажность:

W = (( m1 - m2)/m2) · 100% = ((7.2 - 6)/6)·100% =20%

2. Определяем предел прочности образца со стандартной влажностью равной 12% :

R12= Rw·(1+б(W-12)) = 35 · ( 1+ 0.04(20-12))= 46ю2 МПа.

3.Определяем среднюю плотность сосны при естественной влажности:

сm= m/V= 7.2/2·2·3 = 0.6 кг/м3.

1. Виды санитарно-технической керамики. Сырьё, технология изготовления. Требования к изделиям

Основным сырьем для производства санитарно-технических изделий является беложгущиеся огнеупорные глины, каолины, кварц и полевой шпат. Различают три группы санитарно-технической керамики: фаянс, полуфарфор и фарфор, отличающиеся степенью спекания и пористостью. Изделия из фаянса имеют пористый, а из фарфора плотный сильно спекшийся черепок, плотность полуфарфора занимает промежуточное положение. Различная степень спекания фаянса, фарфора и полуфарфора достигается при одних и тех же сырьевых материалах, но при различном соотношении последних в рабочей массе

Сырьевые материалы, идущие на изготовление изделий санитарно-технической керамики, подвергают тщательной переработке: помолу, отмучиванию, просеиванию и другим операциям, обеспечивающим получение тонкоизмельченной сырьевой смеси, освобожденной от вредных примесей. Приготовленная смесь представляет сметанообразную массу -- шликер. Формуют изделия преимущественно способом литья в гипсовых формах, которые впитывают избыток воды. Затем изделия вынимают из форм, подвяливают, оправляют (обрезают) и направляют в сушильные камеры. . Высушенные изделия покрывают сырым глазурным слоем и в капселях обжигают при температуре 1250...1300°С в периодических или непрерывнодействующих печах.

Изделия санитарно-технической керамики белые, иногда светло-желтые, должны иметь правильную форму, ровную, гладкую и чистую поверхность без искривлений, равномерно покрытую глазурью; они должны быть хорошо обожжены.

2. История возникновения и производства стекла. Вклад учёных в развитие науки о стекле

Стеклоделие возникло в Египте за 3000--4000 лет до н. э. В России стеклоделие как ремесло появилось в X в. (а по некоторым данным раскопок значительно раньше). Первый стекольный завод в России создан в 1638 г., а вначале XX в. их было уже 275, После Великой Октябрьской революции стекольная промышленность превратилась в высокомеханизированную отрасль народного хозяйства, обеспечившую нашей стране первое место в мире по производству стекла.

Основоположником научных основ стеклоделия в России был М. В. Ломоносов, который еще в 1752 г. организовал производство разноцветных стекол, мозаичного стекла, им же разработан метод горячей прессовки стекла. Большой вклад в развитие науки о стекле внесли советские ученые А. А. Лебедев, И. В, Гребенщиков, О. К. Ботвинник, А. Н. Качалов, И. И. Китайгородский и многие другие.

3. Акустические материалы и изделия. Их свойства и применение в строительстве

Акустическими называют материалы, способные поглощать звуковую энергию, а также снижать уровень силы и громкости, проходящих через них звуков, возникших как в воздухе, так и в материале ограждения. По назначению акустические материалы разделяют на звукоизоляционные и звукопоглощающие.

Звуковая энергия, падающая на ограждающую конструкцию (пол, стену, потолок), частично отражается от ее поверхности, частично поглощается материалом конструкции, а частично проходит через нее и передается на другую сторону конструкции. Способность материала пропускать через себя звук характеризует его звукопроницаемость или, если пользоваться обратным понятием, звукоизоляцию. Звукоизоляционная способность материала в ограждении оценивается по разности уровней звука с обеих сторон ограждения и выражается в децибелах. Материалы, обладающие преимущественным свойством поглощать звуковую энергию, относятся к звукопоглощающим, а материалы, способные изолировать от проникновения звука, -- к звукоизоляционным. Все они имеют общее название -- акустические материалы.

4. Грунтовки и шпатлёвки. Составы и назначения

Грунтовки -- как правило, жидкие составы, предназначенные для уменьшения пористости и усиления антикоррозионных свойств, отделываемых поверхностей Негрунтованная поверхность неодинаково впитывает колер, поэтому ее окраска неравномерна.

В зависимости от вида и назначения применяемых составов, грунтовки готовят под различные окраски: известковые (с мылом, поваренной солью, квасцами), силикатные (на жидком стекле с мелом), клеевые (на глиноземе, купоросе, квасцах), масляные (на олифах с пигментом, масляные, масляно-эмульсионнные), полимерные покрытия, специальные виды рельефных отделок и другие.

Приведенные ниже составы грунтовок позволяют выбрать ту или иную из них в зависимости от наличия материалов.

1. Грунтовки под известковую окраску;

2. Грунтовки под водно-клеевую окраску;

3. Грунтовка под алкидные краски и эмали;

Шпатлевки применяют для того, чтобы устранить шероховатость поверхности. Они бывают клеевые, полумасляные и масляные. Под масляную краску следует применять полумасляные или масляные шпатлевки.

Полумасляные шпатлевки приготовляют из следующих материалов: натуральная олифа или оксоль -- 500 г, скипидар -- 100 г, сиккатив -- 25 г, 10-процентный клеевой раствор -- 100 г, мыло -- 10 г и сеяный мел. Мыло растворяют в горячем клеевом растворе и тщательно все перемешивают. Затем добавляют последовательно олифу, скипидар и сиккатив. При введении каждого материала состав необходимо перемешивать до получения однородной массы. В последнюю очередь вводят мел в количестве, необходимом для получения шпатлевки в виде тестообразной массы.

