Оценка экологических и экономических последствий строительства и эксплуатации водохранилищ

Физико-географические условия формирования стока рек Республики Башкортостан. Анализ экологических и экономических последствий эксплуатации водохранилищ. Оценка гидроэкологических изменений в результате строительства Павловского гидроузла на реке Уфа.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 08.08.2010
Размер файла 887,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В практике гидрологических и водохозяйственных расчётов выделяются: слой, модуль, объём стока, а также расходы (срочные, среднесуточные, среднемесячные, среднегодовые, максимальные, минимальные и др.) воды.

Слой стока - это количество воды, равномерно распределённой по площади (в мм) водосбора за определённый промежуток времени.

Модуль стока отражает количество воды, стекающей с единицы площади водосбора за единицу времени, выражается в л /сек км2. Показатели слоя и модуля стока независимы от площади водосбора, потому их удобно отражать на картах в виде изолиний.

Расход воды представляет собой количество воды, протекающей через живое сечение русла (потока) за единицу времени, выражается в л /сек. (или куб. м/ сек.).

Объём стока - это количество воды, протекающей через расчётный створ за определённый промежуток времени. Между расходом (Q) и объёмом (W) воды, протекающей за какой-либо период времени (t),существует связь, которая выражается в виде:

W = Q · t.

Следует отметить, что показатели расходов и объёмов воды по любому расчётному створу (или территории) отражают величины водных ресурсов, потенциально возможных для использования в хозяйственных целях. В ряде случаев в практике водохозяйственных расчётов к водным ресурсам территории относят запасы поверхностных и подземных вод, понимая при этом величину годового стока. Однако любой водный объект в природе, в том числе и реки, представляют собой не только то или иное количество имеющейся воды. Они образуют неотъемлемую часть ландшафта, а количественные и качественные характеристики природных вод жизненно необходимы живым организмам, в том числе гидробионтам, представленным различными видами, группами и классами, обитающими в водных объектах. Таким образом, при таком подходе под природными водными объектами следует понимать аквальные комплексы, сформировавшиеся на суше в определённых физико-географических условиях в результате аккумуляции воды и характеризующиеся специфическими особенностями. Они представляют собой открытую систему, состоящую из абиотических компонентов и биоты. Абиотические факторы (солёность, прозрачность, температура, количество воды, наличие растворённого кислорода газов и др.), а также их изменчивость во времени являются предпосылкой для развития в них соответствующих экосистем, состоящих в целом из сообщества живых организмов и среды их обитания, объединённых в единое функциональное целое. Целостность в них формируется на основе взаимозависимости и причинно-следственных связей, существующих между отдельными экологическими компонентами.

Исходя из этих точек зрения, в реках следует выделять (в составе речного стока) экологические (максимальные и минимальные) расходы воды, а также естественные эксплуатационные ресурсы. При этом следует понимать, если экологические расходы необходимы для сохранения экосистем, то естественные эксплуатационные расходы воды, как разница между общими показателями стока и экологическими расходами воды, могут быть использованы в хозяйственных целях без существенного ущерба водным экосистемам.

Наблюдения по рекам РБ заметно дифференцируются. Так, если большие и средние реки обеспечены надежной гидрометрической сетью и продолжительностью наблюдений, то на малых реках функционируют лишь единичные посты.

В пределах Башкортостана первые гидрометрические наблюдения организованы на реке Белой: у г. Уфы в 1877 г., у г. Бирска и с. Андреевки - 1880 г. На реках Ашкадар (г. Стерлитамак), Уфа (с. Караидель, пгт. Красный Ключ) и Сим (г. Аша) водомерные посты действуют соответственно с 1911, 1912, 1914 гг. Из значительного количества станций и постов, действовавших в различное время, наиболее продолжительные ряды наблюдений имеются по рекам Урал, Сакмара, Бол. Ик, которые в совокупности с сетью наблюдений и на остальных притоках позволяют раскрыть особенности гидрологического режима рек с достаточной надежностью [1].

