Разработка предложений по очистке природного газа и переработки кислых газов с получением товарной продукции (серы) (на примере Карачаганакского месторождения)
Анализ Карачаганакского нефтегазоконденсатного месторождения и его влияния на окружающую среду. Технология очистки природного газа и переработки кислых газов с получением серы. Расчет абсорбционной колонны и объемов выбросов вредных веществ в атмосферу.
Рубрика | Экология и охрана природы |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 07.09.2010 |
Размер файла | 4,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
2. ОЧИСТКА ПРИРОДНОГО ГАЗА ОТ СОЕДИНЕНИЙ СЕРЫ
2.1 Классификация способов очистки газа
В практике методы очистки газов от сероводорода разделяются на три большие группы: абсорбционные, адсорбционные, окислительные.
Абсорбционные методы очистки подразделяются на: химическую абсорбцию, при которой сероводород реагирует с поглотителем с образованием химических соединений, но без изменения валентности серы; физико-химическую абсорбцию, при которой сероводород растворяется в абсорбенте без образования устойчивых химических соединений.
Пример химической абсорбции - процесс очистки газов от сероводорода с помощью водных растворов аминов (МЭА, ДЭА, ТЭА), поташа, щелочей и др.
Примером физико-химической абсорбции может служить процесс ректизол, а также другие процессы, в которых сероводород растворяется в поглотителе при пониженных температурах и повышенном давлении.
Адсорбционные методы очистки основаны на способности сероводорода сорбироваться на твердых поверхностях различных веществ. В качестве адсорбентов применяют искусственные и естественные цеолиты, активированный уголь и другие.
Окислительные методы очистки газа от сероводорода основаны на том, что сероводород является восстановителем и легко может быть окислен до элементарной серы, сульфитов и сульфатов различными веществами.
Окисление сероводорода можно проводить в газовой фазе (процесс Клауса), в растворе окислителя (мышьяково-содовый процесс) и на поверхности твердого окислителя. Основой принятого разделения являются агрегатное состояние применяемого поглотителя и его химические и физико-химические свойства.
Принятая классификация достаточно условна, так как разработаны технологические процессы, в которых основные методы (абсорбция, адсорбция и окисление) применяют в различных сочетаниях. Например: процесс очистки газа от сероводорода растворами на основе гидроокиси железа, это комбинация абсорбционного процесса, поскольку сероводород из газовой фазы переходит в жидкость.
При обработке значительных объемов газа и извлечении больших количеств сероводорода технологические процессы обязательно должны обеспечивать непрерывную или периодическую регенерацию применяемого поглотителя. Без регенерации поглотителя технология очистки газов от сероводорода становится неэкономичной.
В практике поглотители регенерируют различными методами, среди которых чаще всего применяют тепловую обработку, отдувку инертными газами и водяным паром, снижением давления в системе регенерации, проведения процесса под вакуумом, окисление сульфидов до элементарной серы и др.
Практика показывает, что в технологических схемах очистки газов от сероводорода основные затраты на эксплуатацию установок приходятся на проведение процесса регенерации. Капитальные затраты в сооружении установок очистки газов от сероводорода резко увеличиваются за счет строительства узлов регенерации сорбентов, что вызвано необходимостью сооружения многочисленных вспомогательных сооружений (котельные, теплообменное оборудование, компрессорные и насосные станции и т.д.).
Таким образом, классификация процессов очистки газов от сероводорода только по свойствам применяемого поглотителя без учета процесса регенерации не дает полной характеристики применяемой технологии. Иногда такая классификация затрудняет анализ и сравнение различных технологических процессов. Проиллюстрируем это на примере очистки углеводородных природных газов от сероводорода с помощью цеолитов (адсорбция). Процесс очистки газов от сероводорода сводится к операции контакта газа со слоем цеолита в адсорберах. Выходящий из адсорбера газ практически не содержит сероводорода. На стадии очистки не применяют какое-либо вспомогательное оборудование. Технологическая схема проста, не требует существенных эксплуатационных затрат, поскольку в ней отсутствуют насосы, теплообменники, не используется вода, пар, электроэнергия и т.д. Однако все отмеченные преимущества технологии в значительной степени теряют свое значение при рассмотрении процесса регенерации абсорбента. Цеолиты регенерируют нагретым до 300-350оС углеводородным газом, расход которого составляет 10-18% от объема очищаемого газа. В процессе регенерации необходимо использовать теплообменное оборудование, специальные печи для подогрева газов регенерации, компрессорное оборудование для компримирования газов регенерации, что значительно усложняет технологическую схему и увеличивает капитальные вложения и эксплуатационные расходы.
Весь сероводород, который был извлечен из газа на стадии очистки, концентрируется в значительно меньшем объеме газов регенерации, причем концентрация сероводорода в них значительно выше, чем в газе, поступающем на очистку.
Неизбежно возникает необходимость в очистке газов регенерации от сероводорода, то есть повторно весь сероводород нужно извлекать из этих газов, что требует сооружения еще одной специальной установки, затрат на ее строительство и эксплуатацию.
Нужно отметить, что проводить классификацию технологических схем обработки газов, содержащих сероводород, по применяемому поглотителю и способу регенерации также нерационально. Объясняется это тем, что технология должна обеспечивать не только необходимую степень очистки газов от сероводорода и регенерацию поглотителя, но и не допускать загрязнения окружающей среды токсичными сернистыми соединениями. Большинство промышленных установок, которые находятся в эксплуатации, в большей или меньшей степени выбрасывают токсичные сернистые соединения в виде сероводорода, а чаще всего, диокиси серы в атмосферу.
Классификация способов очистки газов от сероводорода по конечному продукту, в который превращается сероводород, извлекаемый из газа, характеризует всю технологическую схему. Все процессы очистки можно разделить на следующие группы по получению: концентрированного сероводорода, сульфатных соединений, элементарной серы, сернистых соединений и тиосульфидов, серной кислоты и сульфатов (Таблица 6).
Таблица 6
Характеристика различных методов очистки газа от сероводорода
Конечный продукт технологии |
Абсорбция |
адсорбция |
окисление |
||
физическая |
химическая |
||||
Концентрированный сероводород |
+ |
+ |
+ |
- |
|
Сульфидные соединения |
- |
+ |
- |
- |
|
Элементарная сера |
- |
- |
- |
+ |
|
Двуокись азота |
- |
- |
- |
+ |
|
Производный сернистой кислоты и тиосульфата |
- |
- |
- |
+ |
|
Серная кислота |
- |
- |
- |
+ |
|
Сульфаты |
- |
- |
- |
+ |
Примечание: Знак "+" - процесс обеспечивает получение перечисленных продуктов, знак "-" - процесс не позволяет получить перечисленные продукты.
