Анализ методики проведения санитарно-экологического состояния объекта

Основные физические характеристики шума, его действие на организм человека и животных. Расчет уровней звукового давления в расчетных точках и шумозащитные мероприятия. Уровни доз радиационного облучения населения. Химические и физические свойства урана.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 16.05.2011
Размер файла 4,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Остальные 7 % получают методом подземного выщелачивания ЗАО «Далур» (Курганская область) и ОАО «Хиагда» (Бурятия).

Полученные руды и урановый концентрат перерабатываются на Чепецком механическом заводе.

Добыча в Казахстане

В Казахстане сосредоточена примерно пятая часть мировых запасов урана (21% и 2 место в мире). Общие ресурсы урана порядка 1,5 млн. тонн, из них около 1,1 млн. тонн можно добывать методом подземного выщелачивания.

В 2009 году Казахстан вышел на первое место в мире по добыче урана (добыто 13 500 тонн).

Добыча на Украине

Основное предприятие -- Восточный горно-обогатительный комбинат в городе Жёлтые Воды.[10]

2.5.8 Применение

Хотя уран-238 не может быть использован как первичный делящийся материал, из-за высокой энергии нейтронов, необходимых для его деления, он занимает важное место в ядерной отрасли.

Имея высокую плотность и атомный вес, U-238 пригоден для изготовления из него оболочек заряда рефлектора в устройствах синтеза и деления. Тот факт, что он делится быстрыми нейтронами, увеличивает энерговыход заряда: косвенно, размножением отраженных нейтронов; непосредственно при делении ядер оболочки быстрыми нейтронами (при синтезе). Примерно 40% нейтронов, образованных при делении и все нейтроны синтеза обладают достаточными для деления U-238 энергиями.

U-238 имеет интенсивность спонтанного деления в 35 раз более высокую, чем U-235, 5.51 делений/с*кг. Это делает невозможным применение его в качестве оболочки заряда рефлектора в пушечных бомбах, ибо подходящая его масса (200-300 кг) создаст слишком высокий нейтронный фон.

Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

Важная область применения этого изотопа урана - производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.[10]

2.5.9 Цепочка распада урана-238

Изотоп уран-238, его в природном уране больше, чем 99 %. Этот изотоп является и самым устойчивым, тепловыми нейтронами его ядро расщепить нельзя. Для того, чтобы разделить 238U, нейтрону нужна дополнительная кинетическая энергия 1.4 МэВ. Ядерный реактор из чистого урана-238 ни при каких условиях работать не будет.

Атом урана-238, в ядре которого протоны и нейтроны едва удерживаются вместе силами сцепления. Время от времени из него вырывается компактная группа из четырех частиц: двух протонов и двух нейтронов (б-частица). Уран-238 превращается, таким образом, в торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Но торий-234 также нестабилен. Его превращение происходит, однако, не так, как в предыдущем случае: один из его нейтронов превращается в протон, и торий-234 превращается в протактиний-234, в ядре которого содержатся 91 протон и 143 нейтрона. Эта метаморфоза, произошедшая в ядре, сказывается и на движущихся по своим орбитам электронах: один из них становится неспаренным и вылетает из атома. Протактиний очень нестабилен, и ему требуется совсем немного времени на превращение. Далее следуют иные превращения, сопровождаемые излучениями, и вся эта цепочка, в конце концов, оканчивается стабильным нуклидом свинца (смотреть рисунок № 7, приложение Б).

Важнейшим обстоятельством для ядерной энергетики оказывается то, что наиболее распространённый изотоп урана238U тоже является потенциальным источником ядерного горючего. И Сциллард, и Ферми были правы, предполагая, что поглощение нейтронов ураном приведёт к образованию новых элементов. Действительно, при столкновении с тепловым нейтроном уран-238 не делится, вместо этого ядро поглощает нейтрон. В среднем за 23.5 минуты один из нейтронов в ядре превращается в протон (с вылетом электрона, реакция в - распада), и ядроурана-239 становится ядром нептуния-239 (239Np). Через 2.4 суток происходит второй в - распад и образуется плутоний-239 (239Pu).

