Хроматографические методы анализа и их использование в анализе объектов окружающей природной среды

Основные виды хроматографии. Применение хроматографических методов в экологическом мониторинге. Применение хроматографии в анализе объектов окружающей среды. Современное аппаратурное оформление. Методы проявления хроматограмм и работа хроматографа.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 08.01.2010
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Правильно организованный газохроматографический анализ должен в возможно более полной степени исключить все перечисленные выше причины изменения состава анализируемых проб. Этой цели служат многочисленные методики анализа, опубликованные в оригинальных работах, а в ряде случаев и включенные в нормативные документы.

Для извлечения определяемых компонентов из водных матриц применяют методы экстракции малыми объемами органических растворителей с последующим концентрированием путем отгонки экстрагента (рис. 1); твердофазной экстракции с сорбцией определяемых компонентов на адсорбентах с привитой органической неподвижной фазой (углеводородными радикалами от С2H5 до С20Н41, либо функционально замещенными фрагментами с нитрильными, аминными или диольными группами). Разработаны методы микроэкстракции на единичном стеклянном или кварцевом волокне, покрытом пленкой полисилоксановой неподвижной фазы.

Рис. 1. Типичные хроматограммы нефтяных загрязнений, экстрагированных из воды Таганрогского залива: а) - август 1991 г.; б) - октябрь 1991 г.

В пробу анализируемой воды объемом около 100 мл (в конической колбе) помещают магнитную мешалку в форме стеклянной трубки длиной 30 мм и диаметром 2-3 мм с запаянными концами. Внутрь трубки помещают стальной стержень длиной 25 мм и диаметром 1-1,5 мм, а снаружи на трубку надевают отрезок трубки из силиконовой резины длиной 25-30 мм с внутренним диаметром 1 мм и толщиной стенок 0,5 мм. Согласно опубликованным данным перемешивание водной пробы такой мешалкой со скоростью несколько сотен оборотов в минуту в течение 10-15 мин при 20 °С приводит к тому, что более 90% всех липофильных примесей абсорбируется в силиконовой оболочке мешалки. После этого мешалку можно поместить в нагретый испаритель хроматографа для немедленного проведения анализа либо сохранить ее длительное время в закрытой пробирке для транспортировки в стационарную лабораторию.

Подобная техника извлечения и концентрирования малых примесей, названная авторами Stir Bar Sorptive Extraction, несомненно, имеет серьезные перспективы широкого применения. Возможно, что использование таких магнитных мешалок с полимерными покрытиями разных типов позволит избирательно извлекать из водных проб различные группы соединений, отличающиеся по своей полярности и прочим физико-химическим характеристикам.

Для определения состава легколетучих компонентов водных проб оказывается плодотворным метод газохроматографического анализа равновесного пара и газовой экстракции с улавливанием извлекаемых веществ в сорбционных концентраторах и последующим криогенным вводом в капиллярную колонку. Таким способом, например, подробно изучен состав хлорсодержащих микропримесей, образующихся при хлорировании питьевой воды (рис. 2). При извлечении микропримесей полярных веществ, хорошо растворимых в воде, применяют метод экстракции полярными водорастворимыми экстрагентами (спиртом, ацетоном) с предварительным насыщением водных проб неорганическими солями (высаливание хлоридом натрия или сульфатом аммония).

Рис. 2. Хроматограмма летучих органических соединений, содержащихся в пробе хлорированной питьевой воды. Капиллярная колонка длиной 50 м и диаметром 0,25 мм с силиконовой смазкой "Эдвардс" в качестве неподвижной фазы. Пики, обозначенные цифрами, идентифицированы. Пик 9 - хлороформ

Собственно газохроматографический анализ в большинстве случаев в настоящее время осуществляют с применением высокоэффективных капиллярных колонок в условиях программирования температуры от 50-100 °С до 300-350 °С (и даже до 400 °С и выше). Скорость нагрева колонок при этом может изменяться от 3-5 до 20-30 град/мин в зависимости от характера разделяемых компонентов.