Из приведенных данных видно, что методы адсорбции и физической абсорбции позволяют только концентрировать сероводород, извлеченный из очищенного газа для получения какого-либо товарного продукта. Из таблицы 6 видно, что решить эту задачу можно только в сочетании установок адсорбции или физической абсорбции с процессами окисления сероводорода.
Методы химической абсорбции, при которых извлекаемая из газа сера не изменяет своей валентности, позволяет сконцентрировать сероводород и получать различные сульфидные соединения, как самостоятельные товарные продукты.
К таким соединениям относятся малорастворимые в воде сульфиды железа, цинка, меди, кадмия, марганца или водорастворимые сульфиды и бисульфиды щелочных и щелочно-земельных металлов.
Данные таблицы 6 показывают, что только при окислительных методах обработки сероводорода можно сразу получать товарные продукты, содержащие серу.
При абсорбционной очистке газа с последующей тепловой регенерацией можно получить в качестве конечного продукта только сконцентрированный сероводород, а при использовании на стадии регенерации окисления можно получить элементарную серу, двуокись серы, сульфиты и тиосульфиты, сульфаты и серную кислоту.
Общая классификация технологических схем очистки газов от сероводорода включает следующие показатели:
- название конечного продукта, получаемого из извлеченного сероводорода;
- название поглотителя;
- метод регенерации поглотителя;
- способ окисления сульфидной серы;
- способ регенерации окислителя.
2.2 Схема очистки газа от Н2S, предлагаемая фирмой Юнион Карбайд Кемикалз
Для очистки газа от серы существуют два достаточно независимых требования. В начальный период необходимо обеспечивать топливный газ для собственных нужд и для потребителей в Бурлинском районе. Давление газа для этих потребителей будет в диапазоне 2,5-4,0 МПа. Для этих целей будет использоваться часть газового потока из газовой ловушки СД (среднего давления). Для стадий предварительного проектирования производительность этой линии установлена на уровне 2 млрд. м3 газа в год.
В более долгосрочной перспективе газ будет отгружаться при давлении 7,5 МПа и в объемах, которые сделают выгодным строительство газопровода (5 млрд. м3 газа в год). Для этой долгосрочной перспективы газ должен иметь следующие характеристики:
Точка росы (абс.) углеводородов - 10оС при давлении от 0,1 до 8,0 МПа.
Точка росы для воды - 20оС при давлении 8 МПа.
Таким образом, предварительный проект, который основан на очистке газа от серы, осушки и установки точки росы для углеводородов методом Джоуль-Томпсоновского расширения, также согласуется с этой долгосрочной потребностью. Недостаток такого процесса имеет две стороны. Во-первых, при установке точки росы методом расширения получается сжиженный нефтяной газ - нежелательный продукт на ранней стадии эксплуатации, его производство увеличивается пропорционально объемам отгруженной продукции. Во-вторых, при этом падает давление газа и, таким образом, в долгосрочной перспективе появляется необходимость капиталовложений в компрессоры отгружаемого газа.
Привлекательной альтернативой для данной схемы является процесс абсорбции на силикагеле для одновременного осушения и установки точки росы для углеводородов. Газ из ловушки СД может очищаться без необходимости установки компрессоров для отгрузки готовой продукции. При такой технологии сжиженный нефтяной газ не производится. В настоящее время рассматривается возможность замены существующей схемы контроля точки росы на такую технологию, как на более предпочтительный вариант для будущего проекта отгрузки газа.
Установка очистки газа от серы (как от меркаптанов, так и сероводорода) основана на абсорбции с использованием селективного растворителя на основе метилдиэтиламина (LE 701фирмы Юнион Карбайд Кемикалз (Union Carbide Chemicals)). Данная технология уменьшит объемную концентрацию Н2S до 4 р.р.т. (по техническим условиям она должна быть 13 р.р.т.), а объемную концентрацию меркаптановой серы - до величины меньше, чем 25 р.р.т. Дополнительная установка окончательной адсорбции не требуется. Избирательность процесса уменьшает требуемый размер установки по производству серы и минимизирует эксплуатационные затраты, поскольку одновременная абсорбция СО2 минимизируется.
Содержание кислого газа в серосодержащем газе сырья минимизируется тем, что очистке подвергается только газ с месторождения. Рециркуляция газа из верха аппарата стабилизации неприемлема, так как уровень содержания серы в таком потоке относительно высокий. Возможность отложить монтаж установки производства серы и оборудования по ее транспортировке и хранению также находится в процессе рассмотрения. Эта цель может быть достигнута путем рециркуляции серосодержащего газа из верха аппарата регенерации в компрессоры испарившегося газа на установке стабилизации конденсата. Такое решение увеличит абсорбцию сероводорода в сжиженном нефтяном газе, производимом в газовом холодильнике низкого давления (НД), и увеличит нагрузку на установку ректификации сжиженного природного газа. Другим решением было бы сжатие газа верхней части аппарата регенерации 4,5 МПа и объединение его с серосодержащим газом для закачки в пласт. Это потребовало бы установки дополнительного технологического аппарата дегидратации серосодержащего газа.
Для удаления конденсата отфильтрованный газ с ловушки газовых пробок СД подается на входной сепаратор. Пары из этого сепаратора поступают на нижний лоток установки абсорбции, а вся отделившаяся жидкость поступает в подающуюся емкость линии стабилизации конденсата.
Бедный метилдиэтиламин подается на третий лоток установки абсорбции. Поток метилдиэтиламина под действием силы тяжести проходит через колонку и абсорбирует почти весь Н2S и меркаптаны из газового потока. Два лотка с барботажными колпачками вверху абсорбционной колонны используются для долива воды и служат для промывки очищенного от серы газа, выходящего из верха колонны. Очищенный от серы газ охлаждается, а вся жидкость, присутствующая в выходном сепараторе метилдиэтиламина сбрасывается в емкость мгновенного испарения установки регенерации метилдиэтиламина.
Обогащенный метилдиэтаноламин из аппарата абсорбции выходит через клапан контроля уровня и поступает в емкость мгновенного испарения, где абсорбированный метан удаляется методом испарения. Испарившийся газ для абсорбции всего оставшегося газа Н2S контактирует с попутным потоком обедненного метилдиэтаноламина в насадочной колонне в верхней части аппарата. Жидкие углеводороды формируют в емкости мгновенного испарения слой, расположенный сверху раствора метилдиэтаноламина и могут быть удалены путем пропускания над водосливом для углеводородов. Жидкие углеводороды утилизируются через систему некондиционной нефти.