В результате последовательного поглощения нейтронов в ядерном реакторе могут быть наработаны элементы ещё более тяжёлые, чем плутоний.

В природных минералах и урановой руде обнаруживались только микроколичества 239Pu, 244Pu и 237Np, так что в естественной среде трансурановые элементы (более тяжёлые, чем уран), практически не встречаются.

Изотопы урана, существующие в природе, не совсем стабильны по отношению к б-распаду и спонтанному делению, однако распадаются очень медленно: период полураспада урана-238 равен 4.5 миллиардам лет, а урана-235 - 710 миллионам лет. Из-за малой частоты ядерных реакций такие долгоживущие изотопы не являются опасными источниками радиации. Слиток природного урана можно держать в руках без вреда для здоровья. Его удельная активность равна 0.67 мКи/кг (Ки - кюри, внесистемная единица активности, равная 3.7*1010распадов за секунду).

2.6 Биологические эффекты радиации

О том, что облучение рентгеновскими или гамма-лучами может вызывать тяжелые последствия для здоровья, стало известно вскоре после их открытия. Ученые, работавшие в первые годы с источниками ионизирующего излучения, традиционно имели лучевые поражения. Но основные сведения о вредном действии ионизирующих излучений были получены в специальных исследованиях на животных и в массовых наблюдениях за людьми, работавшими в первые десятилетия с источниками ионизирующего излучения: рентгенологами, радиологами, шахтерами урановых рудников, работницами, наносившими на циферблаты часов и приборов светящуюся массу, содержащую радиоактивные вещества. У них отмечалась повышенная заболеваемость злокачественными опухолями разной локализации и лейкозами, что приводило к сокращению продолжительности их жизни, Много сведений дали длительные наблюдения за пациентами, получавшими облучение в больших дозах в связи с лечением незлокачественных заболеваний, что часто осуществлялось в 20-40 годы. Наконец, тщательные наблюдения за японцами, выжившими после варварской атомной бомбардировки Хиросимы и Нагасаки, явились серьезным вкладом в общую сумму знаний о радиационных поражениях и отдаленных эффектах воздействия ионизирующих излучений. Однако перечисленные выше наблюдения относятся к случаям облучения человека (однократного или хронического) в больших дозах - 1 Гр и более).

Значительно меньше было достоверных сведений о действии средних и, в особенности, малых доз облучения, которыми люди подвергаются в обычной жизни и на работе. И только радиационно-эпидемдиационно-эпидемлиз последних десятилетий позволил заполнить и эту белую страницу недавних неопределенностей.

При воздействии ионизирующего излучения на биологический объект происходит гибель клеток (рисунок № 8, приложение Б). Количество гибнущих клеток возрастает с увеличением дозы. В связи с этим подавляющее большинство ученых радиобиологов считает, что радиация является единственным естественным фактором, который формально нежелателен в любых количествах. Малые дозы радиации, хотя и не вызывают никаких заметных органных и тем более организменных изменений, но они могут иногда подтолкнуть те процессы изменений в организме, которые в конечном итоге ведут к злокачественному перерождению ткани. Вероятность этих процессов возрастает с дозой, а потому желательна ее минимизация.

Правда есть и ученые, которые считают, что такие небольшие раздражители как малые дозы радиации даже нужны и полезны для организма. Они, как это известно из сельскохозяйственной практики, стимулируют деятельность организма, усиливают обменные процессы, стимулируют быстрый рост, созревание, зрелость. И более раннюю смерть - подчеркивают их оппоненты. Поэтому для человека этот прекрасный фильм под названием «Жизнь» пройдет быстрее. А этого он, как правило, не хочет.