1.2 Анализ проведения водохозяйственных мероприятий в бассейнах рек Республики Башкортостан

1.2.1 Водохранилища: общие положения, типы и параметры

Водохранилищем называется искусственный водоем, образованный водонапорным сооружением в целях хранения воды и регулирования стока специальными сооружениями. Общий объем водохранилищ мира составляет примерно 6000 км3. Общее их число достигает 30 тыс. Ежегодно появляется до 500 новых водохранилищ.

Наиболее важные особенности водохранилищ: их следует рассматривать как сложные природно-технические комплексы; они воздействуют на окружающую среду с возможными как благоприятными, так и неблагоприятными последствиями; им присущи все наблюдаемые внутриводоемные процессы - гидрологические, гидрофизико-химические и гидробиологические; при них формируются водохозяйственные комплексы (ВХК) - отрасли народного хозяйства, предъявляющие различные, часто противоречивые требования к использованию водохранилищ [3].

Более 30 тыс. водохранилищ земного шара, эксплуатируемых в настоящее время, существенно различаются между собой по параметрам, режимным характеристикам, направлению хозяйственного использования и воздействию на окружающую среду. В основу типизации водохранилищ может быть положен, прежде всего, признак генезиса, указывающий на способ их образования:

· водохранилища в долинах рек, перегороженных плотинами;

· наливные водохранилища;

· зарегулированные озера;

· водохранилища в местах выхода грунтовых вод и в карстовых районах;

· водохранилища прибрежных участков моря и эстуариев [3, 4].

В зависимости от рельефа местности различают водохранилища равнинных, предгорных, плоскогорных и горных областей. В зависимости от геометрических параметров водохранилища подразделяются по объему и площади зеркала (табл. 6) и по глубине: исключительно глубокие (более 200 м); очень глубокие (100-200 м); глубокие (50-99 м); средней глубины (20-49 м); неглубокие (10-19 м); мелководные (менее 10 м). Наиболее глубокие: Нурекское (глубиной около 300 м) и Рогунское ( глубиной более 300 м) [3].

Таблица 1 - Классификация водохранилищ по размерам

Тип водохранилища

Объем, км3

Площадь зеркала, км2

Отношение к общему числу водохранилищ, %

Крупнейшее

Более 50

Более 5000

Менее 0,1

Очень крупное

50-10

5000-500

1

Крупное

10-1

500-100

5

Среднее

1-0,1

100-20

15

Небольшое

0,1-0,01

20-2

25

Малое

Менее 0,01

Менее 2

44

Водохранилища могут быть в виде крытых резервуаров, открытых бассейнов типа прудов-копаней, лиманов, и водоемов, образованных плотинами. Крытые резервуары, открытые бассейны и лиманы обычно отличаются незначительным объемом. Плотинные водохранилища отличаются значительным объемом и возможностью сезонного и многолетнего регулирования стоков.

Водохранилище плотинного типа имеет следующие элементы: плотина, водозаборные сооружения для изъятия необходимого количества воды, водосбросные устройства для сбросов излишков воды, устройства для промыва насосов при значительном количестве последних [5. Период аккумуляции стока называется наполнением водохранилища, а процесс отдачи накопленной воды - сработкой водохранилища. Высший проектный уровень водохранилища (верхнего бьефа плотины), который подпорные сооружения могут поддерживать в нормальных эксплуатационных условиях в течение длительного времени, называется нормальным подпорным уровнем (НПУ). На нормальный подпорный уровень рассчитываются как сооружения инженерной защиты, так и все промышленные, транспортные и другие сооружения, располагающиеся на берегах водохранилища. Минимальный уровень водохранилища, до которого возможна его сработка, называется уровнем мертвого объема (УМО). Объем воды, заключенный между НПУ и УМО, называется полезным, а находящийся ниже УМО, называется мертвым. При паводке редкой повторяемости (раз в сто, тысячу или десять тысяч лет), уровни воды на всем водохранилище и у плотины повышаются, увеличивая его объем иногда на значительную величину. Одновременно увеличивается пропускная способность гидроузла. Подъем уровня выше НПУ в период прохождения высоких половодий редкой повторяемости называется форсированием уровня водохранилища, а сам уровень - форсированным подпорным (ФПУ), или катастрофического паводка [4].