Шпатлевку можно приготовить также из олифы и сиккатива, которые берут в равных частях. В полученную смесь добавляется мел в нужном количестве, и все тщательно перемешивают.

Эти шпатлевки (особенно на масле) сохнут медленно, но образуют прочное покрытие. Их рекомендуется применять для шпатлевания переплетов, коробок, подоконников, наружных дверей и полов.

Для шпатлевания мебели можно применять более слабую шпатлевку, состоящую из 100 г олифы, 200 г 10-процентной клеевой воды и мела (по потребности). Приготовлять такую шпатлевку следует в небольшом количестве. В горячий клеевой раствор вливают тонкой струей олифу и все тщательно перемешивают до однородной эмульсии. В эмульсию добавляют мел и все перемешивают до получения рыхлой тестообразной массы.

5. Материалы для тяжёлого бетона. Оценка качества и требования к ним

Тяжелый бетон, применяемый для изготовления фундаментов, колонн, балок, пролетных строений мостов и других несущих элементов и конструкций промышленных и жилых зданий и инженерных сооружений, должен приобретать определенную прочность в заданный срок твердения, а бетонная смесь должна быть удобной в укладке и экономичной. При использовании в не защищенных от внешней среды конструкциях бетон должен иметь повышенные плотность, морозостойкость и коррозиестойкость. В зависимости от назначения и условий эксплуатации бетона в сооружении предъявляются соответствующие требования к составляющим его материалам, которые предопределяют его состав и свойства, оказывают влияние на технологию производства изделий, их долговечность и экономичность.

* Для приготовления тяжелых бетонов применяют портландцемент, пластифицированный портландцемент, портландцемент с гидравлическими добавками, шлакопортландцемент, быстротвердеющий портландцемент (БТЦ) и др. Цемент выбирают с учетом требований, предъявляемых к бетону (прочности, морозостойкости, химической стойкости, водонепроницаемости и др.), а также технологии изготовления изделий, их назначения и условий эксплуатации.

* Для приготовления бетонной смеси применяется питьевая, а также любая вода, не содержащая вредных примесей (кислот, сульфатов, жиров, растительных масел, сахара), препятствующих нормальному твердению бетона. Нельзя применять воды болотные и сточные, а также воды, загрязненные вредными примесями, имеющие водородный показатель рН менее 4 и содержащие сульфаты в расчете на ионы S04 более 2700 мг/л и всех других солей более 5000 мг/л. Морскую и другую воду, содержащую минеральные соли, можно применять, если общее количество солей в ней не превышает 2%.

Пригодность воды для бетона устанавливают химическим анализом и сравнительными испытаниями прочности бетонных образцов, изготовленных на данной воде и на чистой питьевой воде и испытанных в возрасте 28 сут при хранении в нормальных условиях. Воду считают пригодной, если приготовленные на ней образцы имеют прочность не меньше, чем у образцов на чистой питьевой воде. « К добавкам для бетонов относятся неорганические и органические вещества или их смеси, за счет введения которых в контролируемых количествах направленно регулируются свойства бетонных смесей и бетонов либо бетонам придаются специальные свойства. В основу классификации добавок для бетонов положен эффект их действия. По этому признаку добавки для бетонов делят на следующие группы:

1. Регулирующие реологические свойства бетонных смесей. К ним относятся пластифицирующие, увеличивающие подвижность бетонных смесей; стабилизирующие, предупреждающие расслоение, и водоудерживающие, уменьшающие водоотделение.

2. Регулирующие схватывание бетонных смесей и твердение бетонов. К ним относятся добавки, замедляющие схватывание, ускоряющие схватывание и твердение, и противоморозные, т. е. обеспечивающие твердение бетона при отрицательных температурах.

3. Добавки, регулирующие пористость бетонной смеси и бетона. К ним относятся воздухововлекающие, газообразующие и пенообразующие добавки, а также уплотняющие (воздухоудаляющие или кольматирующие поры бетона).

4. Добавки, придающие бетону специальные свойства: гидрофобизующие, уменьшающие смачивание, повышающие противорадиационную защиту, жаростойкость; антикоррозионные, т. е. увеличивающие стойкость в агрессивных средах; ингибиторы коррозии стали, улучшающие защитные свойства бетона к стали; добавки, повышающие бактерицидные и инсектицидные свойства.

5. Добавки полифункционального действия, одновременно регулирующие различные свойства бетонных смесей и бетонов: пластифицирующе-воздухововлекающие; пластифицирующие, повышающие прочность бетона, и газообразующе-пластифицирующие.

6. Минеральные порошки -- заменители цемента. К этой группе относятся тонкомолотые материалы, вводимые в бетон в количестве 5...20%. Это золы, молотые шлаки, отходы камнедробления и др., придающие бетону специальные свойства (жаростойкость, электропроводимость, цвет и др.).

В качестве пластифицирующих добавок наибольшее распространение получили поверхностно-активные вещества (ПАВ).