Обогащенный метилэтаноламин затем нагревается обедненным амином, выходящим из установки регенерации, и вводится в колонну на пятый лоток. Н2S удаляется из потока обогащенного метилдиэтаноламина горячими парами, полученными в ребойлере путем нагревания паром НД.
Обедненный метилдиэтаноламин выходит из ребойлера после охлаждения потоком обогащенного метилдиэтаноламина попадает в расширительный резервуар. Перед тем, как обедненный метилдиэтаноламин возвращается в аппарат абсорбции, он закачивается в охладитель воздуха. Для работы в летний период может потребоваться балансированное водяное охлаждение. Для непрерывной очистки циркулирующего потока метилдиэтаноламина попутный поток обедненного метилдиэтаноламина поступает на патронный фильтр и на угольный фильтр. Чистый попутный поток обеспечивает поток промывочного раствора в насадочную колонну аппарата мгновенного испарения.
Газ из верхней части колонны установки регенерации метилдиэтаноламина подается на линию отделения серы. Можно рассмотреть рецикуляцию этого потока.
Испарившийся газ предназначен для использования в качестве топлива. Однако, уровень содержания в нем меркаптана может оказаться слишком высоким. Если это окажется так, то давление в аппарате мгновенного испарения может быть установленного на уровне 1 МПа, и тогда этот газ будет направляться на вход компрессоров испарившегося газа установки стабилизации конденсата.
2.2.1 Производство и хранение серы
Кислый газ, полученный на установке регенерации метилдиэтаноламина линии очистки газа от серы, очищается для получения чистой серы и для обеспечения соблюдения нормативов Республики Казахстан по выбросам в атмосферу. Основными компонентами этой системы являются следующие установки:
- установка производства серы;
- установка очистки хвостовых газов;
- установка дегазации жидкой серы;
- установка формирования серы;
- оборудование отгрузки и хранения серы.
Кислый газ обрабатывается на установках производства серы и обработке хвостового газа. Установка серы представляет из себя установку Клауса (Claus) с тремя каталитическими ступенями. Примерно одна треть поступающего в сырье Н2S окисляется до образования SO2 и воды. После этого SO2 с оставшимся Н2S образует элементарную серу и водяные пары.
Хвостовой газ с установки Клауса поступает на очистку для окончательного отделения серы на 99,5% (гарантированный минимум 99,4%). При расчете производства серы учитывались потери серосодержащего пара на последней стадии обработки при сжигании в печи перед дымовой трубой.
Полученная жидкая сера дегазируется на установке производства серы и затем, чтобы обеспечить удобство при отгрузке и транспортировании, гранулируется на установке формирования серы.
2.3 Разработка технологии очистки природного газа КНГКМ
В последнее десятилетие, после приобретение Казахстаном суверенитета, нефтегазовая отрасль промышленности очень бурно развивается. Правительством Республики Казахстан ведется постоянная работа по привлечению в эту отрасль новых инвестиций. Привлечение инвестиций в разведку, добычу и транспортировку конденсата приведет к увеличению объема добычи нефти, газа и конденсата.
Известно, что все крупные залежи нефти, газа и конденсата (Тенгиз, Карачаганак и др.) наряду с основным компонентом содержат повышенное количество кислых компонентов, в частности, сероводород.
Наличие кислых компонентов в составе добываемой продукции создает определенные сложности в их транспортировании и переработке, вызывая коррозию трубопроводов и оборудования. Наряду с этим при транспортировке сырой продукции покупателям (перерабатывающим заводам за пределами Республики Казахстан) достается ценнейшее сырье для получения товарной серы.
Хотя Карачаганакское месторождение газа и конденсата находится на территории Бурлинского района Западно-Казахстанской области, потребители газа этого региона получают газ из Российской Федерации, что приводит к увеличению цены на газ. Карачаганак, при развитии собственной инфраструктуры и создании собственных очистных и перерабатывающих мощностей, может обеспечивать регион собственным газом.
Создание очистной установки газа от сероводорода позволило бы снизить объем вредных выбросов в локальном характере (выброс SO2 при сжигании Н2S на факеле) и уменьшить риск попадания Н2S в окружающую природную среду во время аварийных ситуаций при транспортировке газа и конденсата по трубопроводам.
Также при извлечении сероводорода казахстанские нефтяники и газовики получили бы еще одно ценное сырье для производства и получения готовых продукций для нужд промышленности (Н2SO4, элементарная сера и др.). Получение еще одной готовой продукции дало бы новый источник увеличения прибыли отечественных производителей.
2.3.1 Выбор метода очистки
При выборе метода очистки окончательным критерием является величина приведенных затрат, зависящих в основном от энергетических и капитальных затрат. Однако такой выбор во многих случаях труден, что объясняется влиянием на экономические показатели трех групп факторов:
1) внешние технологические параметры процесса /8/ - состав, давление и температура очищаемого газа, требуемая степень очистки, параметры энергоресурсов (давление пара, наличие отбросного тепла), возможность использования вторичных энергоресурсов и т.д., то есть факторы, независящие от аппаратурно-технологического оформления процесса очистки;
2) внутренние параметры процесса - расход тепла, электроэнергии, растворителя, отходы, тип и вес аппаратуры, а также их зависимость от параметров исходного газа и степени очистки, то есть параметры, на которые влияет аппаратурно-технологическое оформление процесса очистки.
3) экономические факторы - цены на энергоресурсы, сырье, отходы, аппаратуру, а также дефицитность каких-либо видов сырья (растворителей и др.) и энергии.
Таким образом, выбор процесса должен осуществляться только после детального технологического, термодинамического и технико-экономического анализа.
Особенности газоочистных и газоперерабатывающих установок выдвигают ряд требований к их проектированию:
большой диапазон устойчивой работы (отношение максимально и минимально допустимых нагрузок по газу и жидкости) оборудования;
получение кондиционной товарной продукции при изменении параметров сырья в широком интервале;
возможность использования оборудования в широком интервале давления и температуры. Это важно как ввиду влияния температуры окружающей среды на параметры процесса, так и из-за необходимости компенсации влияния изменения одного параметра (Р или t) на показатели процесса, за счет повышения или понижения значения другого параметра.