Для выполнения водохозяйственных расчетов требуется наличие топографической (кривая зависимости площадей зеркала водохранилища от его наполнения), объемной и экономической (изменение стоимости водохранилища с изменением глубины) характеристик водохранилища, составляемых после окончательного определения местоположения плотины [6.

Водохранилища Республики Башкортостан

В настоящее время реки республики характеризуются достаточной зарегулированностью. Преимущественным назначением существующих водохранилищ и прудов является обеспечение потребностей водоснабжения, а также орошаемого земледелия, гидроэнергетики и рыбного хозяйства.

Самыми крупными в республике являются Павловское (объем 1,41 км3) и Нугушское (объем 0,4 км3) водохранилища комплексного назначения, построенные соответственно на реках Уфа и Нугуш в 1961 г., 1966 г. Существенная зарегулированность стока р. Белой в нижней части обусловлена влиянием Бельского отрога Нижнекамского водохранилища. Водохранилища в основном сезонного регулирования. Степень зарегулированности стока существенно дифференцируется по бассейнам рек, что зависит как от потребностей хозяйственных объектов, так и удобства территорий.

По состоянию на 1 января 2004 г. На территории Республики Башкортостан построены и эксплуатируются гидротехнические сооружения 436 водохранилищ прудов, из них 119 водохранилищ имеют объем более 1,0млн. м3 (таблица 2).

Таблица 2- Перечень водохранилищ и прудов по состоянию на 01.01.2004 г.

Наименование района

Всего, шт.

Общий объем, тыс. м3.

Общая площадь, га

Аккум. Емк. Прудов, тыс. м3

Кол -во н.п., попад. под затоп., шт

100-500

500-1000

>1000

1

2

3

4

5

6

7

8

Абзелиловский

4

-

1

3

1770,1

38911

3

Альшевский

10

5

4

1

327,7

17015

7

Архангельский

4

1

1

2

467,7

7518

2

Аскинский

-

-

-

-

-

-

-

Аургазинский

21

9

9

3

265,7

11992

14

Баймакский

11

2

3

6

782

8431

4

Бакалинский

18

9

2

7

540

16979

7

Балтачевский

2

2

-

-

15

260

-

Белебеевский

7

5

1

1

127

4060

4

Белокатайский

1

-

-

1

50

1800

1

Белорецкий

6

2

2

2

386,1

14000

4

Бижбулякский

6

5

-

1

78,6

2854

5

Бирский

6

5

1

-

106

2180

-

Благоварский

9

4

3

2

182,5

6064

6

Благовещенский

5

2

1

2

257

4292

2

Буздякский

24

8

10

6

1011,6

22099

13

Бураевский

9

6

3

-

132,4

3162

6

Бурзянский

-

-

-

-

-

-

-

Гафурийский

1

-

-

1

383

34500

1

Давлекановский

14

3

7

4

332,7

10367

6

Дуванский

1

1

-

-

6

100

-

Дюртюлинский

39

29

5

5

516,6

19152

14

Ермекеевский

5

4

1

-

28,5

1300

2

Зианчуринский

2

-

2

-

29,6

1805

3

Зилаирский

5

2

1

2

140,9

4561

3

Иглинский

8

6

2

-

110

2730

8

Илишевский

17

7

7

3

369,3

11284

12

Ишимбайский

17

11

3

3

314,5

8636

1

Калтасинский

1

-

1

-

17

536

-

Караидельский

-

-

-

-

-

-

3

Кармаскалинский

14

9

5

-

163,3

5222

1

Кигинский

2

2

-

-

21,3

500

2

Краснокамский

2

1

1

-

36,6

975

6

Кугарчинский

8

5

3

-

101

3340

7

Кушнаренковский

7

1

2

4

200,7

6960

7

Куюргазинский

13

9

2

2

264,2

7680

7

Мелеузовский

7

-

1

6

2845,3

409794

1

Мечетлинский

1

-

-

1

129,3

1950

1

Мишкинский

1

-

1

-

24,8

640

2

Миякинский

13

6

5

2

204,6

79809

6

Нуримановский

1

-

-

1

11700

1410000

Кат.пос.