Поверхностно-активные добавки представляют собой особую группу органических веществ, введение которых в бетонные (растворные) смеси позволяет существенно улучшить их удобоукладываемость. Вместе с тем поверхностно-активные добавки позволяют уменьшить водоцементное отношение и соответственно сократить расход цемента без снижения прочности материалов и изделий. Использование поверхностно-активных добавок в малых дозах (0,05...0,2% от массы цемента) позволяет на 8... 12% уменьшать удельный расход цемента в бетонах и растворах. Вместе с тем поверхностно-активные добавки повышают водонепроницаемость, морозостойкость, коррозиеустойчивость и вообще долговечность материалов в конструкциях. Этим самым применение поверхностно-активных добавок способствует повышению эффективности капиталовложений в строительство. По указанным причинам поверхностно-активные добавки в цементно-бетонной технологии приобретают все большее значение как у нас, так и за рубежом. керамика стекло строительство древесина

Действие поверхностно-активных добавок на цементные системы основано на следующих положениях физической химии. Поверхностно-активные вещества способны повышать поверхностное натяжение у поверхности раздела фаз, например на границах раздела фаз вода -- твердое тело, вода -- воздух. Мельчайшие частицы поверхностно-активных веществ адсорбируются, т. е. прочно связываются с внутренней поверхностью раздела тел, образуя на этих поверхностях молекулярные слои толщиной в одну молекулу. Величина этого адсорбционного слоя относится к диаметру цементной частицы так же, как толщина спички к высоте 30-этажного здания. Однако применение в малых дозах добавок поверхностно-активных веществ к цементным системам существенно меняет свойства их.

Поверхностно-активные добавки, используемые в цементах, растворах и бетонах, по определяющему эффекту действия на цементные системы можно условно разделить на три группы: гидрофилизующие, гидрофобизующие и воздухововлекающие.

Гидрофилизующие добавки при затворении вяжущего водой предотвращают на определенный срок слипание отдельных цементных частиц между собой. В этом случае несколько замедляется коагуляция новообразований, а вместе с тем высвобождается некоторое количество воды, которое обычно как бы застревает в коагуляционных структурах. По этой причине требуемая удобоукладываемость смеси с добавкой достигается при меньшем количестве воды затворения, чем у смеси без добавки. Наибольшее распространение получили гидрофилирующие добавки на основе лигносульфатов -- сульфитно-дрожжевой бражки (СДБ). Эта добавка несколько замедляет твердение бетона в раннем возрасте и поэтому на заводах ЖБИ ее применяют в сочетании с добавками -- ускорителями твердения.

Суперпластификаторы -- новые эффективные разжижители бетонной смеси -- в большинстве случаев представляют синтетические полимеры -- производные меламиновой смолы или нафталинсульфокислоты. Применяют суперпластификатор С-3 (НИИЖБ) -- на основе нафталинсульфокислоты, суперпластификатор 10-03 (ВНИИ Железобетон) -- продукт конденсации сульфированного меламина с формальдегидом и др. При введении в бетонную смесь суперпластификатора резко увеличивается ее подвижность и текучесть.

Суперпластификаторы, вводимые в бетонную смесь в количестве 0,15...1,2% от массы цемента, разжижают бетонную смесь в большей мере, чем обычные пластификаторы. Пластифицирующий эффект сохраняется, как правило, 1...2 ч после введения добавки, а через 2...3 ч он уже невелик. Суперпластификаторы используются в бетонах как единолично, так и в комплексе с другими добавками, например с сульфитно-дрожжевой бражкой (СДБ) и нитрит-нитрат-хлоридом кальция(ННХК). При использовании комплексной добавки содержание каждой добавки составляет: «10-03» -- 0,3...1,2%; ННХК-1,5...2,5% и СДБ -- 0,1...1,15% от массы цемента. Суперпластификаторы позволяют существенно снизить В/Ц, повысить подвижность смеси, изготовить изделия высокой прочности, насыщенных арматурой из изопластичных смесей.

Гидрофобизующие добавки, как правило, существенно повышают нерасслаиваемость, связанность бетонной (растворной) смеси, находящейся в покое. При действии внешних механических факторов (при перемешивании, укладке и т. д.) бетонная или растворная смесь с добавкой отличается повышенной пластичностью. Такое свойство гидрофобизующих смесей объясняется специфическим смазочным действием тончайших слоев поверхностно-активных веществ, распределяемых в смеси. Кроме того, эти добавки предохраняют цементы от быстрой потери активности при перевозке или хранении. В качестве гидрофобизующих добавок раньше применялись в основном природные продукты -- некоторые животные жиры, алеиновая и стеариновая кислоты. Развитие химической промышленности дало возможность широко использовать новые гидрофобизующие добавки-- битумные дисперсии (эмульсии и эмульсосуспензии), нафтеновые кислоты и их соли, окисленные, синтетические жирные кислоты и их кубовые остатки, кремнийорганические полимеры и др.

Воздухововлекающие добавки позволяют получать бетонные (растворные) смеси с некоторым дополнительным количеством воздуха. Чтобы повысить пластичность смеси, обычно увеличивают объем вяжущего теста. Вовлекая воздух, увеличивается объем вяжущего теста без введения лишнего цемента. Поэтому Удобоукладываемость такой системы повышается. К тому же воздухововлекающие добавки образуют и ориентированные слои, активные в смазочном отношении. Широко применяют воздухововлекающие добавки на основе смоляных кислот: смолу, нейтрализованную воздухововлекающую (СНВ), омыленный древесный пек и др.

К ускорителям твердения цемента, увеличивающим нарастание прочности бетона, особенно в ранние сроки, относятся хлорид кальция, сульфат натрия, нитрит-нитрат-хлорид кальция и др.

Влияние хлористого кальция на повышение прочности бетона объясняется его каталитическим воздействием на гидратацию C3S и C2S, а также реакцией с СзА и C4AF. Ускорители твердения не рекомендуется применять в железобетонных конструкциях и предварительно напряженных изделиях с диаметром арматуры менее 5 мм и для изделий автоклавного твердения, эксплуатирующихся в среде с влажностью более 60%. Сульфат натрия может вызвать появление высолов на изделиях.