При определении области предположительного использования различных способов очистки для газов, в которых соотношение СО : Н2S более 3-3,5, следует использовать методы, основанные на физической абсорбции Н2S. При выборе того или иного поглотителя необходимо учитывать не только способность растворять углеводородные газы, летучесть, дефицитность, селективность по отношению к Н2S, емкость по нему, упругость паров сернистых соединений в конкретном поглотителе. При минимальных теплотах растворения можно достичь максимальных соотношений Н2S : СО2, при которых энергетически целесообразно проводить процесс очистки физическими поглотителями. Согласно физико-химической природе поглотителей, с уменьшением теплоты растворения увеличивается упругость паров увлекаемого компонента над раствором, что видно из следующей термодинамической зависимости:
(2.1)
где К - константа Генри газа в растворителе;
А - коэффициент, зависящий от давления и температуры;
?Н - теплота растворения газа;
R - универсальная газовая постоянная;
Т - температура растворения.
Уравнение (2.1) показывает, что с увеличением теплоты растворения уменьшается константа Генри (растет растворимость), а это в конечном итоге приводит к повышению степени очистки или понижению расхода абсорбента. В связи с этим не во всех случаях целесообразно стремиться к выбору абсорбента с минимальной теплотой растворения сернистых соединений.
Необходимо учитывать селективность поглотителя. Это связано с тем, что соотношение СО2 : Н2S в исходном газе характеризует кислые газы регенерации. Поэтому чем выше селективность, тем большую область охватывают методы очистки физической абсорбцией. Следовательно, при выборе физического поглотителя необходимо решать оптимизационную задачу с учетом перечисленных показателей.
Результаты опытных работ показали, что такие нежелательные компоненты, как Н2S и СО2, органические соединения, присутствующие в составе природного газа Карачаганакского месторождения, хорошо поглощаются метанолом, особенно при низких температурах /8, 9, 10/.
Предлагаемая в данной работе технология очистки газа основана на процессе одновременного удаления кислых компонентов. Как сказано выше, эти вещества хорошо абсорбируются метанолом, особенно при низких температурах и повышенных давлениях, а при понижении давления легко удаляются из насыщенного раствора.
Зависимость растворения СО2 и Н2S в метаноле от температуры при различных давлениях приведена на рисунках 4 и 5, из которых видно, что растворимость Н2S в метаноле выше растворимости СО2 в нем. Это позволяет осуществлять селективное их разделение. Наличие в метаноле СО2 снижает растворимость Н2S на 10-15%. Растворимость органических сернистых соединений в метаноле также велика. Расход тепла на процесс весьма невелик, так как поглотительный растворитель охлаждается вследствие снижения давления на ступени регенерации, а поступающий газ охлаждается с широким использованием теплообмена с отходящими потоками очищенного газа и извлекаемых компонентов газа.
К основным преимуществами этого процесса следует отнести:
а) значительное снижение расхода энергии по сравнению с другими методами очистки (например, абсорбция этаноламинами);
б) высокая степень очистки от сернистых соединений в присутствии СО2;
1 - РН2S = 53 кПа; 2 - РН2S = 40 кПа; 3 - РН2S = 26,7 кПа
4 - РН2S = 17,3 кПа; 6 - РН2S = 6,67 кПа
Рисунок 4. Влияние температуры растворимость Н2S в метаноле
1 - при минус 26оС; 2 - при минус 36 оС;
3 - при минус 45 оС; 4 - при мину 60 оС.
Рисунок 5. Изотермы растворимости СО2 в метаноле
в) одновременная осушка от влаги и очистка от тяжелых углеводородов.
Наряду с положительными качествами предлагаемому процессу присущи недостатки:
а) сложность технологической схемы;
б) сравнительно большие потери метанола с очищаемым газом;
в) нежелательно высокая растворимость углеводородов в метаноле, особенно при низких температурах.
2.3.2 Предлагаемая технологическая схема очистки природных газов КНГКМ от кислых газов
Природный газ КНГКМ с высоким содержанием кислых газов после предварительной переработки на установке промысловой подготовки газа, в соответствии с рисунком 9, со скоростью 15,85 м3/сек и давлением 2,3-2,45 МПа и концентрацией 914 • 10-3 кг/м3 направляется на первую стадию охлаждения, где газ охлаждается до температуры плюс 3оС. На этой стадии конденсируется основная часть тяжелых газов и водяных паров, далее газ проходит вторую стадию охлаждения, здесь газ охлаждается до минус 20оС, после чего газ направляется на первую ступень очистки. Очистку производят абсорбцией газа метанолом, охлажденным до температуры минус 70-75оС. При этом из газа удаляется основная часть Н2S и часть СО2, остаточная часть тяжелых углеводородов и основная часть органических соединений серы. Далее газ поступает на вторую ступень абсорбции. На этой ступени для абсорбции газа подают небольшой поток тщательно отрегенерированного метанола при температуре минус 60-65оС. На этой стадии из газа удаляется основная часть остаточного СО2 и практически все остаточное количество органических сернистых соединений. После второй ступени очистки очищенный газ отвечает требованиям ГОСТ и направляется потребителям.
Насыщенный на первой ступени очистки метанол направляется на двухступенчатую регенерацию. Регенерацию осуществляют снижением давления. На первой ступени регенерации давление снижается до 0,1 МПа, при этом метанол за счет испарения абсорбированных газов охлаждается до минус 33-36оС.
На второй ступени давление снижается до 0,02 МПа и температура абсорбента снижается до минус 70-75оС, на этой ступени выделяются практически все остаточные газы, после чего абсорбент возвращается на первую ступень очистки газа. Кислые газы отправляются на установку переработки кислых газов.
Со второй ступени очистки метанол (отдельно от метанола первой ступени) подается на регенерацию. Регенерацию производят отпаркой кислых газов при температуре 60-65оС обогревом глухим паром. При этом процессе происходит полная регенерация метанола. После чего отрегенерированный метанол, пройдя стадию охлаждения до температуры минус 60-65оС, подается на вторую ступень очистки газа.
Рисунок 6. Технологическая схема очистки природного газа КНГКМ от кислых газов (м3/с)
Концентрированные кислые газы, полученные при регенерации метанола, общим потоком подаются на установку переработки кислых газов с получением товарной серы.
Из практики известно, что в промышленных условиях при очистке природного газа от кислых газов метанолом с последующим выделением кислых газов при регенерации, получают концентрированный кислый газ, содержащий 58% Н2S, 40,5% СО2, 1% СН4 и 0,5 Н2О /18/.