Идентификацию пиков на хроматограммах выполняют с применением известных хроматографических зависимостей индексов удерживания от температур кипения и от молекулярной массы веществ. Для той же цели применяют селективные детекторы (например, электронно-захватный), термоионные хемилюминесцентные, атомно-абсорбционные, масс-селективные и др.

Наиболее полную информацию о молекулярном строении определяемых веществ позволяют получить методы хромато-масс-спектрометрии и газовой хроматографии с ИК-Фурье спектроскопическим детектором. Особенно плодотворным оказалось использование этих двух методов при определении пестицидов, полихлорированных бифенилов, диоксинов и им подобных веществ, продуктов распада токсичных ракетных топлив и боевых отравляющих веществ в объектах окружающей среды (рис. 3).

Рис. 3. Хроматограмма воды реки Оук Крик (США), содержащей пестициды: 1 - Дикамба (4,7 мкг/л); 2 - 2,4-D (7,0 мкг/л); 3 - Силвекс (4,5 мкг/л); 4 - 2,4,5-Т (5,2 мкг/л); 5 - Пиклорам (3,3 мкг/л); 6 - внутренний стандарт

В ряде случаев применение селективных детектирующих систем позволяет не только повысить чувствительность определения целевых компонентов, но и выявить источники загрязнения водной среды. Так, например, применение хемилюминесцентного озонового детектора с высокой специфической чувствительностью к веществам, содержащим серу, позволяет зафиксировать профиль серосодержащих соединений нефти и нефтяных топлив. Эти компоненты значительно более устойчивы в водной среде, чем углеводородные составляющие нефтепродуктов, поэтому совпадение таких профилей позволяет с большой степенью достоверности указать источник нефтяного загрязнения данного водного бассейна (рис. 4), .

Рис. 4. Хроматограммы: а) - серосодержащих компонентов нефтяного загрязнения морской воды (район г. Таганрога); б) - судового дизельного топлива.

Кварцевая капиллярная колонка длиной 25 м и диаметром 0,25 мм с полидиметилсилоксаном SE-54 в качестве неподвижной фазы. Программирование температуры от 60 до 280 °C cо cкоростью нагрева 10 град/мин: 1 - метилбензотиофены; 2 - диметилбензотиофены; 3 - дибензотиофен; 4 - метилдибензотиофены; 5 - диметилдибензотиофены

Большие возможности газохроматографического анализа в настоящее время определенно позволяют осуществить достаточно полный анализ водных проб практически любого происхождения, в том числе питьевых, речных, озерных и морских вод, сточных вод коммунальных систем и промышленных предприятий.

В ряде случаев такие анализы могут быть проведены в полевых условиях непосредственно в местах отбора проб. Тем не менее, пока не существует методов, позволяющих провести полный анализ водных проб в единой системе без проведения предварительных лабораторных операций, часто трудоемких и длительных.

Перспективными для создания таких методов следует считать хроматографические системы с использованием в качестве подвижных фаз парообразных и сверхкритических сред (в том числе паров воды).

Широко используется газовая хроматография также и для анализа объектов внутренней водной среды. При этом применяется весь арсенал технических приемов, разработанных за 50 лет развития газовой хроматографии: высокоэффективные капиллярные колонки, высокочувствительные селективные детекторы, комбинированные аналитические системы, сочетающие газовую хроматографию с масс-спектрометрией и с ИК-спектроскопией с Фурье-преобразованием.

В этой области сложились два основных направления аналитических исследований. С одной стороны, это изучение состава естественных сред организма (плазмы крови, мочи, слюны, спинно-мозговой жидкости и др.) с целью выявления изменений этого состава в зависимости от физиологических особенностей организма, наличия патологических изменений и тому подобных факторов.

В настоящее время это направление газохроматографического анализа внутренней водной среды организма отражено в ряде руководств и монографий. Показано, что во многих случаях газохроматографический анализ позволяет выявить на ранней стадии целый ряд заболеваний и таким образом ускорить их лечение (рис. 5). При таких исследованиях широко используют экстракцию целевых компонентов растворителями, твердофазную экстракцию и метод анализа равновесного пара (рис. 6).

