Архитектура зданий и сооружений

Основы проектирования промышленных предприятий. Внутрицеховое подъемно-транспортное оборудование. Унификация в промышленном строительстве. Модульная система и параметры зданий. Стальной каркас одноэтажных зданий. Требования к стенам и их классификация.

Рубрика Строительство и архитектура
Вид курс лекций
Язык русский
Дата добавления 16.11.2012
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

За рубежом вместо наклейки пленок к основанию используют метод свободной укладки. Так в САШ этим методом выполняют до 50% всех однослойных кровель. Из листов, выпускаемых шириной 15 м и толщиной 1,1 и 1,5 мм предварительно склеивают карты площадью до 900 м2. После их укладки они пригружаются слоем гравия толщиной 40-50 мм или крепят с помощью винтов со специальными шайбами.

Мастичные кровли обладают высотными водоизоляционными свойствами, устойчивы против атмосферных и механических воздействий. Их выполняют из горячих битумных или резинобитумных мастик либо на водных битумных эмульсиях. Эксплуатационные качества мастичных кровель значительно повышаются при армировании их стеклохолстами, стеклосетками, рубленным стекловолокном и при устройстве защитного слоя из мелкого гравия.

Количество слоев мастики и армирующих прокладок от двух до четырех в зависимости от уклона кровли.

Мастичные кровли выполняют с применением жидких составов на основе полимеров (силикол, тиокол и т.п.). такие кровли устраивают по массивному бетонному основанию; на него насухо укладывают армирующую ткань и наносят жидкий состав полимера. Для защиты от стирания полимерный слой после вулканизации окрашивают.

В таблице 8.1 приведены физико-технические свойства некоторых материалов, рекомендуемых для водоизоляционного ковра.

Физико-технические свойства битумно-полимерных наплавляемых рулонных материалов с основой из синтетических волокон (для пароизоляции и водоизоляционного ковра)

Таблица 8.1

Материал, ТУ

Изготовитель

Масса 1 м2 битуминозно-го вяжущего, г

Масса 1 м2 основы, г

Теплостой-кость, °С

Гибкость при темпе-ратуре, °С

Эластофен, холст из искусственных волокон, усиленный продольными нитями

«Сопрема», Франция

3500

-

95

-20

Фидиа

«Индекс» (Италия)

3000-4000

320-350

100

-10

МИДА-Пл РУЕ РУ 200 5в

Литовско-российское предприятие «МИДА»

Толщина 5 мм

-

100

-18

Монофлекс АРУ

«Ланкедор» (Бельгия)

4408

180

135

-25

Супра

«Лемминкяй-нен» (Финлян-дия)

3700

287

100

-25

Дербигум - SP, стеклохолст + полотно из полиэфирных волокон

«Импербел» (Бельгия)

4150

55±10%

160±10%

140

-25

Изопласт (ТУ 5774-005-05766480-95)

Российско-Ирландское СП «Изофлекс»

3000-5500

250

120±2

-15

Битулин HPI 170

Ондулин-строительные материалы

1700

172

120

-6

Scntumplast brarmato s/sus/pe

Фирма «Ита-лиана мем-брана»

2000-2500

-

120

-16

Рулонный материал МВ 870 и МВ 874

Фирма «Uno Tech» Швеция

Толщина 4,0-4,5 мм

180-250

95

-20

7.2 Способы отвода дождевых и талых вод с покрытия

В зависимости от температурного режима помещений, профиля и конструкции покрытия, протяженности скатов и количества выпадающих осадков в районе строительства отвод дождевых и талых вод с покрытий промышленных зданий может быть наружным и внутренним.

Наружный водоотвод подразделяют на неорганизованный, когда сброс воды происходит по свесам карниза, и организованный, при котором вода с кровли отводится по желобам и водосточным трубам. Наружный водоотвод предусматривают редко из-за его недостатков. Так при неорганизованном отводе воды увлажняются стены, что снижает их теплотехнические качества и долговечность, а также образуются наледи на карнизах, вызывающие разрушение кровли. В покрытиях с наружным организованным водоотводом указанные недостатки проявляются в меньшей мере, однако замерзание воды в желобах и водосточных трубах при резком похолодании может вывести из строя систему водоотвода.

В отапливаемых зданиях водоотвод с покрытия, как правило, устраивают внутренний, а в неотапливаемых - наружный неорганизованный. Внутренний водоотвод является наиболее надежным способом удаления воды с кровли.

Покрытия многопролетных неотапливаемых зданий с внутренним отводом воды можно предусматривать при наличии производственных тепловыделений, поддерживающих положительную температуру в помещениях.

7.2.1 Наружный водоотвод с покрытий

Для наружного водоотвода с покрытий на продольных стенах предусматривают карнизы. Во избежание чрезмерного увлажнения стен стекающей водой вынос карниза на наружную плоскость стены должен быть по возможности большим (не менее 0,5 м при высоте стен 6 м). Стояк воды при неорганизованном водоотводе происходит по всей длине карниза. В отапливаемых зданиях целесообразно устраивать обогреваемые карнизы, в которых свес образуется за счет напуска плит покрытия. Снизу свес ограждается карнизной плитой Z-образного профиля. При таком решении обогрев карниза осуществляется за счет теплого воздуха помещения.