В настоящее время имеется несколько классификаций вредных эффектов действия ионизирующих излучений на живой организм. Прежде всего эффекты делят на пороговые, детерминистские (нестохастические) и беспороговые вероятностные (стохастические). Для возникновения детерминистских нестохастических эффектов необходимо превышение определенной дозы, после чего лишь могут возникнуть такие проявления как лучевая болезнь, лучевое поражение кожи, лучевая катаракта. Тяжесть развития этих эффектов зависит от степени превышения пороговой дозы облучения. К числу беспороговых вероятностных стохастических эффектов радиации относятся злокачественные новообразования и наследственные изменения. Здесь от дозы зависит только вероятность их возникновения, но не тяжесть заболевания.[6]

2.7 Решение задач по радиации

Задача №1

Дано:

238U

А=200Бк;

TЅ=4,5 млрд. лет;

М=238,03 г.

Требуется определить: Массу 200 Бк изотопа238U

Решение :

m = 0.24*10-23*М*(9)

Где:

TЅ- период полураспада, с;

М- относительная атомная масса, г;

где Т1/2 - период полураспада;

Ґл - постоянная распада.

где А - скорость распада;

N-число ядер.

= 0,24 *10-23 * Т1/2 *А

где А - активность;

L0 - число Авагадро = 6,02*1023 моль-1.

m = 0.24*10-23*200*238,03*1,42*1017= 1,62*10-2 г

Ответ: m238U=1,62*10-2 г

Задача №2

Дано:

m = 2000г;

М= 238,03г;

TЅ=4,5 млрд. лет.

Требуется определить: А- активность.

Решение:

А =m/0.24*10-23*А*(10)

Где:

m- масса данного изотопа.

А = 2000/0.24*10-23*238,03*1,42*1017=2,47*10-3Бк

Ответ: А=2,47*10-3Бк

ПРИЛОЖЕНИЕ А

Таблица № 1

Поправка учитывающая продольный уклон улицы или дороги

Продольный уклон улицы или дороги, %

, дБА

Доля средств грузового и общественного транспорта в потоке, %

0

5

20

40

100

2

0,5

1

1

1,5

1,5

4

1

1,5

2,5

2,5

3

6

1

2,5

3,5

4

5

8

1,5

3,5

4,5

5,5

6,5

10

2

4,5

6

7

8

Таблица № 2

Поправка , учитывающая влияние отраженного звука

Тип застройки

Односторонняя

Двусторонняя

отношение

0,05

0,25

0,4

0,55

0,7

, дБА

1,5

1,5

2,0

2,5

3

3,5

Таблица № 3

Средние значения уровней звукового давления, ряда источников шума.

Таблица № 4

Октавные полосы частот с граничными среднегеометрическими частотами.

Таблица № 5

Относительная частотная характеристика кривой коррекции А.

Таблица № 6

Сложение уровней звукового давления.

Таблица №7

Звукоизоляция окон и глухих остекленных витражей

N пп

Конструкция окна

Формула остекления (толщина стекол и воздушных промежутков в мм)

Количество уплотняющих прокладок в притворе

, дБА

1

2

3

4

5

Окна деревянные

1.

Одинарное со стеклопакетом ОСП (#M12291 9055786ГОСТ 24700-81#S)

3+12+3

1

25

2.

То же

4+16+4

2

27

3.

Спаренное ОС (#M12293 0 9055783 3271140448 4264252782 247265662 4292034300 557313239 2960271974 3594606034 4293087986ГОСТ 11214-86#S)

3+57+3

1

26

4.

То же

4+56+4

2

28

5.

Раздельное ОР (#M12293 0 9055783 3271140448 4264252782 247265662 4292034300 557313239 2960271974 3594606034 4293087986ГОСТ 11214-86#S)

3+92+3

1

28

6.

То же

3+92+3

2

30

7.

То же

4+91+4

2

31

8.

То же

3+90+6

2

32

9.

Раздельное со стеклопакетом и стеклом 03 РСП (#M12293 0 9055785 3271140448 3005608049 247265662 4292034300 557313239 2960271974 3594606034 4293087986ГОСТ 24699-81#S)

3+16+3+57+3

3

32

10.

То же

4+14+4+57+4

3

33

11.