2.3.3 Аппаратурно-технологическая схема очистки природного газа КНГКМ
Очищенный газ с установки подготовки газа под давлением 2,3-2,45 МПа, в соответствии с рисунком 7, подается на две ступени кожухотрубных теплообменников (3), включенных последовательно, где осуществляется охлаждение газа при помощи охлажденного очищенного газа и кислых газов. Теплообменники выполнены из коррозионностойких металлов по ГОСТ 15118-79 и 15120-79. Теплообменники рассчитаны на скорость газа объемом 15,85 м3 в секунду и на давление до 2,5 МПа, перед входом в теплообменник ставится расходомер газа. На первой ступени теплообменников температура газа снижается до плюс 3оС, при этом конденсируются тяжелые фракции углеводородов, содержащие сероорганические соединения, а также основная масса водяных паров. Во второй ступени теплообменников газ охлаждается до минус 20оС и при этой температуре поступает в нижнюю часть двухступенчатого насадочного абсорбера (1), работающего при давлении 2,0 МПа. На первой ступени очистки газ конденсирует с основным потоком метанола, охлажденного до температуры минус 70-75оС.
При этом из газа практически полностью удаляются Н2S, остаточные тяжелые углеводороды, значительное количество СО2 и органических соединений серы.
Колонна выполнена согласно требованиям ГОСТ 12.2.003-91 и ОСТ 26.231-79, из антикоррозионной стали марки Х18Н10Т.
За счет теплоты абсорбции температура метанола понижается до минус 45оС. Далее частично очищенный газ из первой ступени поступает на вторую ступень очистки, где контактирует с небольшим потоком отрегенерированного метанола, подаваемого в колонну при температуре минус 60-65оС. На этой стадии ступени из газа удаляется большая часть остаточной СО2 и практически все остаточное количество органических соединений.
Насыщенный на первой ступени очистки газа метанол направляется в десорбер (2). Десорбер представляет собой колонну из двух секций, выполненную из антикоррозионной легированной стали марки ОХ13, согласно ГОСТ 12.2.003-91. Производительность десорбера рассчитана на пропуск 17,5 м3 в секунду газометанольной смеси. На первой ступени, когда давление снижается до 0,1 МПа, метанол за счет испарения абсорбированных газов охлаждается до минус 33-36оС, а на второй ступени, когда давление снижается до 0,1 МПа, температура метанола дополнительно снижается до минус 70-75оС. Из насыщенного метанола выделяются практически все абсорбированные газы, после чего абсорбент направляется на очистку газа, в абсорбционную колонну (1), а концентрированные кислые газы, вместе с выделившимися со стадии охлаждения, тяжелыми углеводородами поступает на установку Клауса, для получения элементарной серы.
Снижение давления в колонне регенерации метанола с первой ступени абсорбции газа осуществляют вакуум-насосами (8) типа ВВН (химически стойкого) путем отсоса кислых газов.
Насыщенный метанол со второй ступени очистки газа выводится из нижней части второй секции абсорбера (1) и подается через рекуперативный теплообменник (5) в регенератор (4). Регенерируют метанол путем отпарки кислых газов при температуре плюс 60-65оС обогревом глухим паром в обычной насадочной или тарельчатой колонне. Производительность колонны по жидкогазовой составляет 5,342 м3 в секунду. Отрегенерированный метанол охлаждается последовательно в рекуперативном теплообменнике (5), выполненном по ГОСТ 12067-80 и испарителе (6) до температуры минус 60-65оС и подается в верхнюю часть второй ступени очистки.
Энергия в данном процессе расходуется на покрытие потерь холода, на абсорбцию паров воды и частично Н2S и СО2. Большая часть энергии, расходуемой на получение холода для отвода тепла абсорбции кислых компонентов, компенсируется при десорбции кислых компонентов, однако часть извлекаемых примесей десорбируется при нагревании раствора выше температуры окружающей среды. Поэтому коэффициент полезного использования холода при десорбции не превышает 60-80% /7, 8/.
Спецификация аппаратурной схемы очистки природного газа: 1 - двухступенчатый абсорбер (1); 2 - вакуум колонна (1); 3 - теплообменник (2); 4 - колонна-ректификационная (1); 5 - теплообменник-рекуперативный(1); 6 - испаритель (холодильник) (1); 7 - холодильник водный (1); 8 - вакуум-насос (2); 9 - компрессор (1); 10 - насос подачи метанола (2); 11 - насос откачки метанола (3); 12 - емкость метанола(2); 13 - вентиль регулируемый (3); 14 - вентиль запорный (1); 15 - насос подачи пара (1); Т1 - трубопровод, подающий природный газ на очистку; Т2 - трубопровод сжатого природного газа; Т3 - трубопровод охлажденного природного газа; Т4 - очищенный природный газ; Т5 - оборотный метанол в I ступень; Т6 - трубопровод, подающий оборотный метанол во II ступень; Т7 - газ кислый, концентрированный; Т8 - хладагент; Т9 - трубопровод холодной воды; Т10 - метанол оборотный (возврат, I ступень); Т11 - метанол оборотный (возврат, II ступень); Т12 - глухой пар
Рисунок 7. Аппаратурная технологическая схема очистки природного газа КНГКМ от кислых газов
Потери метанола от испарения, обусловленные значительным давлением паров метанола даже при низких давлениях /6/, можно значительно увеличить, если на выходе очищенного газа из второй ступени абсорбера поставить каплеуловитель из пористых материалов или с помощью других приспособлений.
2.4 Контроль за загрязнением атмосферного воздуха на территории КНГКМ
Актуально научно-практической задачей на территории КНГКМ является разработка для основных объектов установки подготовки, очистки и переработки газа единой научно-обоснованной системы контроля, которая позволила бы контролировать и выявлять выделения вредных веществ - загрязнителей атмосферного воздуха и других природных объектов, связь количественных показателей выбросов с технологией, метеорологическими параметрами. Полученные при этом данные должны служить научной основой для:
- прогнозирования вероятности образования опасных концентраций вредных веществ в основных экологических объектах;
- изучения условий образования, характера распределения и концентрации вредных веществ в воздухе, воде и почве;
- определения размеров загрязнения участков, опасных зон, возможных последствий и т.д.
В существующей технологии добычи и подготовки предлагаемой технологии очистки и переработки газа и конденсата к основным точкам замеров загрязнений атмосферы на территории КНГКМ и в рабочей зоне УКПГ можно отнести следующие:
по газовым промыслам:
1. устья скважин
2. продувочные свечи или линии
3. колодцы с газопроводной арматурой
4. ямы для сжигания конденсата после продувки
по установке комплексной подготовки газа:
5. арматура газоприемного монифольфа (шаровые краны, задвижки, отсекатели)
6. продувочные свечи или линии
7. фланцевые соединения на аппаратах и трубопроводах
8. насос для метанола и конденсата
9. домовые трубы подогревательных устройств или котельных
10. колодцы, резервуары промканализации
по очистным и перерабатывающим установкам:
11. на входе и выходе газов и жидкостей всех аппаратов
12. фланцевые соединения аппаратов и трубопроводов
13. продувочные свечи и линии
14. емкость для жидкой серы
15. трубы печей Клауса
16. конвейеры для разливки жидкой серы
17. склады твердой серы
18. насосы для метанола, жидкой серы
19. монифольфы, колодцы газопроводов
по компрессорным станциям:
20. газопроводные колодцы
21. монифольфы перед компрессорным цехом
По опасности воздействия на работающих и население основные источники загрязнителей на газовых промыслах можно разделить на четыре категории (таблица 7).