Для наружного организованного отвода воды расстояние между водосточными трубами принимают не более 24 м, площадь сечения трубы назначается из расчета 1,5 см2 на 1 м2 площади кровли.

По периметру карниза в зданиях высотой более 10 м на кровлях с уклоном от 5 до 35% следует предусматривать решетчатое ограждение высотой не менее 600 мм из несгораемых материалов.

7.2.2 Внутренний водоотвод с покрытий

Система внутреннего водоотвода состоит из водоприемных воронок, водосточных труб, стояков, подпольных или подвесных трубопроводов и выпусков (рис. 8.1).

Рис. 8.1 Основные схемы внутренних водостоков: а-в - для однопролетных зданий; г-ж - для многопролетных зданий; 1 - подпольный трубопровод; 2 - стояк; 3 - водоприемная воронка; 4 - подвесной трубопровод; 5 - выпуск; 6 - коллектор ливневой или общесплавной канализации.

Схему внутреннего водоотвода выбирают в зависимости от размеров и назначения здания, числа и величины пролетов, конструкции кровельного покрытия и других факторов.

Для однопролетных зданий лучшей считается схема с одной воронкой на стояке (рис. 8.1 а), обеспечивающая хорошую пропускную способность и надежность работы при пониженной температуре. При наличии ливневой или общесплавной канализации с одной стороны здания применяют схему с продольными трубопроводами (рис. 8.1 в). При сильно развитых фундаментах под технологическое оборудование можно использовать схему с подвесными трубопроводами (рис. 8.1 б, г, ж).

Площадь водосбора, приходящуюся на одну воронку, определяют с учетом климатических условий, типа кровли и схемы внутреннего водоотвода, особенно важно учитывать интенсивность дождя q. Максимальная площадь водосбора на одну воронку не должна превышать величин, указанных в таблице 8.2.

Таблица 8.2 Максимально допускаемая площадь водосбора, м2, на одну водоприемную воронку

Тип кровли

Интенсивность дождя q20, л/с на 1 га

> 120

120-100

<100

площадь водосбора, м2

Скатная

600

800

1200

Плоская

900

1200

1800

Плоская, заполняется водой

750

1000

1500

Водоприемные воронки на скатных покрытиях размещают в ендовах на расстоянии не более 24 м друг от друга, а на плоских покрытиях - 48 м.

Расстояние от оси воронок до продольной и поперечной разбивочных осей составляет 500 мм.

Минимальные уклоны отводных трубопроводов принимают:

- для подвесных - 0,005;

- для подпольных - 0,003-0,005.

Наибольшая длина выпусков от стояков до оси смотровых колодцев допускается 15-20 м в зависимости от диаметра труб.

Стояки обычно размещают открыто, рядом с колоннами и крепят к ним хомутами. Подвесные трубопроводы крепят к несущим конструкциям покрытия. По периметру покрытий с внутренним водоотводом над кровлей устраивают парапеты из несгораемых материалов высотой не менее 0,6 м.

Полы относятся к одним из наиболее трудоемких в устройстве элементов здания. Доля работ по их выполнению составляет около 17,5%, при этом около 70% всех трудозатрат приходится на ручные работы.

Требования к полам.

При выборе вида и конструкции пола исходят из характера производственных воздействий на него и обеспечения долговечности и эксплуатационной надежности пола.

Воздействия на полы производственных зданий подразделяют на 4 группы:

1 группа - механические (удары при производственных процессах, ремонтах, монтаже и демонтаже оборудования; ходьба работающих и движение безрельсовых транспортных средств; нагрузки от оборудования, продукции, перемещение различных предметов и т.п.);

2 группа - химические (воздействие воды, масел, кислот, щелочей, веществ животного происхождения, органических растворителей и др.);

3 группа - тепловые (воздействие горячих предметов, жидкостей, воздуха и т.п.);

4 группа - вибрационные (воздействие звуковых волн и вибраций).

Полы промышленных зданий должны удовлетворять следующим требованиям:

- обладать высокой механической прочностью, ровной и гладкой поверхностью;

- не скользить;

- мало истираться и не пылить при перемещении тележек и ходьбе;

- иметь хорошую эластичность, устраняющую повреждение предметов при падении на пол;

- быть бесшумными при езде транспортных средств и ходьбе людей;

- обладать малым коэффициентом теплоусвоения, что предотвращает ощущение холода у стоящих на полу людей;

- иметь высокую стойкость к агрессивной среде (кислоты, щелочи), стойкость против возгорания и водонепроницаемость;

- не проводить электрический ток;

- обладать достаточным сопротивлением вибрационным воздействиям;

- экономичность, индустриальность, долго сохранять хороший вид.

Все эти требования определяются конкретными производственными условиями и воздействиями и их трудно удовлетворить одновременно, т.к. зачастую они имеют взаимоисключающий характер. Поэтому в производственных зданиях могут одновременно устраиваться полы нескольких видов, либо при выборе конструкции пола учитываются лишь наиболее важные требования к нему. В максимальной степени пол должен удовлетворять тем требованиям, которые определяются спецификой конкретного производства.

В составе проектной документации приводятся планы полов, на которых указываются для каждого производственного участка или помещения типы и детали полов, а также применяемые для них материалы и изделия.