В нитрит-нитрат-хлориде кальция ускоряющее действие хлорида сочетается с ингибирующим действием нитрата кальция,

Противоморозные добавки -- поташ, хлорид натрия, хлорид кальция и др. -- понижают точку замерзания воды, чем способствуют твердению бетона при отрицательных температурах.

Для замедления схватывания применяют сахарную патоку и добавки СДБ, ГКЖ-10 и ГКЖ-94.

Пено- и газообразователи применяют для изготовления ячеистых бетонов. К пенообразователям относятся клееканифольные, смолосапониновые, алюмосульфонафтеновые добавки, а также пенообразователь ГК. В качестве газообразователей применяют алюминиевую пудру ПАК-3 и ПАК-4.

Комбинированные добавки, например пластификатор СДБ, ускоритель твердения (хлористый кальций) с ингибитором (нитратом натрия), способствуют экономии цемента. При этом ускоритель твердения нейтрализует некоторое замедление твердения смеси в раннем возрасте.

Специальные добавки обеспечивают получение водонепроницаемых растворов или бетонов, регулируют сроки схватывания и др.

Песок -- рыхлая смесь зерен крупностью 0,16...5 мм, образовавшаяся в результате естественного разрушения массивных горных пород (природные пески). Природные пески по минералогическому составу подразделяются на кварцевые, полевошпатовые, известняковые, доломитовые. Из природных песков наибольшее применение для тяжелого бетона получили кварцевые пески.

В качестве мелкого заполнителя применяют пески повышенной крупности, крупные, средние и мелкие -- природные и обогащенные; пески из отсевов дробления и обогащенные из отсевов дробления.

На качество бетона большое влияние оказывают зерновой состав песка и содержание в нем различных примесей: пылевидных, илистых, глинистых частиц, петрографический состав, в том числе содержание вредных примесей, включая органические. Содержание этих примесей устанавливают отмучиванием. Количество их не должно превышать 3% в природном песке и из отсевов. Наиболее вредной в песке является примесь глины, которая обволакивает отдельные зерна песка и препятствует сцеплению их с цементным камнем, понижая прочность бетона. Глинистые и пылевидные примеси в песке повышают водопотребность бетонных смесей и приводят к понижению прочности и морозостойкости бетона. Очищать песок от глинистых и пылевидных частиц можно промывая его водой в пескомойках. В природных песках могут содержаться также в большом количестве органические примеси (гуминовые кислоты, остатки растений, перегной), которые вступают в реакцию с твердеющим цементом и понижают прочность бетона. Содержание органических примесей устанавливают колориметрическим методом -- обработкой пробы песка 3%-ным раствором едкого натра. Если после обработки песка цвет раствора не оказывается темнее эталона (цвета крепкого чая), то песок признается доброкачественным.

Испытуемый песок можно считать пригодным, если прочность образцов раствора из него оказывается не меньше прочности образцов с тем же песком, но промытым сначала известковым молоком, а затем водой.

Зерновой состав песка имеет особое значение для получения качественного бетона. Песок для бетона должен состоять из зерен различной величины (0.16...5 мм), чтобы объем пустот в нем был минимальным; чем меньше объем пустот в песке, тем меньше требуется цемента для получения плотного бетона. Зерновой состав песка определяют просеиванием сухого песка через стандартный набор сит с размерами отверстий (сверху вниз) 10; 5; 2,5; 0,63; 0,315; 0,16 мм. Высушенную до постоянной массы пробу песка просеивают сквозь сита с круглыми отверстиями диаметром 10 и 5 мм. Остатки на этих ситах взвешивают и вычисляют с точностью до 0,1%.

Выбор мелких заполнителей для бетона производят по зерновому составу и модулю крупности, содержанию пылевидных и глинистых частиц, петрографическому составу, в том числе содержанию вредных примесей, включая органические примеси и потенциально реакционноспособные породы и минералы, а при применении дробленых песков -- по пределу прочности исходной породы при сжатии в насыщенном водой состоянии.

Зерновой состав мелкого заполнителя должен соответствовать указанному и на графике ( 6.1). При этом учитывают только зерна, проходящие через сито с круглыми отверстиями диаметром 5 мм.

Песок, отсеянный на ситах двух близких номеров, имеет большую пустотность (40...42%). При наилучшем сочетании в песке крупных, средних и мелких зерен пустотность уменьшается до 30%. Хорошим по крупности зерен считается песок, у которого пустотность не превышает 38%.

Пески с модулем крупности 1,5...2 допускается применять в бетонах класса В15, а также для бетонов подводной зоны конструкций мостов. Использование этих песков в бетонах класса В15 и выше допускается при соответствующем технико-экономическом обосновании. Пески с модулем крупности 2,5 и более рекомендуется применять для бетонов класса В25 и выше.

Для обеспечения качественного зернового состава песка и его постоянства в составе бетонной смеси применяют фракционированный песок, составленный из двух фракций: крупной и мелкой, раздельно дозируемых при приготовлении бетонной смеси. Разделение исходного песка на две фракции производят по граничному зерну, соответствующему размеру отверстий контрольных сит 1,25 или 0,63 мм. Допускается применять готовые смеси фракций в требуемом соотношении, а также смеси песков природных или из отсевов дробления.