Рис. 5. Метаболический профиль стероидов из мочи пациента с опухолью яичника, секретирующей тестостерон. Идентифицированы все компоненты. Увеличенное содержание компонентов 1, 2, 4 и 7 указывает на наличие опухоли (1 - андростерон; 2 - этиохоланон; 4 - 11b-оксиандростерон; 7 - прегнантриол)

Рис 6. Хроматограмма летучих органических соединений мочи, полученная на капиллярной колонке с полисилоксановой неподвижной фазой БС-2 в условиях программирования температуры: 1 - ацетон; 3 - этанол; 6 - 2-пентанон; 7 - н-пропанол; 10 - диметилдисульфид;13 - 4-гептанон; 14 - н-бутанол; 15 - 2-гептанон; 29 - пиррол; 45 - карвон

Вторым важным направлением в анализе объектов внутренней водной среды является выявление чужеродных для организма соединений (фармацевтических препаратов, разного рода ядов, алкоголя, других наркотических веществ и т.п.). Так, применение высокочувствительного термоаэрозольного детектора, избирательно регистрирующего азотсодержащие соединения, позволило регистрировать противосудорожные лекарственные средства в крови детей, больных эпилепсией, даже через 3-5 дней после их применения (рис. 7). Аналогично, с помощью селективного термоионного детектора с высокой чувствительностью регистрировали в плазме крови наличие анестезирующего препарата кетамина, находящего, к сожалению, довольно широкое применение в качестве галлюциногенного наркотика (рис. 8).

Рис. 7. Хроматограмма 0,1% раствора противоэпилептических лекарственных средств. Кварцевая капиллярная колонка длиной 10 м и диаметром 0,25 мм с полисилоксаном OV-17 в качестве неподвижной фазы: 1 - этанол; 2 - фенобарбитал; 3 - гексамидин; 4- дифенин

Рис. 8. Хроматограмма смеси компонентов плазмы крови, содержащей кетамин: а) - пламенно-ионизационный детектор; б) - термоионный детектор; 1 - кетамин; 2 - внутренний стандарт

Подобным же способом при газохроматографическом анализе проб плазмы крови, мочи или слюны могут быть определены несколько сотен других наркотиков, веществ, используемых в качестве допинга в спортивных соревнованиях, и анаболических стероидов, запрещенных к употреблению международными спортивными организациями.

Все перечисленные выше достижения газохроматографического метода в области анализа объектов водной среды все шире проникают из области научного эксперимента в сферы, непосредственно связанные с многими сторонами жизни современного общества. К таким областям можно отнести изучение состояния окружающей среды, контроль качества питьевой воды, сельскохозяйственной продукции и пищевых продуктов, клиническую медицину, криминалистику и ряд других.

Определение полиароматических углеводородов в объектах окружающей среды методами жидкостной и тонкослойной хроматографии[14]

Было определено содержание полиароматических углеводородов (ПАУ), в частности, бенз(а)пирена в снежном покрове. Пробоподготовку осуществляли экстракцией диэтиловым эфиром. Качественный анализ осуществляли методом тонкослойной хроматографии. Пробы наносили на пластину Silufol UV-254 и осуществляли хроматографический анализ в двух системах: система 1 - раствор кофеина в хлороформе; система 2 - смесь циклогексана и н-гексана. Использование системы 1 позволило снизить нижний предел обнаружения.

Количественный анализ осуществляли методом газожидкостной хроматографии (ГЖХ). Исследование проводили на хроматографе «Цвет-500» с пламенно-ионизационным детектором. В качестве сорбента использовали силиконовый каучук SE-54 с нанесенной на него неподвижной фазой OV-101. Анализ проводили в режиме программирования температуры от 200 до 310? С со скоростью 4? С /мин. В качестве газа-носителя использовали азот. Метод позволил определить ПАУ на уровне ПДК.