Конструктивные элементы полов.

В промышленных зданиях, так же как и в гражданских зданиях, полы устраиваются как по перекрытиям, так и по грунту. Полы по грунту применяются в одноэтажных зданиях, по перекрытиям - в многоэтажных. Конструкция пола состоит из следующих слоев (сверху вниз): покрытие, подстилающий слой), прослойка, стяжка, изоляционные слои (гидроизоляция, тепло- и звукоизоляция), основание под полы.

Покрытие. Покрытия подразделяются на:

сплошные (бетонные, асфальтобетонные, ксилолитовые, мастичные и др.);

из рулонных материалов (линолеумные и др.);

штучные (из бетонных, керамических пластмассовых, чугунных и др. плиток, из брусчатки, деревянных торцовых шашек, кирпича и др.).

Толщину покрытия пола назначают с учетом характера воздействия и величины нагрузок на пол, применяемых материалов и свойств грунта основания.

Подстилающий слой выполняют из бетона, асфальтобетона, гравия, щебня, песка и других материалов. Бетонный подстилающий слой рекомендуется применять при воздействии на конструкцию пола агрессивных сред.

Толщину подстилающего слоя определяют по расчету в зависимости от действующей на него нагрузки и принимают:

- из бетонов классов В22,5 и выше - не менее 100 мм;

- песчаного - 60 мм;

- гравийного, щебеночного и шлакового - 80 мм.

В бетонных подстилающих слоях полов, при эксплуатации которых возможны перепады температур, предусматривают деформационные швы, располагаемые во взаимно перпендикулярных направлениях через 8…12м.

В полах по перекрытиям в качестве подстилающего слоя часто используют звукоизоляционные материалы.

Прослойка. В качестве прослоек используют цементно-песчаный раствор толщиной 10-15 мм, жидкое стекло с уплотняющей добавкой (10-12 мм), связующие на основе битумных мастик (2-3 мм), синтетических смол (3-4 мм), мелкозернистого бетона класса не ниже В30 (30-35 мм). В полах из металлических плит устраивают песчаные прослойки (60-220), а из крупных бетонных плит (35-40мм).

Назначение типа прослойки производят в соответствии с характером воздействий на пол жидкостей и температур.

Прослойки могут выполнять теплоизолирующие функции. В этом случае для их устройства используют различные теплоизоляционные материалы с толщиной слоя от 60 до 150 мм.

Стяжка. Ее устраивают для выравнивания поверхности нижележащих элементов пола (или перекрытия), укрытия различных трубопроводов, а также с целью обеспечения нормируемого теплоусвоения пола, придания покрытию заданного уклона.

Для выравнивания нижележащего слоя и укрытия трубопроводов стяжки выполняют из бетона класса не ниже В12,5 или цементно-песчаного раствора с прочностью на сжатие не ниже 15 МПа; для создания уклона на перекрытии - из бетона В7,5 или цементно-песчаного раствора с прочностью на сжатие не ниже 10 МПа; под наливные полимерные покрытия - из бетона класса не ниже В15 или цементно-песчаного раствора с прочностью на сжатие не ниже 20 МПа.

Легкий бетон в стяжках используют лишь в случаях необходимого обеспечения нормируемого теплоусвоения покрытия пола.

Допускается устраивать сборные стяжки из железобетонных и твердых древесноволокнистых плит толщиной соответственно 40-50 и 4-5 мм.

Изоляционные слои.

Гидроизоляцию от проникания сточных вод и других жидкостей устраивают при средней и большой интенсивности воздействия на пол: воды и нейтральных растворов - в полах на перекрытии, на просадочных и набухающих грунтах основания; органических растворителей, минеральных масел и эмульсий из них - только в полах на перекрытии; кислот, щелочей и их растворов, а также веществ животного происхождения - в полах на грунте и на перекрытии. Гидроизоляцию предусматривают также, когда бетонный подстилающий слой расположен в зоне опасного капиллярного поднятия грунтовых вод или ниже уровня отмостки здания.

В первом случае применяют оклеечную гидроизоляцию, укладывая ее под покрытием пола, во втором - наливную асфальтовую или оклеечную под подстилающим слоем.

Оклеечную гидроизоляцию устраивают в основном из изола, гидроизола, полиизобутилена, поливинилхлоридной пленки и полиэтилена. При устройстве гидроизоляции из материалов на основе битума ее выполняют в 2 слоя, из полимерных материалов - в 1 слой. При большой интенсивности воздействия жидкостей на пол, а также под сточными лотками, каналами, трапами число слоев гидроизоляции из указанных материалов увеличивают соответственно на два и один слой.

Тепло- и звукоизоляцию в полах устраивают из легких, но плотных материалов (т.е. из материалов с малой объемной массой) - из минераловатных и стекловолокнистых матов и плит, древесноволокнистых плит, легких бетонов и других материалов.

Основания под полы. В многоэтажных зданиях основанием под полы служат плиты междуэтажных перекрытий, а в одноэтажных - грунты основания. Пол устраивают только на грунтах, исключающих возможность деформации конструкции от просадки грунта.