Использование в качестве мелких заполнителей песков из отсевов дробления и их смесей с природными песками допускается при условии обеспечения заданной удобоукладываемости бетонной смеси без перерасхода цемента. В природном песке, предназначенном для бетонов, допускаются зерна гравия или щебня размером более 10 мм -- до 0,5% по массе; размером 5... 10 мм -- до 10% по массе.

Насыпная плотность кварцевого песка зависит от степени уплотнения, влажности и пустотности. Сухой и рыхло насыпанный кварцевый песок имеет насыпную плотность 1500... 1600 кг/м1 На 6.2 приведены кривые изменения объема разных песков в зависимости от их влажности. Наименьшая насыпная плотность кварцевых песков соответствует влажности 5...7%. При дозировке песка для изготовления бетона или приемке песка необходимо учитывать содержание в нем воды.

* В качестве крупного заполнителя для тяжелого бетона применяют гравий и щебень из горных пород или щебень ц3 гравия размером зерен 5...70 мм.

Гравий -- зерна окатанной формы и гладкой поверхности размером 5...70 мм, образовавшиеся в результате естественного разрушения горных пород. Качество гравия характеризуется: зерновым составом и формой зерна, прочностью, содержанием зерен слабых пород, наличием пылевидных и глинистых примесей, петрографической характеристикой, плотностью, пористостью, пустотностью и водопоглощением. Для бетона наиболее пригодна малоокатанная (щебневидная) форма зерен, хуже яйцевидная (окатанная), еще хуже пластинчатая и игловатая, понижающие прочность бетона.

Часто гравий залегает вместе с песком. При содержании в гравии песка 25...40% материал называют песчано-гравийной смесью. Гравий, подобно песку, может содержать вредные примеси пыли, ила, глины, органических кислот. Количество в гравии глинистых, илистых и пылевидных примесей, определяемых отмучиванием, не должно превышать 1% по массе.

Оценку прочности гравия производят испытанием на дробимость в цилиндре. Последняя определяется путем раздавливания пробы гравия в цилиндре статической нагрузкой. После этого пробу просеивают через сито с размером отверстия, соответствующим наименьшему размеру зерна в исходной пробе гравия, и устанавливают величину потери в массе. В зависимости от этой величины гравий делят на марки: Др8 (при потере в массе до 8%), Др12 (свыше 8 до 12%), Др16 (свыше 12 до 16%) и Др24 (свыше 16 до 24%).

Для конструкции промышленных и гражданских зданий прочность зерен гравия должна быть более чем в 1,5...2 раза выше прочности бетона. Гравий для бетона должен характеризоваться также петрографическим составом с указанием количества в нем зерен слабых пород, а также механической прочностью на износ. Износ гравия определяют в полочном барабане. При этом необходимо знать сопротивляемость каменного материала скалыванию кромок, удару и истиранию при падении и изнашивании, при трении зерен гравия друг о друга или при ударе падающих с полки шаров. Показателем износа считают потерю (%) гравия в массе от первоначальной массы. По износу гравий делят на четыре марки: И-I, И-П, И-Ш и И-IV.

Гравий, предназначенный для бетонных конструкций, подвергающихся действию воды и низких температур, должен обладать определенной степенью морозостойкости. По степени морозостойкости гравий делят на марки F 15, 25, 50, 100, 150, 200 и 300. Морозостойкость гравия определяют непосредственным замораживанием или испытанием в растворе сернокислого натрия. Гравий считают морозостойким, если в насыщенном водой состоянии он выдерживает без разрушения многократные (15 циклов и более) попеременные замораживание при температуре --17°С и оттаивание. При этом потеря в массе после испытания составляет не более 5%. Для марок F 15 и 25 допускается потеря массы

Морозостойкость гравия можно определить не только непосредственным замораживанием и оттаиванием, но и ускорении испытанием раствора сернокислого натрия. Сущность этого метода заключается в том, что в место замораживания образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре 105...110 °С. Кристаллы сульфата натрия, образующиеся при этом в порах материала, давят на стенки пор сильнее, чем частицы льда. При испытании сернокислым натрием число циклов меньше, чем при замораживании: один цикл в растворе сернокислого натрия приравнивают к 5... 10 циклам испытания замораживанием в зависимости от степени морозостойкости гравия. В случае получения неудовлетворительных результатов при испытании сернокислым натрием производят испытание непосредственным замораживанием, результаты этого испытания являются окончательными.

Наиболее экономично для приготовления бетона применять крупный гравий, так как благодаря меньшей его суммарной поверхности требуется меньше цемента для получения прочного бетона. Допустимая крупность зерен гравия зависит от размеров бетонируемой конструкции. Для хорошей укладки бетонной смеси гравий должен применяться не крупнее '/г минимального размера сечения конструкции и не больше 3/4 наименьшего расстояния между стержнями арматуры.

Для бетонирования массивных гидротехнических сооружений применяют гравий крупностью зерен более 70 мм.

Хорошим зерновым составом гравия считается тот, в котором имеются зерна разной величины, что создает наименьшую пустотность. Зерновой состав гравия определяется просеиванием 10 кг сухой пробы через стандартный набор сит с размерами отверстий 70, 40, 20, 10 и 5 мм. Зерновой состав каждой фракции или смеси нескольких фракций гравия должен находиться в пределах, указанных на графике 6.3. За наибольшую крупность зерен гравия принимают размер отверстий сита, на котором полный остаток не превышает 10% навески, и за наименьшую крупность °ц- о гравия ?)„аим -- размеры отверстия одного из верхних сит, через которое проходит не более 5% просеиваемой пробы. Ниже приведены значения полных остатков на контрольных ситах при рассеве гравия (щебня) фракций от 5 (3) до 10 мм, свыше 10 до 20; свыше 20 до 40 и свыше 40 до 70 мм.