Глава 4. Современное аппаратурное оформление

Портативные хроматографы Agilent Micro-GC

Портативные газовые хроматографы (ГХ), занимая существенно меньше места по сравнению с лабораторными газовыми хроматографами, обеспечивают при этом сопоставимое качество анализов. Небольшие, размером с коробку из-под ботинок, Микро газовый хроматограф позволяют анализировать компоненты в концентрациях порядка одна часть на миллион (ррт) за несколько секунд - в десятки раз быстрее, чем обычные лабораторные газовые хроматографы. Микро газовые хроматографы предназначены для анализа газовых смесей или веществ с низкой температурой кипения (до 90 С) непосредственно в цехах, "у реактора". В корпус газового хроматографа с наибольшим размером 46 см помещаются до 4 хроматографических модулей. Микро газовый хроматограф характеризуется высокой производительностью его легко переносить, он быстро приводится в рабочее состояние. Это идеальный хроматограф, для получения быстрых результатов, например, при контролировании процессов в опытных установках, или, когда необходимо убедиться в однородности множества образцов газовых смесей. Использование модема позволяет передавать информацию, полученную от микро газового хроматографа по телефонным линиям на большие расстояния.

Революционное повышение производительности газового хроматографа

Миниатюризация инжекторов и детектора по теплопроводности обусловила использование в микро газовом хроматографе коротких и очень тонких капиллярных колонок, что более повысило эффективность процесса разделения. Это дает возможность проанализировать, например, природный газ (СГС10) за время не более 150 сек, смеси неорганических газов с серосодержащими газами - менее чем за 30 сек, смеси легколетучих соединений -за 50 сек, а сложную смесь нефтезаводских газов -за 160 сек. Наличие миниатюрной схемы разделения с обратной продувкой позволяет микро газовому хроматографу анализировать смеси, содержащие тяжелые компоненты, и быть готовым к началу следующего такого анализа уже через 2-3 минуты. Сокращение времени анализа в десятки раз приводит к революционному скачку в повышении производительности труда, помогает быстрее принимать правильные решения на производстве.

Микро-технология на монокристаллах кремния

Благодаря развитию микротехнологии в производстве газового хроматографа основные его узлы изготавливаются на основе монокристаллического кремния: инжектор с вентилями, система обратной продувки и универсальный детектор по теплопроводности. Эти основные узлы, а также колонка сравнения и рабочая колонка и термостат собраны в один механический прочный высокопроизводительный модуль.

Каждый газовый хроматограф может быть составлен из нескольких (до четырех) независимо управляемых модулей, сочетающих высокую скорость анализа с точностью результатов, требуемых в промышленности. Отсутствие подвижных частей в инжекторе делает всю систему исключительно надежной и долговечной.

Десять компонентов - менее чем за 120 сек!

Литература

1. Жуховицкий А.А., Туркельтауб Н.М. Газовая хроматография. М.: Гостоптехиздат, 1962, 240 с.

2. Сакодынский К.И., Киселев А.В., Иогансен А.В. и др. Физико-химическое применение газовой хроматографии. М.: Химия, 1973. - 254 с.

3. Жидкостная колоночная хроматография. В 3 т. / Под ред. З.Дейла, К.Мацека, Я.Янака. М.: Мир, 1972. - 439с.

4. Березкин В.Г., Алишоев В.Р., Немировская И.Б. Газовая хроматография в химии полимеров. М.: Наука, 1972. - 287 с.

5. Морозов А.А. Хроматография в неорганическом анализе. М.: Высш. шк., 1972. - 233 с.

6. Березкин В.Г., Бочков А.С. Количественная тонкослойная хроматография. М.: Наука, 1980. - 183 с.

7. Лабораторное руководство по хроматографическим и смежным методам. В 2 т. / Под ред. О.Микеш. М.: Мир, 1982, т. 1-2, 783 с.

8. Кирхнер Ю. Тонкослойная хроматография. В 2 т. М.: Мир, 1981, т. 1, 615 с.; т. 2. - 523 с.