В качестве оснований под полы не допускаются торф, чернозем и другие растительные грунты. При использовании под основание пола естественных грунтов с нарушенной структурой или насыпных грунтов их предварительно уплотняют. При пучинистых грунтах в основании пола, когда возможно их промерзание, полы утепляют, для чего в конструкцию вводят теплоизолирующий слой либо производят замену пучинистого грунта непучинистым.

Виды полов

Полы со сплошными покрытиями наиболее распространены в промышленных зданиях. Во многих случаях такие полы дешевле и лучше поддаются механизации устройства по сравнению с конструкциями полов из штучных материалов.

Бетонные полы устраивают из бетонов классов В15-В40 толщиной 20…50 мм. Бетонные полы устраивают из двух или трех слоев бетона (рис.8.2)

Такие полы обладают высокой прочностью против механических воздействий, их устраивают в цехах с повышенной влажностью, при попадании на пол минеральных масел и органических растворителей. Недостатки бетонных полов: нестойкость к воздействию кислот и щелочей, пыльность и непривлекательный внешний вид.

Для улучшения эстетических и гигиенических качеств применяется мозаичное покрытие, для чего в бетон добавляют пигменты или крошку мозаичного состава, содержащие мрамор, базальт, гранит и др. Поверхность пола шлифуется.

Прочностные качества бетонных полов можно повысить путем устройства покрывочного слоя из смеси цемента и металлических добавок. Для этого смесь из цемента и металлического порошка втирают в незатвердевшую поверхность бетона. В результате образуется металлоцементный пол с бронированной поверхностью, высокопрочный и стойкий к износу (рис. 8.3).

Покрытие пола в цехах с высоким температурным воздействием выполняется из жаростойких бетонов.

Жаростойкие бетонные покрытия выполняют на основе глиноземистых цементов, жидкого стекла и различных видов портландцементов. Учитывая высокую стоимость глиноземистых цементов (в 3-4 раза дороже портландцемента), их применяют при воздействии температур выше 1000оС. Жаростойкие бетонные покрытия на основе жидкого стекла обеспечивают высокую стойкость к воздействиям температур до 700…800оС, а покрытия на основе портландцемента с тонкомолотыми добавками - до 1000оС.

Покрытия из жаростойкого бетона устраивают в два слоя общей толщиной не менее 120 мм (рис. 8.4).

Полы с покрытиями из бетонов на основе жидкого стекла (силикатные полы), кроме жаростойкости, обладают хорошей стойкостью против воздействий серной, соляной, азотной, уксусной и других кислот. Силикатные покрытия устраивают толщиной 30…50 мм (рис.8.5).

Асфальтобетонные покрытия выполняют из смеси битума с минеральным порошком, песком, щебнем или гравием (рис. 8.6). Асфальтобетонные покрытия полов толщиной 25-50 мм применяют в мокрых зонах здания без воздействия органических растворителей, горячей воды, с умеренным движением. Такие покрытия не допускают движение транспорта на гусеничном ходу, а также значительные удары. Для асфальтобетонных покрытий устраиваются гравийные, щебеночные и бетонные подстилающие слои.

В производственных помещениях с высокими требованиями к чистоте (медицинская, электронная, авиационная и другие отрасли промышленности) устраиваются полимерцементнобетонные и полимерные наливные полы.

Полимерцементнобетонные полы выполняют из смеси цемента, песка, щебня, пигментов и полимерных добавок. Включение в обычный бетон полимеров значительно повышает его прочность при растяжении и ударах (в 2-3 раза), увеличивает износостойкость и понижает пылеотделение при эксплуатации.

Полимерцементнобетонные покрытия укладывают слоем толщиной 20 мм по бетонному подстилающему слою, плитам перекрытия или стяжке из мелкозернистого бетона класса В15 (рис. 8.7).

Наливные полы с полимерными покрытиями относятся к числу наиболее «чистых». Они беспыльны, могут иметь разнообразный по цвету и рисунку вид, удобны в устройстве и эксплуатации. Конструкция таких полов включает бетонный подстилающий слой (перекрытие), стяжку и покрытие из наливного или мастичного состава (рис. 8.8). В качестве полимерных связующих для наливных покрытий используют эпоксидные, полиэфирные, полиуретановые, акриловые смолы, смешанные с пигментами и другими возможными добавками.

Полы с покрытиями из штучных, рулонных и листовых материалов наиболее эффективны, когда их изготавливают из крупноразмерных комплексных элементов высокой заводской готовности.

Полы из крупноразмерных комплексных бетонных плит с размером основных элементов 3х3 и доборных размерами 1,5х1,5 и 1х1 м выполняют с покрытиями из жаростойкого, мозаичного бетона, поливинилацетатно-цементнобетонными, а также из стальных штампованных перфорированных плит.

Комплексные бетонные плиты имеют толщину 120, 140 и 160 мм - в зависимости от нагрузки, действующей на них. Плиты по контуру имеют пазы и гребни, что обеспечивает ровность пола без заделки стыков. Их укладывают по песчаному основанию толщиной 60 мм при полах на грунте и 20 мм - при полах на перекрытии (рис. 8.9). Такие конструкции полов по сравнению с монолитными и с покрытиями из мелкоразмерных элементов имеют значительно меньшую трудоемкость при устройстве в построечных условиях. Сборные полы эффективны при реконструкции промышленных зданий, их можно устраивать при любой температуре наружного воздуха.