Щебень получают путем дробления массивных горных пород, гравия, валунов или искусственных камней на куски размером 5... 120 мм. Для приготовления бетона обычно используют щебень, полученный дроблением плотных горных пород, гравия, доменных и мартеновских шлаков. Дробление производят в камнедробилках. При этом получают не только зерна щебня, но и мелкие фракции, относящиеся по крупности к песку и пыли. Зерна щебня имеют неправильную форму. Лучшей считается форма, приближающаяся к кубу и тетраэдру. Вследствие шероховатой поверхности зерна щебня лучше сцепляются с цементным камнем в бетоне, чем гравий, но бетонная смесь со щебнем менее подвижна.

По дробимости, морозостойкости, зерновому составу, износу к щебню предъявляют такие же требования, как и гравию.

Прочность щебня характеризуется маркой, соответствующей пределу прочности горной породы при сжатии в водонасыщенном состоянии и определяемой по дробимости щебня при сжатии (раздавливании) в цилиндре. Щебень имеет следующие марки: 200, 300, 400, 600, 1000, 1200, 1400. При этом щебень высшей категории качества из изверженных и метаморфических горных пород должен иметь марку не ниже М800, из осадочных карбонатных пород -- не ниже М600. Щебень марок по прочности 1400, 1200 и 1000 не должен содержать зерен слабых пород более 5 % по массе, а марок 800, 600 и 400 -- не более 10% и 300 и 200 -- не более 15% по массе. По прочности исходной горной породы марка щебня при сжатии в насыщенном водой состоянии должна быть выше марки бетона в 1,5...2 раза. В отдельных случаях допускается применение щебня марки ниже указанной, но только при условии испытания в бетоне и при соответствующем технико-экономическом обосновании.

Зерновой состав шебня устанавливают с учетом DHa, x и ?) наибольших зерен. Наибольший размер зерен шебня применяют в бетонах

зависимости от вида изделия, насыщенности арматуры толщины изделия. Так, для балок, колонн, рам наибольший размер зерен должен быть не более 3/4 наименьшего расстояния между стержнями арматуры, а для плитных изделий -- не более i/2 толщины плиты. Подобно гравию, щебень по крупности зерен делят на четыре фракции: 5...10, 10...20, 20...40 и 40...70 мм.

В зависимости от формы зерен ГОСТ 8267--82 устанавливает три группы щебня из естественного камня: кубовидную, улучшенную и обычную. Содержание зерен пластинчатой (лещадной) и игловатой формы в них не превышает соответственно 15, 25 и 35% по массе. К пластинчатой и игловатой форме зерен относят такие, в которых толщина или ширина их меньше длины в 3 раза и более.

Содержание пылевидных и глинистых частиц в щебне из изверженных и метаморфических пород, в щебне из гравия и в гравии для всех видов тяжелого бетона не должно превышать 1 % по массе, а в щебне из осадочных пород в зависимости от вида конструкции и ее назначения -- не более 2...3%, в том числе глины в комках -- не более 0,25%.

Щебень, гравий и щебень из гравия должны применяться, как правило, в виде фракций, раздельно дозируемых при приготовлении бетонной смеси.

Содержание различных фракций в крупном заполнителе при подборе состава бетона должно соответствовать указанному в табл. 6. 1 и обеспечивать получение плотной смеси.

В качестве крупного заполнителя для всех видов тяжелого бетона сборных и монолитных конструкций, изделий и деталей Должны использоваться щебень и щебень из гравия с содержанием зерен пластинчатой (лещадной) и игловатой формы в количестве не более 35% по массе.

Морозостойкость крупных заполнителей должна обеспечить получение бетона требуемой марки по морозостойкости.

Шлаковый щебень получают дроблением шлака, который образуется в процессе доменной плавки металлов (доменный шлак или при сжигании минерального топлива (топливный шлак) Шлаки должны обладать кристаллической структурой и не имет признаков распада. Шлаковый распад является результатом перехода одних соединений шлака в другие под действием газов, содержащихся в воздухе, и влаги. Этот переход сопровождается увеличением объема образующихся новых соединений, что вызывает растрескивание и распад кусков шлака.

В зависимости от крупности зерен щебень для бетона из доменного шлака выпускают тех же фракций, что и щебень из горных пород: 5...10; 10...20; 20...40 и 40...70 мм. Содержание зерен пластинчатой и игловатой формы не допускается более 25% по массе.

Прочность щебня характеризуется маркой, определяемой по его дробимости при сжатии (раздавливании) в цилиндре в сухом состоянии. Марка шлакового щебня по прочности бывает Др15, 25, 35, и 45. Для приготовления бетона используют щебень с плотностью не менее 1000 кг/м3, содержание пылевидных частиц для щебня марок Др15 и 25 допускается не более 2% по массе, а для щебня марок Др35 и Др45 -- 3% по массе.

По морозостойкости щебень подразделяется на шесть марок

от F15 до F200. Щебень марки Др 15 используют для бетонов

высокой прочности (40 МПа и выше), а щебень марок Др25

н менее используется для бетона прочности 30 МПа и менее.

Шлаковый щебень используют в бетонных и железобетонных сооружениях гражданских и промышленных зданий, не рекомендуется его применение в конструкциях, эксплуатирующихся в проточных водах.

6. Основные свойства строительных растворов. От чего зависит прочность строительного раствора?