Раздельно-спаренное 03 PC (#M12293 0 9055784 3271140448 750120678 247265662 4292034300 557313239 2960271974 3594606034 4293087986ГОСТ 16289-80#S)

3+54+3+46+3

3

33

12.

То же

4+54+4+46+4

3

35

13.

Дерево-алюминиевый оконный блок спаренный

5+70+5

2

31

Металлические витражи с глухим остеклением

14.

Одинарный со стеклопакетом

4+16+4

-

28

15.

То же

4+30+4

-

29

16.

То же

8+25+8

-

33

17.

Двойной

4+100+4

-

33

18.

То же

4+200 +4

-

35

19.

То же

8+100+8

-

37

20.

То же

8+200+8

-

39

21.

То же

8+400+8

-

41

22.

То же

8+650+8

-

43

Окна повышенной звукоизоляции

23.

Окно раздельное 2 РШ (МНИИТЭП)

5+129+5

2

36

24.

Окно раздельное со стеклопакетом и стеклом (МНИИТЭП)

6+8+4+117+6

2

41

25.

Окно алюминиевое со стеклопакетом и стеклом

4+20+4+150+4

2

39

Шумозащитные вентиляционные окна

26.

Раздельное окно с клапаном-глушителем (КГ) 300 мм (МНИИТЭП)

4+90+4

2

31

----

22

27.

ОШВ, окно с тройным остеклением (КТБ МОСМ, НИИСФ)

3+22+3+92+3

2

33

----

23

28.

Окно спаренное с вертикальным каналом (НИИСФ)

3+57+3

1

26

----

24

29.

Окно раздельное ОШВМ (КТБ МОСМ, НИИСФ)

3+117+3

2

31

----

24

30.

Окно раздельное с КГ 600 мм (МНИИТЭП)

4+90+4

2

31

----

26

31.

Окно раздельное с вертикальным каналом (НИИСФ)

4+90+4

2

31

----

28

Примечания: 1. Данные, приведенные в таблице, являются ориентировочными; более точные характеристики звукоизоляции следует брать из сертификатов организаций - изготовителей окон.

Таблица №8

Условия излучения

, рад.

, дБ

В пространство - источник на колонне в помещении, на мачте, трубе

4

11

В полупространство - источник на полу, на земле, на стене

2

8

В 1/4 пространства - источник в двухгранном углу (на полу близко от одной стены)

5

В 1/8 пространства - источник в трехгранном углу (на полу близко от двух стен)

/2

2

Таблица № 9 коэффициент поглощения звука в воздухе

Октавные полосы со среднегеометрическими частотами, Гц

63

125

250

500

1000

2000

4000

8000

Коэффициент поглощения звука в воздухе, , дБ/км

0

0.3

1.1

2.8

5.2

9.6

25

83

Таблица №10

Взвешивающие коэффициенты для тканей и органов при эффективной дозе облучения

Таблица №11

Средние эффективные годовые дозы облучения человека в России

Средняя индивидуальная

Виды и источники облучения

эффективная доза,

мкЗв на чел.

I. Природное (70%):

1. Космические лучи на

320

Поверхности Земли

2. /Гамма-излучение:

Фоновое

300

Дополнительное

110

(стройматриалы)

3. Внутреннее облучение:

Бета-излучатели

200

Альфа-излучатели

160

4. Радионуклиды радона

1800

и продукты их распада

ВСЕГО

-2900

II. Медицинское (-29%):

1. Рентгенодиагностика

1070

2. Радионуклидная диагностика

30

ВСЕГО

1100

Ш.Техногенное (<1%):