Полы из мелкоразмерных блоков, плит и других элементов выполняют из бетонных блоков и плиток, керамики, шлакоситалла, металла, дерева, полимерных материалов, камней, кирпича и других материалов.

В практике строительства применяют бетонные блоки из бетона размером 300х300 и 400х400 при толщине 50, 80, 100 и 120 мм. Блоки укладывают по прослойке из песка толщиной 20…40 мм. Бетонные блоки, как и комплексные плиты, выполняют с разнообразными покрытиями (мозаичными, жаростойкими и т.п.).

Плиточные полы в промышленных зданиях устраивают в основном из керамики, шлакоситалла и литого шлака и на основе синтетических материалов. Плитки укладывают по прослойке из цементно-песчаного раствора, раствора на жидком стекле или на битумных мастиках и смолах (рис. 8.10).

Полы из керамических плиток обладают сравнительно высокой водостойкостью и прочностью, твердостью, хорошим сопротивлением истиранию и кислотостойкостью, однако не стойки против механических воздействий и трудоемки в изготовлении. Плитки имеют размеры 100х100 и 150х150 при толщине 10, 13 и 17 мм.

Шлакоситалловые плиты имеют размеры 300х300, 400х400, 500х500 и 600х600 мм при толщине 8…10 мм при глянцевой поверхности и 17…20 - при рифленой. Плиты стойки против воздействия кислот и щелочей, имеют высокую износостойкость и водонепроницаемость, легко очищаются от производственных загрязнений. К недостаткам таких плит относится хрупкость и скользкость при ходьбе, сложность в устройстве.

Каменные полы из природного камня, кирпича и плит каменного литья устраивают на участках зданий, подвергаемых интенсивным механическим и химическим воздействиям.

Брусчатые каменные полы (рис. 8.11) из гранита, базальта, диабаза и других прочных материалов укладывают по песчаному, цементно-песчаному, мастичному подстилающему слою или по слою из жидкого стекла. Размеры брусчатки обычно составляют 150х200 мм при высоте 120-160 мм. Толщина прослойки из песка должна быть 10-15 мм, из мастики - 2-3 мм, из раствора и жидкого стекла - 10-15 мм.

Кирпичные (клинкерные) полы применяют в тех же случаях, что и брусчатые. Они имеют с ними и аналогичную конструкцию. Укладывают кирпичи на ребро или плашмя.

Полы из торцовых шашек (рис. 8.12) применяют в помещениях, где они подвергаются ударам при падении предметов массой от 10 до 15 кг, а также в помещениях, где при падении на пол предметы (инструмент или детали) не должны повреждаться. Деревянные шашки изготовляют из антисептированной древесины прямоугольной или шестигранной формы высотой 60…80 мм и устанавливают так, чтобы волокна были расположены перпендикулярно плоскости пола. Шашки укладывают обычно по песчаной прослойке толщиной 10…15 мм или на мастике с толщиной слоя 20…30 мм. Швы между шашками заполняют битумной или дегтевой мастикой. Такие полы эластичны и бесшумны. Стоя на полу, человек не ощущает переохлаждения ног.

Металлические полы (рис. 8.13) из чугунных дырчатых и стальных штампованных перфорированных плит устраивают по прослойке из песка или бетона. Такие полы применяют только на участках, предусматривающих движение тележек на металлических шинах, перекатывание круглых металлических предметов и при воздействии высоких температур (до 1400оС). Чугунные дырчатые плиты имеют размеры 248х248 и 298х298 мм. При укладке на растворе снизу они имеют ребра жесткости и шипы треугольного сечения для сцепления с бетоном. Стальные штампованные плиты размером 300х300 мм изготовляют из горячекатаной стали толщиной 3 мм.

Полы из рулонных материалов чаще всего выполняют из линолеума (рис. 8.14). Их изготавливают безосновными и с упрочняющей или тепло- и звукоизолирующей основой. Такие полы применяют во влажных условиях эксплуатации. Вследствие эластичности, мягкости и незначительной толщины линолеум укладывают только по ровному и прочному основанию. Подстилающий слой делают, как правило, из бетона, а стяжку - из цементно-песчаного раствора.

К полам из листовых материалов относят полы из твердых и сверхтвердых древесно-волокнистых, древесно-стружечных, цементно-стружечных и винилпластовых листов. Толщина листов в зависимости от материала составляет от 3-4 мм до 19 мм. Полы из древесно-волокнистых и древесно-стружечных листов устраивают в основном во вспомогательных производствах, где отсутствуют высокие механические, температурные и агрессивные воздействия на них.

Лекция 8. Здания для строительства в районах с особыми условиями

8.1 Здания, возводимые на просадочных грунтах

Промышленные здания и сооружения нередко приходится возводить на просадочных грунтах.

В отличие от обычных, просадочные грунты, находятся в напряженном состоянии от действия внешней нагрузки и собственной массы, при замачивании дают просадку.

К просадочным грунтам относятся лёссы, лёссовидные суглинки, супеси, покровные суглинки и некоторые другие.