Основными свойствами растворной смеси являются подвижность, удобоукладываемость, водоудерживающая способность, а растворов -- прочность и долговечность.

Растворная смесь в зависимости от состава может иметь различную консистенцию -- от жесткой до литой. Строительные растворы для каменной кладки, отделки зданий и других работ изготовляют достаточно подвижными.

* Подвижность растворной смеси определяют глубиной погружения в смесь металлического конуса массой 300 г с углом при вершине 30°.

* Удобоукладываемость -- способность легко, с минимальной затратой энергии укладываться на основание тонким, равномерным по плотности слоем, прочно сцепляющимся с поверхностью основания. Растворная смесь, приготовленная на одном портландцементе, часто содержит мало цементного теста и получается жесткой, неудобоукладываемой. В таких случаях применяют добавки минеральных или органических поверхностно-активных пластификаторов из рассмотренных выше.

* Водоудерживающая способность характеризуется свойством

раствора не расслаиваться при транспортировании и сохранять достаточную влажность в тонком слое на пористом основании. Растворная смесь, имеющая низкую водоудерживающую способность, при транспортировании расслаивается, а при укладке

на пористое основание (керамический кирпич, бетон, дерево) быстро отдает ему воду. Степень обезвоживания раствора может оказаться столь значительной, что воды будет недостаточно для твердения раствора и он не достигнет необходимой прочности.

Повышают водоудерживающую способность минеральные и органические пластификаторы.

Прочность затвердевшего раствора зависит от активности вяжущего вещества и величины цементно-водного отношения. Прочность (Па) растворов на портландцементе определяют по формуле проф. Н. А. Попова:

ЯР=0,25Я„(Ц/В-0,4),

где Ra -- активность цемента, Па; Ц/В -- цементно-водное отношение.

Приведенная формула верна для растворов, уложенных на плотное основание; при пористом основании, которое отсасывает из раствора воду и уплотняет этим раствор, прочность увеличивается примерно в 1,5 раза.

Прочность (Па) растворов зависит также от расхода цемента и качества песка:

ЯР~А/?ц(Ц-0,05)+4,

где k -- коэффициент, для мелкого песка fe=l,4, для среднего k = 1,8 и для крупного fe = 2,2; Ц -- расход цемента, т/м3 песка. Прочность смешанных растворов зависит также от вводимых в них тонкомолотых добавок. Каждый состав цементного раствора имеет свое оптимальное значение добавки, при которой смесь обладает наилучшей удобоукладываемостью и дает раствор наибольшей прочности.

7. Физические свойства древесины. Влажность. Гигроскопическая капиллярная влажность. Стандартная влажность древесины

На свойства древесины большое влияние оказывает влажность. Воду, находящуюся в древесине, делят на три вида: капиллярную (или свободную), гигроскопическую и химически связанную. Капиллярная вода заполняет в древесине полости клеток, межклеточные пространства и сосуды. Гигроскопическая вода находится в стенках клеток. Химически связанная вода входит в химический состав веществ, образующих древесину. Основную массу воды в растущем дереве составляют капиллярная и гигроскопическая вода или только гигроскопическая вода. Состояние древесины, в которой отсутствует капиллярная вода и содержится только гигроскопическая, называется точкой насыщения волокон. В древесине разных пород она составляет 23...35%. При высыхании древесины влага постепенно испаряется с поверхности наружных слоев, а влага, оставшаяся в древесине, передвигается от внутренних слоев к наружным.

По степени влажности различают древесину: мокрую, свежесрубленную (влажность 35% и выше), воздушно-сухую (влажность 15...20%) и комнатно-сухую (влажность 8... 12%)-

Гигроскопичностью древесины называют свойство ее поглощать из воздуха парообразную воду. Степень поглощения зависит от температуры воздуха и его относительной влажности.

Равновесной называют влажность, которую имеет древесина при продолжительном нахождении на воздухе с постоянной относительной влажностью и температурой. Равновесная влажность комнатно-сухой древесины составляет 8... 12%, поэтому до такой влажности высушивают паркетную клепку и древесину, используемую в помещениях.

Влажная древесина отдает влагу окружающему воздуху, а сухая поглощает ее. Поскольку влажность воздуха не постоянна, влажность древесины также меняется. Изменение влажности древесины от нуля до точки насыщения волокон вызывает изменение объема древесины. Последнее приводит к разбуханию и усушке, короблению древесины и появлению трещин. Для уменьшения гигроскопичности и водопоглощения древесину покрывают лакокрасочными материалами или пропитывают различными веществами.

8. Составить технологическую схему производства железобетонных изделий кассетным способом и пояснить основные этапы технологии

Кассетный способ производства, являясь по существу стендовым методом, выделяется в самостоятельную группу.

Суть этого способа заключается в том, что формование изделий происходит в вертикальном положении в стационарных разъемных групповых металлических формах-кассетах, в которых изделия находятся до приобретения бетоном заданной прочности. Рабочее звено, занятое в производстве изделия, перемещается от одной кассетной установки к другой, что при соответствующем числе форм позволяет осуществлять непрерывный производственный поток.