Для типичных производственных объектов газовой промышленности, с учетом категории опасности (Таблица 7) устанавливается периодичность контрольных измерений и процент обследования выявленных мест газовыделений источников газовыделения (Таблица 8).
Таблица 7
Категории опасных газовыделений на газовых объектах
Категории опасности источника выделения |
Объемное содержание Н2S в газе, % |
Санитарный класс токсичности |
Агрессивность по скорости коррозии стенок оборудования, мм/год |
Время нарастания концентрации до ПДК в условной рабочей зоне, ч |
Максимальное рабочее давление, МПа |
Максимальная рабочая температура, оС |
|
особо опасные |
>6 |
1 |
>1 |
<1 |
>5 |
>200 |
|
опасные |
3-6 |
2 |
0,1-1 |
1-3 |
2,5-5 |
100-200 |
|
умеренно опасные |
0,5-3 |
3 |
0,01-0,1 |
3-6 |
0,3-2,5 |
50-100 |
|
малоопасные |
до 0,5 |
4 |
<0,01 |
>6 |
<0,3 |
<50 |
Таблица 8
Периодичность проверок концентрации вредных веществ в воздухе
Категории опасности газовыделения |
Периодичность контрольных измерений |
Процент обследования потенциальных выявленных мест газовыделей |
|
1 |
2 раза в смену |
100 |
|
2 |
ежемесячно |
75 |
|
3 |
ежедневно |
50 |
|
4 |
еженедельно |
25 |
Инвентаризация источников загрязнения атмосферного воздуха проводится в соответствии с ГОСТом 17.2.104-77.
Пункты контроля устраиваются в соответствии РО 52.04.186-89 "Руководство по контролю за загрязнением атмосферы".
Оборудование - передвижная лаборатория типа "Атмосфера-II", газоанализатор типа "Паладий-3", лазерный газоанализатор метана типа 323 ААОI, пробоотборные устройства: электроаспираторы типа ЭА-I, 7А-IA, ЭА-2, ЭА-2С, 822.
Перечень и метод определения загрязняющих атмосферу веществ приведены в таблицу 9.
Таблица 9
Перечень определяемых загрязняющих веществ
Наименование определенного вещества |
Метод определения, наименование НТД |
|
Диоксид азота (NO2) |
РО52.04.186-89 "Руководство по контролю за загрязнением атмосферы". Улавливание раствором иодида кадмия (фотометрический метод) |
|
Диоксид серы (SO2) |
РО52.04.186-89 Улавливание на пленочный хемосорбент (фотометрический метод) |
|
Сероводород (Н2S) |
РО52.04.186-89 1) улавливание из воздуха на пленочных хемосорбентах и его фотометрическое определение (для 0,003-0,075 мг/м3) 2) отбор проб в барботеры раствором комплекса кадмия с триэтаноламином (фотометрическое определение) (для 0,004-0,12 мг/м3) |
|
Углеводороды (3,4бенз(а)пирен и другие циклические ароматические углероды) |
РО52.04.186-89 Отбор проб на аэрозольный фильтр и определение методом высокоэффективной жидкостной хроматографии |
3. РАСЧЕТ ДВУХСТУПЕНЧАТОЙ АБСОРБЦИОННОЙ КОЛОННЫ
3.1 Исходные данные к расчету параметров абсорбционной колонны
1) Общая производительность установки по газу при н.у. V0 = 63,4 м3/сек (4 колонны).
Производительность одной абсорбционной колонны V0 = 15,85 м3/сек.
2) Концентрация Н2S в газе
Для первой ступени:
на входе yнI = 914 • 10-3 кг/м3
на выходе yкI = 25 • 10-3 кг/м3
Для второй ступени:
на входе yнII = 25 • 10-3 кг/м3
на выходе yкII = 0,015 • 10-3 кг/м3
3) Содержание примесей в поглотителе:
хнI = 3% (масс.) - для первой ступени
хнII = 0,5% (масс.) - для второй ступени
4) Абсорбция изотермическая
средняя температура потоков в абсорбере t = - 45 оС
5) Давление газа на входе в абсорбер для обеих ступеней Р = 2 МПа
6) Плотность газа при t = 20 оС, с = 0,846 кг/м3
при н.у. с0 = 0,724 кг/м3
3.2 Устройство абсорбционного насадочного аппарата
Аппараты, в которых осуществляются абсорбционные процессы, называют абсорберами. Как и другие процессы массопередачи, абсорбция протекает на поверхности раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы можно условно разделить на следующие группы: 1) поверхностные и пленочные; 2) насадочные; 3) барботажные (тарельчатые); 4) распыливающие.
Следует отметить, что аппараты большинства конструкций весьма широко применяются и для проведения других массообменных процессов.
Предлагаемая насадочная колонна получила широкое распространение в промышленности в качестве абсорбера. Основными достоинствами насадочных колонн являются простота устройства и низкое гидравлическое сопротивление, дешевизна и относительно длительный контакт фаз.
Основными узлами насадочных аппаратов в соответствии с рисунком 11 являются приспособления (1), распределяющие жидкость по насадке, насадочные тела (2), перераспределители жидкости (3) и опорные решетки (4).
1 - распределитель жидкости; 2 - насадки; 3 - перераспределитель жидкости; 4 - опорные решетки
Рисунок 8. Насадочный абсорбер
Для того, чтобы насадка работала эффективно, она должна удовлетворять следующим основным требования: 1) обладать большой поверхностью в единице объема; 2) хорошо смачиваться орошающей жидкостью; 3) оказывать малое гидравлическое сопротивление газовому потоку; 4) равномерно распределять орошающую жидкость; 5) быть стойкой к химическому воздействию жидкости и газа, движущихся в колонне; 6) иметь малый удельный вес; 7) обладать высокой механической прочностью; 8) иметь невысокую стоимость.