Причинами повышения влажности просадочных грунтов могут быть: замачивание их сверху из внешних источников или снизу при подъеме уровня грунтовых вод, а также постепенное накопление влаги в грунте вследствие инфильтрации поверхностных вод и экранирования поверхности. При определении просадок грунтов и их неравномерности учитывают:

- инженерно-геологический состав площадки строительства;

- физико-механические характеристики грунтов основания и их неоднородность;

- размеры, глубину заложения и взаимное расположение фундаментов;

- нагрузки на фундаменты и прилегающие площадки;

- конструктивные особенности сооружения (наличие подвалов, тоннелей и т.п.);

- характер планировки территории (наличие выемок, срезок или насыпей);

- возможные виды, размеры и места расположения источников замачивания грунтов.

Грунтовые условия площадок, сложенных просадочными грунтами, в зависимости от возможной просадки грунтов под воздействием собственной массы подразделяют на два типа: I-й тип просадочности; II-й тип просадочности.

I-й тип просадочности - грунтовые условия, в которых возможна в основном просадка грунтов от внешней нагрузки, а просадка грунтов от собственной массы отсутствует или не превышает 5 см.

II-й тип просадочности - грунтовые условия, в которых помимо просадки грунтов от внешней нагрузки возможна их просадка от собственной массы и ее размер превышает 5 см.

Просадочные грунты с их большими и неравномерными деформациями могут повредить или разрушить конструкции здания, если не будут предусмотрены специальные меры.

Строительные мероприятия - устройство искусственных оснований - достигается: уплотнением грунтов (трамбование тяжелыми трамбовками, устройство грунтовых свай, вытрамбование котлованов под фундаменты, предварительное замачивание грунтов; глубинное гидровиброуплотнение, использование вибрационных машин, катков); полной или частичной заменой в основании грунтов с неудовлетворительными характеристиками свайными подушками из песка, гравия, щебня и т.п. Строительные мероприятия предусматривают преобразование свойств грунтов основания, исключающие или снижающие до допустимых пределов просадки оснований или уменьшающие их влияние на эксплуатационную пригодность сооружения.

Более подробно строительные мероприятия рассматриваются в курсе «Основания и фундаменты».

Водозащитные мероприятия - предусматривают при разработке генеральных планов, планировке территории предприятия, устройстве оснований под полы, размещении трубопроводов.

Планировка застраиваемой территории проводится в данном случае с целью обеспечить быстрый и беспрепятственный сток атмосферных вод.

Чтобы предотвратить инфильтрацию в просадочный грунт поверхностных вод, следует до минимума сократить срезку верхнего слоя грунта. Для планировочных насыпей (включая основание под полы), засыпки пазух котлованов непригодны: песок, строительный мусор и другие дренирующие материалы. Вокруг зданий устраивают водонепроницаемую отмостку шириной 1-1,5 м с уклоном около 3 %, а по ее периметру - водоотводящий кювет (рис. 9.1 а).

В качестве основания под полы в цехах с мокрым технологическим процессом, возводимых на просадочных грунтах II типа, предусматривают водонепроницаемый экран толщиной не мене 1 м уплотнением грунта тяжелыми трамбовками или устройством грунтовой подушки.

Конструктивные мероприятия - предусматривают с целью обеспечить прочность, устойчивость и эксплуатационную надежность здания при возможных просадках от замачивания грунтов основания. Необходимо также создавать условия для быстрого восстановления проектного положения отдельных конструктивных элементов здания.

Рис. 9.1 Конструктивные элементы зданий, возводимых на просадочных грунтах: а - отмостка с кюветом; б - фундамент с консолями в пределах башмака; в - крепление подкрановых балок на консолях; г - крепление кранового рельса; 1 - жирный цементный раствор; 2 - литой асфальт (20-30мм); 3 - мощение булыжником с заливкой швов битумом; 4 - взрыхленный и утрамбованный глинистый грунт; 5 - щебеночная подготовка (100-120 мм), пропитанная горячим битумом; 6 - консоль для подъема колонны домкратом; 7 - подкрановая консоль; 8 - стальная шпала; 9 - скоба болта.

Основными конструктивными мероприятиями являются следующие:

- применение конструктивной схемы, малочувствительной к неравномерным осадкам;

- разрезка здания на блоки осадочными швами;

- устройство стыков, равнопрочных с соединяемыми элементами на воздействие неравномерной просадки основания;

- усиление отдельных конструкций дополнительным армированием;

- устройство армированных поясов по капитальным стенам, непрерывных в пределах каждого осадочного блока;

- увеличение площадей опирания в местах сопряжения конструктивных элементов;

- приспособление конструкций к быстрому восстановлению их просадки.

Малочувствительные к неравномерным осадкам конструкции подразделяются на два вида - жесткие и податливые.

Жесткие конструкции - обладают большой прочностью, исключают взаимные применения отдельных элементов и оседают как одно пространственное целое. В зданиях и сооружениях с такими конструкциями необходимо ограничивать возможные просадки и их неравномерность.

В податливых конструкциях элементы связаны с собой шарнирно, поэтому их взаимное перемещение вследствие неравномерной просадки основания практически не отражается на устойчивости здания в целом. Для зданий с такими конструкциями учитывают возможность отклонения колонн и стен от вертикали при просадке основания. С этой целью в проектах предусматривают не только шарнирные связи ферм (балок) и других элементов с колоннами, но и мероприятия по быстрому восстановлению нормальных условий эксплуатации в зданиях.