1. Атомная энергетика

0,1

2. Профессиональное

3,0

ВСЕГО

3

IV. Аварийное (~1%):

1. Испытания ядерного оружия

17

радиационные аварии

2. Последствия аварий на ЧАЭС

30

и на Урале

ВСЕГО

47

ИТОГО

~4000

Таблица №12

Содержание урана в минералах

Минерал

Основной состав минерала

Содержание урана, %

Уранинит

UO2, UO3 + ThO2, CeO2

65-74

Карнотит

K2(UO2)2(VO4)2·2H2O

~50

Казолит

PbO2·UO3·SiO2·H2O

~40

Самарскит

(Y, Er, Ce, U, Ca, Fe, Pb, Th)·(Nb, Ta, Ti, Sn)2O6

3.15-14

Браннерит

(U, Ca, Fe, Y, Th)3Ti5O15

40

Тюямунит

CaO·2UO3·V2O5·nH2O

50-60

Цейнерит

Cu(UO2)2(AsO4)2·nH2O

50-53

Отенит

Ca(UO2)2(PO4)2·nH2O

~50

Шрекингерит

Ca3NaUO2(CO3)3SO4(OH)·9H2O

25

Уранофан

CaO·UO2·2SiO2·6H2O

~57

Фергюсонит

(Y, Ce)(Fe, U)(Nb, Ta)O4

0.2-8

Торбернит

Cu(UO2)2(PO4)2·nH2O

~50

Коффинит

U(SiO4)1-x(OH)4x

~50

Таблица № 13

Добыча по странам в тоннах по содержанию U на 2005--2006 гг.

Страна

2005 год

Канада

11 410

Австралия

9044

Казахстан

4020

Россия

3570

США

1249

Украина

920

Китай

920

ПРИЛОЖЕНИЕ Б

Рисунок № 1

Зависимость длины волны в воздухе от частоты при температуре 20°С.

Рисунок № 2 Кривые равной громкости

Рисунок № 3 Снижение уровня звука с расстоянием

1 - улица, 2 полосы движения; 2 - улица, 4 полосы движения; 3 - улица, 6 полос движения; 4 - улица, 8 полос движения; 5 - трамвай (); 6 - трамвай ()

Рисунок № 4

Расчетная схема для определения ожидаемых уровней шума:

и.ш- источник, шума; а.ц - акустический центр; р.т -расчетная точка

Рисунок № 5

Рисунок № 6

Три вида излучений и их проникающая способность.

Рисунок № 7 Распад урана-238

Рисунок № 8

Рисунок № 9 Схема действия ионизирующего излучения

Нормирование шума в жилых зданиях

СПИСОК ЛИТЕРАТУРЫ

1. Защита от шума в градостроительстве/Г.Л. Осипов, В.Е. Коробков, А.А. Климухин и др.; Под ред. Г.Л. Осипова.--М.: Стройиздат, 1993.--96 с: ил.-- (Справочник проектировщика).

2. Осипов Г.Л. «Защита зданий от шума» Издательство литературы по строительству. Москва -1972.

3. ПОСОБИЕ К #M12291 1200000486МГСН 2.04-97#S ПРОЕКТИРОВАНИЕ ЗАЩИТЫ ОТ ТРАНСПОРТНОГО ШУМА И ВИБРАЦИЙ ЖИЛЫХ И ОБЩЕСТВЕННЫХ ЗДАНИЙ. РАЗРАБОТАНО Научно-исследовательским институтом строительной физики (НИИСФ) Российской академии архитектуры и строительных наук (докт. техн. наук Осипов Г.Л., канд. техн. наук Климухин А.А.) и Московским научно-исследовательским и проектным институтом типологии, экспериментального проектирования (МНИИТЭП) (инж. Лалаев Э.М., Федоров Н.Н., канд. техн. наук Прохода А.С.). ПОДГОТОВЛЕНО к утверждению и изданию Управлением перспективного проектирования и нормативов Москомархитектуры (инж. Щипанов Ю.Б., Шевяков И.Ю.). УТВЕРЖДЕНО указанием Москомархитектуры от 24.08.99 N 35.

4. Романов С.Н. Биологическое действие вибрации и звука: Парадоксы и проблемы 20-ого века. Л.: Наука, 1991-158 с.-(от молекулы до организма)

5. «Рекомендации по разработке проектов санитарно-защитных зон промышленных предприятий, групп предприятий"- Москва, 1998г.