Насадок, полностью удовлетворяющих всем требованиям, не существует, так как, например, увеличение удельной поверхности насадки влечет за собой увеличение гидравлического сопротивления аппарата и снижение предельных нагрузок. В промышленности применяют разнообразную по форме и размерам насадки /19, 21/, которые в той или иной мере удовлетворяют требованиям, являющимся основными при проведении конкретного процесса абсорбции. Насадки изготавливают из разнообразных материалов (керамика, фарфор, сталь, пластмассы и др.), выбор которых диктуется величиной удельной поверхности насадки, смачиваемостью и коррозионной стойкостью.
3.3 Расчет первой и второй ступени абсорбционной колонны
Геометрические размеры колонного массообменного аппарата определяются в основном поверхностью массопередачи, необходимой для проведения данного процесса, и скоростями фаз.
Поверхность массопередачи может быть найдена из основного уравнения массопередачи /19/.
(3.1)
где Кх, Ку - коэффициенты массопередачи соответственно по жидкой и газовой фазе кг/(м2 • с).
3.3.1 Масса поглощаемого вещества и расход поглотителя
Массу кислых газов (КГ), переходящих в процессе абсорбции из газовой смеси (Г) в поглотитель за единицу времени, находят из уравнения материального баланса:
(3.2)
где L, G - расходы соответственно чистого поглотителя и инертной части газа, кг/с; - начальная и конечная концентрация кислых газов в поглотителе (метанол) кгКГ/кгМ; - начальная и конечная концентрация кислых газов в природном газе, кгКГ/кгГ.
Выразим составы фаз, нагрузки по газу и жидкости в выбранной для расчете размерности.
(3.3)
где соу = 0,724 кг/м3 - средняя плотность природного газа при нормальном условии.
Получим:
Конечная концентрация примесей в поглотителе обуславливает его расход (который, в свою очередь, влияет на размеры как абсорбера, так и десорбера), а также часть энергетических затрат, связанных с перекачиванием жидкости и ее регенерацией. Поэтому выбирают исходя из оптимального расхода поглотителя /5/. Для нефтехимических производств расход поглотителя L принимают в 1,5 раза больше минимального Lmin /21/. В этом случае конечную концентрацию определяют из уравнения материального баланса, используя данные по равновесию, в соответствии с рисунком.
(3.4)
В данном случае линия равновесия показывает связь между концентрациями распределенного вещества в фазах и выражается уравнением прямой
т.к. Р = const и t = const /19, 21/.
Из уравнения (3.4) следует:
где - концентрация Н2S в жидкости (метаноле), равновесная с газом начального состава.
Уравнение прямой, выражающее зависимость между рабочими концентрациями, называемое рабочей линией процесса, находится из уравнения материального баланса /19, 21/.
(3.5)
Интегрируя уравнение (3.5) в пределах от начальных до конечных концентраций и , получим
(3.6)
Рисунок 9. Зависимость между содержанием кислых газов (Н2S) в природном газе и поглотителем метанолом при минус 45оС.
Из уравнения (3.6) получим соотношения между весовыми потоками распределяющих фаз:
(3.7)
Рисунок 10. Схема распределения концентрации в газовом и жидкостном потоках в абсорбере
Интегрируя уравнение (3.5) в пределах от начальных до текущих и , получим:
откуда:
(3.8)
Или
(3.9)
где - удельный расход одной из определяющих фаз.
Аналогичным путем для противоточного (течения) взаимодействия фаз может быть получено уравнение:
(3.10)
где
Из уравнений (3.9) и (3.10) следует, что концентрация распределяемого вещества в фазах G и L связана линейной зависимостью. Поэтому удобно процессы массообмена представлять графически в координатах , т.е. в виде зависимости между так называемыми рабочими концентрациями /21/.
Расход инертной части газа:
G = V0(1 - уоб)(у0у - ун) (3.11)
где уоб - объемная доля Н2S в природном газе, равная
где v0 - объем 1 моля воздуха, равная 22,4 ? 10-3 м3/моль;
- молярная масса Н2S, равная 32 ? 10-3 кг/моль
Тогда
G = 15,85 (1 - 0,602)(0,724 - 0,914) = 1,199 кг/с
Производительность абсорбера по поглощаемому компоненту
(3.12)
Расход поглотителя (метанола) равен:
(3.13)
Тогда соотношение расходов фаз, или удельный расход поглотителя составит:
Масса поглощаемого вещества и расход поглотителя на вторую ступень определяется по формулам, приведенным выше:
Все кинетические закономерности, использованные для расчета конечной концентрации примесей в поглотителе для первой ступени абсорбции, сохраняются для расчета конечной концентрации примесей во второй ступени абсорбции. В этом случае для определения конечной концентрации используют данные по равновесию по рисунку 14 и находят по уравнению (3.4):
где - концентрация остаточного Н2S в жидкости (метаноле), равновесная с газом входящего состава.
Рисунок 11. Зависимость между Н2S в природном газе и поглотителем при минус 45о для второй ступени абсорбции.
Расход инертной части газа находят по уравнению (3.11)
G = 15,85 (1 - 0,602)(0,724 - 0,025) = 4,41 кг/с
Производительность абсорбера по поглощаемому компоненту:
Расход поглотителя:
Соотношение расходов фаз, или удельный расход поглотителя, составит:
3.3.2 Движущая сила массопередачи
Движущая сила в соответствии с уравнением (3.1) может быть выражена в единицах концентраций как жидкой, так и газовой фаз. Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентрации газовой фазы /19/.
(3.14)
где и - большая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кг Н2S/кгГ, в соответствии с рисунками
В данном случае
где и - концентрации Н2S в природном газе, равновесные с концентрациями в жидкой фазе (поглотителе) соответственно на входе и выходе абсорбера, в соответствии с рисунком
Движущая сила массопередачи для второй ступени определяется по формуле:
(3.15)
где и - большая и меньшая движущие силы на входе и выходе во вторую ступень абсорбера, кг Н2S/кгГ, в соответствии с рисунками
где и - концентрации остаточных Н2S в природном газе, равновесные с концентрациями в жидкой среде, соответственно на входе и выходе второй ступени абсорбера, в соответствии с рисунком
3.3.3 Коэффициент массопередачи
Коэффициент массопередачи Ку находят по уравнению аддитивности фазовых диффузионных сопротивлений /19/.
(3.16)
где и - коэффициенты массоотдачи соответственно в жидкой и газовой фазах, кг/(м2 ? с); m - коэффициент распределения, кгМ/кгГ.