Для уменьшения длины изгибаемых участков при неравномерной просадке здания, его разрезают осадочными швами, которые совмещают с температурными.

В необходимых случаях по капитальным стенам устраивают железобетонные пояса, размещая их на уровне оконных перемычек в одноэтажных зданиях и на уровне междуэтажных перекрытий в многоэтажных. Кроме того, во всех типах зданий предусматривают армирование пояса в пределах подошв фундаментов. Количество поясов и их сечение определяют расчетом; во всех случаях их должно быть не менее двух.

Под несущие стены зданий устраивают монолитные или сборно-монолитные ленточные фундаменты. В каркасных зданиях фундаменты аналогичны зданиям, возводимым на обычных грунтах. При нежестких (податливых) несущих конструкциях фундаменты под отдельно стоящие колонны устраивают с консолями или отдельными площадками, предназначенными для подъема домкратами просевших колонн (рис. 9.1 б).

Подкрановые балки в зданих на просадочных грунтах следует применять разрезные металлические. Их опирают и крепят, как правило, на консолях (рис. 9.1 в). Такое крепление позволяет производить рихтовку подкрановых путей наименее трудоемким способом - путем изменения положения крановых консолей.

Крепление рельсов к подкрановым балкам должно быть подвижным и иметь конструкцию, допускающую выравнивание пути в вертикальном направлении подъемом рельсов не менее чем на 100 мм и в поперечном - не менее 50 мм. Один из способов крепления рельсов показан на рисунке 15.1 г. Рельс укладывается на стальные шпалы и крепится к балке лапками; между шпалами и балкой можно предусматривать прокладки.

В зданиях и сооружениях податливой конструкции необходимо предусмотреть мероприятия, исключающие возможность выпадения отдельных участков кровельного покрытия при неравномерной просадке. Для чего ограждающие элементы покрытия укладывают внахлестку или применяют элементы многопролетного типа (асбестоцементные, стальные и алюминиевые волнистые листы, стальной ребристый профилированный настил и др.).

8.2 Здания, возводимые на подрабатываемых территориях

Подрабатываемая территория - участок поверхности земли, под которым ведут или намечают вести подземные горные разработки угля или других ископаемых.

Подрабатываемым территориям вследствие выемки пластов ископаемых, свойственны оседания, прогибы, наклоны, горизонтальные смещения и другие деформации, вызывающие значительные повреждения и разрушения расположенных на них зданий и сооружений

Более подробно параметры деформации земной поверхности рассматриваются в курсе «Основания и фундаменты».

Прочность, устойчивость и надежность в эксплуатации зданий и сооружений, возводимых на подрабатываемых территориях, обеспечивают специальными мероприятиями.

Исходными данными для проектирования построек на подрабатываемых территориях являются максимальные величины прогнозируемых деформаций земной поверхности на участке строительства в направлении продольной и поперечной осей проектируемого здания.

При строительстве на подрабатываемых территориях предпочтение отдают зданиям небольшой площади, без выступов и пристроек. Здания большой протяженности разделяют на отсеки. Длину отсеков назначают в зависимости от интенсивности деформаций земной поверхности, принятой конструктивной схемы здания, типа конструкций и характеристик грунта.

Сохранность и надежность зданий и сооружений, располагаемых на подрабатываемых территориях, обеспечивают комплексом мероприятий. В данной теме рассмотрим конструктивные и строительные мероприятия.

Здания и сооружения, возводимые на подрабатываемых территориях, проектируют по податливым, жестким и комбинированным конструктивным схемам.

По жесткой конструктивной схеме проектируют бескаркасные здания с несущими стенами и небольших размеров в плане. В них предусматривают:

- усиленные несущие конструкции, объединенные в пространственно-жесткие блоки;

- фундаменты - плитные, ленточные с железобетонными поясами;

- отдельно стоящие со связями - распорками и др.

По податливой схеме проектируют каркасные здания, имеющие большие размеры в плане, с незначительной собственной жесткостью. При прогнозируемых значительных деформациях земной поверхности предпочтительнее применять здания с металлическим каркасом.

Комбинированная схема может быть использована в каркасных и бескаркасных зданиях. Каркасные здания решают в виде рамных, рамно-связевых и связевых систем.

Фундаменты, работающие в сложных напряженных условиях, выполняют в зданиях с податливой схемой с горизонтальными швами скольжения между отдельными его элементами.

Шов скольжения представляет собой два слоя пергамина с прослойкой молотого графита, щипаной слюды или инертной пыли.

Шов скольжения, отделяющий надземную часть здания от подземной, располагают в горизонтальной плоскости над фундаментной подушкой, а в зданиях с подвалом - под перекрытием подвала или технического подполья. Над швом предусматривают защитный пояс.

Для защиты от перекосов и снижения влияния горизонтальных деформаций основания устраивают связи-распорки. Их можно располагать в одном или двух уровнях фундамента, параллельно друг другу (рис. 9.2 а).