6. Радиация. Дозы, эффекты, риск : Пер. с анг. Ю.А. Банникова- М.: Мир, Р 15 1990.-79с., ил.

7. "Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов. СанПиН 2.2.1/2.1.1.1200-03"#S, утвержденные Главным государственным санитарным врачом Российской Федерации 30 марта 2003 года, с 15 июня 2003 года.

8. СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА РОССИЙСКОЙ ФЕДЕРАЦИИ. ЗАЩИТА ОТ ШУМА. РАЗРАБОТАНЫ Научно-исследовательским институтом строительной физики (НИИСФ) РААСН.ВНЕСЕНЫ Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России. ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ постановлением Госстроя России от 30 июня 2003 г. N 136.ВЗАМЕН СНиП II-12-77.

9. Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки. Санитарные нормы. СН 2.2.4/2.1.8.562-96 Утверждены и введены в действие постановлением Госкомсанэпиднадзора России от 31 октября 1996 г. № 36.

Размещено на Allbest.ru


Подобные документы

  • Анализ влияния шума на 16-этажное кирпичное здание. Характеристика местоположения исследуемого объекта. Оценка акустического состояния окружающей среды в жилом секторе. Расчет энергетической суммы уровней шума в расчётной точке, шумозащитные мероприятия.

    курсовая работа [211,6 K], добавлен 24.01.2016

  • Параметры, характеризующие шум. Методическое и инструментальное обеспечение проведения шумового контроля. Выбор точек для измерения транспортного шума. Расчет уровней шума транспортных потоков на территории застройки. Влияние шума на организм человека.

    курсовая работа [1,4 M], добавлен 11.10.2014

  • Потенциальная угроза радиационного загрязнения окружающей среды. Физические и биохимические механизмы влияния радиации на природу. Радиоактивные вещества и ионизирующее излучение. Пути попадания радионуклидов в организм человека, генетические последствия.

    реферат [16,8 K], добавлен 28.02.2009

  • Особенности экологических и гигиенических проблем воздушной среды: химические загрязнители, мероприятия по профилактике загрязнений атмосферного воздуха. Гигиеническое, экологическое значение воды и почвы, как факторов передачи инфекционных заболеваний.

    контрольная работа [50,4 K], добавлен 05.04.2010

  • Организация мониторинга загрязнения атмосферного воздуха. Физические свойства диоксида серы, ее токсическое действие на организм человека. Анализ проб воздуха, отобранных на постах г. Екатеринбург на содержание диоксида серы, оценка ситуации в городе.

    дипломная работа [2,1 M], добавлен 19.11.2015

  • Воздействие анторпогенных факторов на здоровье человека. Природные геохимические аномалии как причина нарушений здоровья населения. Вода как фактор здоровья. Физические факторы риска окружающей среды. Влияние шума, излучений на здоровье человека.

    контрольная работа [54,0 K], добавлен 09.11.2008

  • Общая характеристика хлорорганических соединений, их основные физико-химические свойства и сферы применения, негативное влияние на окружающую среду, организм животных, рыб и человека. Хлорорганические пестициды в продуктах питания и методы их определения.

    курсовая работа [44,6 K], добавлен 08.01.2010

  • Радиация, ее влияние на организм человека. Дозовые зависимости показателей состояния здоровья. Последствия влияния радиации на взрослый организм. Проблемы, связанные с нормированием воздействия радиации. Методология оценки генетического риска облучения.

    реферат [31,8 K], добавлен 14.12.2010

  • Основные характеристики сооружений и элементов шламонакопителя. Мероприятия по охране атмосферного воздуха от загрязнений. Восстановление санитарно-гигиенического состояния территории. Мониторинг при проведении работ по рекультивации шламонакопителя.

    отчет по практике [1,9 M], добавлен 14.01.2015

  • Основные понятия и единицы измерения. Влияние радиации на организмы. Источники радиационного излучения. Естественные источники. Источники, созданные человеком (техногенные).

    курсовая работа [28,7 K], добавлен 24.10.2002

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.