Кассетным способом изготавливают внутренние несущие стеновые панели, панели перекрытий, балконные плиты и другие железобетонные изделия, имеющие габариты, соответствующие размерам отсеков кассетных установок. В кассетных установках применяют подвижные бетонные смеси с осадкой конуса 7-9 см и выше с предельной крупностью заполнителя 20 мм:

Изготовление изделий производят следующим образом. После очистки, смазки и сборки кассетных установок в формовочные отсеки устанавливают арматурные каркасы и закладные детали. Затем заполняют их бетонной смесью. Уплотнение бетонной смеси осуществляют вибрацией. В зависимости от конструкции кассетной установки вибрация бетонной смеси может передаваться через арматурный каркас, виброгребенку, путем вибрации внутренних разделительных стенок, а также за счет вибрации днища отсека кассетной формы. После уплотнения верхнюю поверхность отформованных изделий заглаживают и покрывают крышками, матами или полимерными пленками в целях предотвращения испарения влаги из бетона во время тепловой обработки.

Установки со складывающимся сердечником предназначены для формования и термообработки объемных элементов лифтовых шахт, секций коллекторов и пешеходных переходов. Цикл изготовления изделий составляет 6 ч. Одновременно могут формоваться 2 элемента лифтовых шахт или 2 секции коллекторов, или 1 секция пешеходных переходов.

Отличительной особенностью установок для изготовления объемных элементов является наличие складывающихся сердечников, выполняющих функции внутренних формообразующих элементов. В рабочем состоянии конфигурация сердечников отвечает форме и размерам внутреннего очертания изделия. В этом положении осуществляется формование и тепловая обработка изделий. Уплотнение бетонной смеси осуществляется с Помощью навесных вибраторов. По окончании тепловой обработки сердечник с помощью крана извлекается из изделия, при этом его формообразующие элементы (стенки) складываются автоматически. Кинематика механизма сердечника обеспечивает при распалубке беспрепятственный вывод из изделия закрепленных на его стенках формообразующих элементов.

Установка состоит из сердечника, установленного на амортизаторы и оснащенного вибраторами, наружной опалубки, закрепленной на раме, охватывающей сердечник, рычажной выпрессовочной траверсы.

Эта установка работает следующим образом: в подготовленную форму укладывают бетонную смесь с одновременной вибрацией. После термообработки изделия на сердечник краном устанавливают выпрессовочную траверсу, заводят пальцы в проушины наружных щитов, включают гидроцилиндр, который через тяги поворачивает рычаги траверсы. Рычаги поворачивают и одновременно поднимают наружные щиты, а те, в свою очередь, раму. Рама давит на изделие, поднимая его на высоту 160 мм. Происходит отрыв изделия от сердечника. Далее в обратном порядке снимают траверсу, открывают наружные борта, а изделие краном снимают с сердечника и устанавливают на конвейер отделки.

Список используемой литературы

Строительные материалы и изделия: Учебник для инж.-экон. спец. строит, вузов. -- 5-е изд., перераб. и доп, Издательство «Высшая школа», 1976, Издательство «Высшая школа», 1988, с изменениями.

Размещено на Allbest.ru


Подобные документы

  • Свойства, состав, технология производства базальта. Устройство для выработки непрерывного волокна из термопластичного материала. Описание и формула изобретения, характеристика продукции. Виды строительных материалов. Применение базальта в строительстве.

    реферат [55,4 K], добавлен 20.09.2013

  • Основные свойства гранита, мрамора, известняка и вулканического туфа. Древесноволокнистые плиты, их свойства и области применения. Приготовление газобетона и пенобетона. Область применения армированного стекла. Классификация строительных растворов.

    контрольная работа [212,8 K], добавлен 06.11.2013

  • Естественные и искусственные строительные материалы. Материалы из древесины, сохранившие ее природную физическую структуру и химический состав (лесоматериалы), их разделение на обработанные и необработанные. Основные свойства и пороки древесины.

    курсовая работа [8,9 M], добавлен 16.12.2010

  • Сведения о древесине: достоинства, недостатки, качество, область применения. Физические и механические свойства древесины, методы повышения ее долговечности. Свойства модифицированной древесины; полимеры-модификаторы. Строительные изделия из древесины.

    реферат [202,9 K], добавлен 01.05.2017

  • Строительный раствор - искусственный каменный материал. Классификация строительных растворов. Свойства строительных растворов. Виды и применение строительных растворов. Подбор, приготовление и транспортирование растворов.

    контрольная работа [13,8 K], добавлен 24.01.2007

  • Прочность материалов и методы ее определения. Разновидности облицовочной керамики в строительстве. Глиноземистый цемент, его свойства и применения. Полимерные материалы, применяемые в отделке внутренних стен. Гидроизоляционные материалы, их применение.

    контрольная работа [33,1 K], добавлен 26.03.2012

  • Специальные виды цементов, их особые свойства и сферы применения. Физические, механические и технологические свойства древесины. Виды бетонов и их составляющие. Бетон и железобетон: их качества, технологические схемы производства и область применения.

    контрольная работа [50,0 K], добавлен 22.02.2012

  • Свойства дорожно-строительных материалов. Способы формования керамических изделий. Природные каменные материалы. Сырье, свойства и применение низкообжигового строительного гипса. Основные процессы, необходимые для получения портландцементного клинкера.

    контрольная работа [302,3 K], добавлен 18.05.2010

  • Основные свойства строительных смесей и материалов. Понятие структуры и текстуры строения материала. Акустические свойства строительных материалов: звукопоглощение и звукоизоляция. Оценка строительно-эксплуатационных свойств акустических материалов.

    контрольная работа [27,7 K], добавлен 29.06.2011

  • История происхождения и технология изготовления стекла. Свойства стекла: физические, структурные, агрегатные характеристики; его достоинства и недостатки. Основные промышленные виды стекла, использование его функций в дизайнерских разработках интерьера.

    реферат [45,3 K], добавлен 29.05.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.