9. Экстракционная хроматография. / Под ред. Т.Браун, Г.Герсини. - М.: Мир, 1978. - 627 с.

10. Скуг Д., Уэст Д. Основы аналитической химии / Пер. с англ. В 2 т. М.: Мир, 1979. - 324с.

11. Гольдберг К.А., Вигдергауз М.С. Введение в газовую хроматографию. М.: Химия, 1990. - 278с.

12. Хмельницкий Р.А., Бродский Е.С. Хромато-масс-спектрометрия. М.: Химия, 1983. - 280с.

13. Горелик Д.О., Конопелько Л.А., Панков Э.Д. Экологический мониторинг. В 2 т. СПб.: Крисмас, 2002. - 457с.

14. Назаркина С.Г. Определение полиароматических углеводородов в объектах окружающей среды методами жидкостной и тонкослойной хроматографии.

15. Хроматографический анализ окружающей среды. / Под ред. Р.Гроба. М.: Мир, 1979. - 606 с.


Подобные документы

  • Разделение анионов методом одноколоночной ионной хроматографии. Изображение структуры частицы ионообменной смолы. Примеры использования ионообменной хроматографии в анализе объектов окружающей среды. Особенности анализа пива методом ионной хроматографии.

    курсовая работа [462,8 K], добавлен 08.01.2010

  • Основные понятия и классификация методов жидкостной хроматографии. Сущность высокоэффективной жидкостной хроматографии (ВЭЖХ), ее достоинства. Состав хроматографических комплексов, виды детекторов. Применение ВЭЖХ в анализе объектов окружающей среды.

    курсовая работа [135,1 K], добавлен 08.01.2010

  • Назначение и основные принципы реализации кондуктометрических методов анализа. Разновидности используемых методов и особенности их применения. Примеры использования кондуктометрии в анализе объектов окружающей среды и необходимое для этого оборудование.

    курсовая работа [86,1 K], добавлен 07.01.2010

  • Теоретические основы флуометрии (люминисценции), области её применения в анализе объектов окруающей среды и современное оборудование для исследований. Необычайная чувствительность и скорость люминисцентного анализа. Проблемы подвода энергии возбуждения.

    реферат [810,0 K], добавлен 10.01.2010

  • Основы радиоактивационного анализа, его возникновение, основные достоинства, современное оборудование, осложнения в работе с радиоактивными препаратами. Область применения инструментального и радиохимического анализа, работа нейтронных генераторов.

    курсовая работа [2,4 M], добавлен 08.01.2010

  • Основные понятия о мониторинге окружающей среды, методы контроля загрязнений окружающей среды. Анализ методов контроля загрязнений. Рациональное и комплексное использование полезных ископаемых и энергетических ресурсов. Понятие экологического риска.

    курсовая работа [47,4 K], добавлен 15.03.2016

  • Понятие и принцип реализации лазерной спектрографии, ее назначение и необходимое оборудование. Разновидности лазеров, порядок и особенности их практического применения. Использование механизмов лазерной спектроскопии в анализе объектов окружающей среды.

    контрольная работа [32,3 K], добавлен 07.01.2010

  • Методы контроля полициклических ароматических углеводородов (ПАУ) в объектах окружающей среды. Выделение полиароматических углеводородов из образцов почв. Определение ПАУ в объектах окружающей среды методами жидкостной и тонкослойной хроматографии.

    курсовая работа [309,0 K], добавлен 08.01.2010

  • Обоснование необходимости мониторинга ОС. Характеристика критериев оценки качества окружающей среды. Мониторинг и проблемы интеграции служб слежения за природой. Применение биологических индикаторов накопления тяжёлых металлов в экологическом мониторинге.

    курс лекций [1,1 M], добавлен 29.05.2010

  • Химические основы экологического мониторинга, экологическое нормирование, применение аналитической химии; пробоподготовка в анализе объектов окружающей среды. Методы определения загрязняющих веществ, технология многоуровневого экологического мониторинга.

    курсовая работа [387,7 K], добавлен 09.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.