Рис. 9.2 Конструктивные элементы зданий, возводимых на подрабатываемых территориях: а - схема устройства шва скольжения и связей-распорок; б - схема устройства сплошной фундаментной плиты со швом скольжения; в - крепление подкрановой балки к колонне; 1 - бетонная или железобетонная подушка; 2 - шов скольжения; 3 - связь-распорка; 4 - фундаментная плита; 5 - фундамент под оборудование; 6 - деформационный шов; 7 - анкер; 8 - величина возможного подъема подкрановой балки; 9 - то же горизонтального смещения.

При устройстве фундаментов в виде сплошной плиты, ее рекомендуется делать со швом скольжения. В местах примыкания плиты к фундаментам под технологическое оборудование оставляют зазоры, ширину которых определяют расчетом. Как правило, величина зазора не превышает 50 мм (рис. 9.2 б).

В зданиях с мостовыми кранами при отсутствии поперечных связей-распорок между фундаментами предусматривают возможную регулировку положения подкрановых путей (балок и рельсов) в горизонтальной плоскости, а при ожидаемом наклоне подкранового пути (более 6 мм/м - в продольном направлении и 4 мм/м - в поперечном направлении) и, кроме того, еще и по вертикали (рис. 9.2 в). Во всех случаях предпочтение следует отдавать подвесному и напольному подъемно-транспортному оборудованию.

При использовании мостовых кранов подкрановые балки следует выполнять разрезными, металлическими и реже разрезными железобетонными.

Несущие конструкции покрытия опирают шарнирно на колонны посредством катковых и скользящих опор, показанных на рисунке 9.3.

Рис. 9.3 Шарнирно-подвижные сопряжения несущих конструкций покрытия с колоннами: а - катковое; б - скользящее; 1 - колонна; 2 - направляющая пластинка; 3 - ферма; 4 - каток; 5 - ограничитель; 6 - опорный столик; 7 - шов скольжения.

Стены каркасных зданий рекомендуется монтировать из навесных облегченных панелей с податливым креплением к колоннам. Допускается также самонесущие кирпичные и блочные стены с усилением их по периметру железобетонными поясами, а в местах пересечения - и горизонтальными арматурными сетками.

Самонесущие стены крепят к колоннам деталями, не препятствующими относительным смещениям в плоскости стен.

Размещено на Allbest.ru


Подобные документы

  • Основные требования к современным промышленным зданиям. Объемно-планировочные решения промышленных зданий. Типы многоэтажных промышленных зданий. Ячейковые и зальные промышленные здания. Унифицированные параметры одноэтажных производственных зданий.

    презентация [9,0 M], добавлен 20.12.2013

  • Типология и классификация гражданских зданий. Основные требования, предъявляемые к зданиям. Основные положения модульной системы. Конструктивные схемы бескаркасных, каркасных зданий и зданий со смешанным каркасом. Модульная система координации размеров.

    реферат [2,2 M], добавлен 15.01.2011

  • Порядок усиления конструкций покрытий одноэтажных промышленных зданий. Этапы проведения опалубочных работ. Исправление дефектов конструкций зданий индустриального строительства. Окраска поверхностей водными, масляными и синтетическими составами.

    контрольная работа [2,4 M], добавлен 21.06.2009

  • Элементы каркаса одноэтажных производственных зданий. Железобетонные колонны основного и станового каркасов. Принципы заложения фундамента под колонны, главные требования к нему. Понятие и функциональные особенности фундаментных балок, анализ типов.

    презентация [4,5 M], добавлен 20.12.2013

  • Общие сведения о зданиях и сооружениях. Технико-экономическая оценка проектов жилых и общественных зданий и сооружений. Объемно-планировочные и конструктивные решения жилых зданий. Основания и фундаменты зданий. Инженерное оборудование зданий.

    курс лекций [269,4 K], добавлен 23.11.2010

  • Элементы оконных блоков промышленных зданий. Наружное и внутреннее открывание деревянных окон для многоэтажных зданий со спаренными и раздельными переплетами. Обрамление воротного проема, основные виды и оборудование ворот. Двери производственных зданий.

    презентация [846,1 K], добавлен 18.04.2016

  • Общие правила проведения обследования и мониторинга технического состояния зданий и сооружений. Наблюдение за зданиями, находящимися в аварийном состоянии. Примеры проектирования и эксплуатации схем мониторинга конструкций и оснований высотных зданий.

    реферат [1,9 M], добавлен 11.06.2011

  • Ознакомление с видами конструктивных систем каркаса: стоечно-балочной и рамной. Рассмотрение элементов каркаса одноэтажных промышленных зданий. Изучение классификации фундаментов. Определение и характеристика особенностей оснований для фундаментов.

    презентация [4,0 M], добавлен 05.08.2017

  • Классификация общественных зданий по функциональному назначению. Особенности проектирования и требования к возведению спортивных сооружений (горнолыжных комплексов и футбольных стадионов). Тенденции развития пространственной структуры спортивной среды.

    статья [1,8 M], добавлен 10.12.2015

  • Шаг, пролет и высота в одноэтажном доме. Унифицированные габаритные схемы и секции. Подъемно-транспортное оборудование, его влияние на конструкции промышленных зданий. Привязка конструкции к разбивочным осям. Фонари, их назначение, классификация и типы.

    контрольная работа [1,8 M], добавлен 16.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.