Для расчета коэффициентов массопередачи необходимо выбрать тип насадки и рассчитать скорости в абсорбере. При выборе типа насадки для проведения массообменных процессов, как описано выше, руководствуются следующими соображениями /5, 19, 20, 21/:
во-первых, конкретными условиями процесса - нагрузками по газу, жидкости, различиями в физических свойствах систем, наличием в потоках жидкости и газа механических примесей, поверхностью контакта фаз в единице объема аппарата и т.д.;
во-вторых, особыми требованиями к технологическому процессу - необходимостью обеспечить небольшой перепад давления в колонне, широкий интервал изменения устойчивости работы, малое время пребывания жидкости в аппарате и т.д.
в-третьих, особыми требованиями к аппаратурному оформлению - создание единичного или серийно выпускаемого аппарата малой или большой единичной мощности, обеспечение возможности работы в условиях сильно коррозионной среды, создание условий повышенной надежности и т.д.
В нефтегазоперерабатывающей промышленности особое значение при выборе насадки имеют следующие факторы: малое гидравлическое сопротивление абсорбера, возможность быстро и дешево удалять с поверхности насадки отлагающийся шлам и т.д. в данном случае, когда газ очищается под повышенным давлением, гидравлическим сопротивлением можно пренебречь. Поэтому наиболее эффективна насадка, имеющая меньший эквивалентный диаметр, а следовательно, меньший коэффициент свободного объема и большую удельную поверхность. В промышленной аппаратуре чаще всего используются кольцевая насадка и дробленный кусковый материал.
В рассматриваемом случае для первой ступени выберем керамические кольца Рашига в навал размером 10х10х1,5 мм. Удельная поверхность насадки а = 440 м2/м3, свободный объем Е = 0,7 м3/м3, эквивалентный диаметр dэ = 0,006 м, насыпная плотность с = 700 кг/м3, число штук 700000 в 1 м3 /20/.
Для второй ступени абсорбции рекомендуется выбрать самую дешевую, но тем не менее надежную деревянную хордовую насадку, размером 10х100 мм с шагом в свету 10 мм. Удельная поверхность насадки а = 100 м2/м3; свободный объем Е = 0,55 м3/м3, эквивалентный диаметр dэ = 0,022 м, насыпная плотность с = 210 кг/м3 /20/.
3.3.4 Скорость газа и диаметр абсорбера
Предельную скорость газа, выше которой наступает захлебывание насадочных абсорберов, можно рассчитать по уравнению /19/.
(3.17)
где wпр - предельная фиктивная скорость газа, м/с; мх, мв - вязкость соответственно поглотителя и воды при температуре в абсорбере минус 20о, Па?С; А, В - коэффициенты, зависящие от типа насадки; L и G - расходы фаз, кг/с. Значения коэффициентов А = - 0,073; В = 1,75 /5, 20/.
Пересчитаем плотность газа на условия в абсорбере:
Предельную скорость wпр находим из уравнения (3.16), принимая при этом, что отношение расходов фаз в случае разбавленных смесей приблизительно равно отношению расходов инертных фаз:
Решая это уравнение, получим wпр = 10,3 м/с.
Выбор рабочей скорости обусловлен многими факторами. В общем случае ее находят путем технико-экономического расчета для каждого конкретного процесса /5/. В данном случае абсорбция проводится под повышенным давлением, то, как указывалось ранее, потеря напора на преодоление гидравлического сопротивления абсорбера в данном случае составляет незначительную долю общего давления в системе и не оказывает существенного влияния на экономические показатели абсорбционной установки. При этом целесообразно использовать небольшие возможные скорости газа в абсорбере, близкие к предельной, т.е. равной 0,4 ч 0,5 от предельной /19, 21/.
Подобные документы
Свойства двуокиси серы, описание влияния данного соединения на окружающую среду. Удаление серы на нефтеперерабатывающих заводах. Очистка продуктов сгорания от окислов серы. Выбор и обоснование метода, способа и аппарата очистки и обезвреживания выбросов.
курсовая работа [678,3 K], добавлен 21.12.2011Определение расхода природного газа в котельной. Расчет выбросов окиси углерода и диоксида азота. Исследование концентрации вредных веществ в отходящих газах. Алгоритм расчета рассеивания загрязняющих веществ в атмосферном воздухе для холодных газов.
контрольная работа [2,0 M], добавлен 14.03.2014Рассмотрение проблемы ограничения выбросов диоксида серы в энергетических производствах. Изучение методов снижения содержания серы в топливе. Исследование физико-химических способов очистки газов от оксидов серы. Уменьшение выбросов оксидов в атмосферу.
реферат [368,9 K], добавлен 18.04.2015Состояние атмосферного воздуха в городе Омске. Меры по предотвращению загрязнения воздуха Омского ТЭЦ-5. Снижение выбросов окислов азота и диоксида серы. Технологии очистки дымовых газов от золы. Сокращение выбросов в населенные пункты парниковых газов.
курсовая работа [359,0 K], добавлен 08.05.2014Интенсивное развитие процессов переработки углеводородного сырья. Основные химические продукты переработки нефти и природного газа. Причины утечек горючей жидкости или углеводородного газа. Методы повышения уровня экологической безопасности производства.
презентация [460,0 K], добавлен 15.04.2014Нормирование выбросов загрязняющих веществ в окружающую среду путем установления предельно допустимых выбросов этих веществ в атмосферу. Расчет концентрации двуокиси серы, окислов азота, золы. Мероприятия по уменьшению выбросов загрязняющих веществ.
контрольная работа [112,5 K], добавлен 19.03.2013Нормирование вредных выбросов в атмосферу для котельных установок. Расчет концентраций вредных веществ в дымовых газах. Фоновые концентрации загрязняющих веществ. Мероприятия по снижению выбросов оксидов азота и серы. Мокроизвестняковый способ очистки.
реферат [170,8 K], добавлен 30.09.2013Классификация, принцип действия АЭС. Выбросы радиоактивных веществ в атмосферу. Влияние радионуклиидов на окружающую среду. Нормирование выбросов радиоактивных газов в атмосферу. Ограничение абсолютных выбросов. Промышленные системы газоочистки.
курсовая работа [2,7 M], добавлен 26.02.2013Свойства, применение, сырьевая база и способы производства серной кислоты. Технология получения серной кислоты из влажного газа WSA и SNOX-контроль за выбросами оксидов серы и азота. Разработка и оптимизация технологии. Производство серы методом Клауса.
контрольная работа [481,5 K], добавлен 13.01.2016Инвентаризация источников выбросов загрязняющих веществ в атмосферу. Мероприятия по снижению негативного воздействия на окружающую среду. Разработка нормативов предельно допустимых выбросов для производственных помещений предприятия ОАО "Тулачермет".
курсовая работа [4,7 M], добавлен 13.03.2011