Салаватский

-

-

-

-

-

-

-

Стерлибашевский

12

5

5

2

253,4

9190

6

Стерлитамакский

8

4

1

3

189,3

5868

5

Татышлинский

3

-

-

3

204,7

3320

-

Туймазинский

13

8

3

2

282,7

7752

8

Уфимский

11

5

-

6

866,1

21710

8

Учалинский

6

-

3

3

597,9

12578

2

Федоровский

14

4

6

4

376,1

12497

12

Хайбуллинский

11

-

1

10

982,3

92650

8

Чекмагушевкий

11

1

4

6

380,8

13541

8

Чишминский

15

4

5

6

363,5

12671

9

Шаранский

7

4

1

2

121,6

4529

3

Янаульский

3

2

-

1

3687

135346

2

Итого по РБ

436

198

119

119

32744,0

2525110

240

Кроме того, существует значительное количество мелких прудов, построенных хозяйственным способом, но в связи с отсутствием проектов на них, а также почти ежегодным размывом и неравномерным восстановлением их плотин, такие сооружения не регистрируются.

Суммарный объем водохранилищ и прудов достигает 2,43 км3, общая площадь их водного зеркала - 312,6 км2. Из числа средних по размерам гидроузлов следует привести Буйский (134 млн. м3), Слакский (135 млн. м3), Хворостянский на р. Таналык (14,2 млн. м3), Маканский на р. Макан (9,3 млн. м3) и др. Назначение ГТС, в основном, комплексное, в отдельных районах противоэрозионное [1].

1.2.2 Влияние гидротехнических сооружений на режим водотока

Влияние на гидравлический режим водотока

Создание крупных гидроузлов на реках вносит большие изменения в их естественный гидрологический режим. В результате регулирующего действия водохранили

ща сток реки в нижнем бьефе становится более равномерным в течение года. Регулирующее влияние водохранилищ сказывается на значительных по протяжению участках реки ниже плотин и распространяется до ее устья. Условно можно считать, что протяженность нижних бьефов определяется по границе восстановления естественного гидрологического режима (главным образом, под влиянием крупных притоков).

Регулирующее влияние водохранилища приводит к существенному перераспределению стока по сравнению с бытовым состоянием: уменьшаются расходы паводка и увеличиваются расходы межени. Это перераспределение тем существенней, чем больше регулирующая (полезная) емкость водохранилища. Суточное и недельное регулирование мощности ГЭС вносит в гидравлический режим рек своеобразие, характерное только для нижних бьефов, -- прохождение волн попусков, влияние которых может охватывать участки значительной протяженности. Неустановившийся режим течения, возникающий при прохождении волн попусков, сказывается как на гидравлических условиях, так и на русловых переформированиях в нижних бьефах.

Естественный водный режим реки в нижнем бьефе может быть нарушен также при комплексном использовании водохранилища и отъеме из него более или менее значительных объемов воды для целей ирригации или переброски стока в бассейны других рек. В случае переброски стока из бассейнов других рек в рассматриваемой реке происходит общее увеличение жидкого стока.

Влияние неустановившегося движения, возникающего в нижних бьефах энергетических гидроузлов в результате суточного и недельного регулирования стока, распространяется на равнинных реках на расстояние до нескольких сотен километров от плотины. Причем длина, на которую распространяется влияние режима работы ГЭС, зависит от "полноты" осуществляемого ею регулирования мощности.

Под полным недельным регулированием понимается режим, при котором ГЭС может полностью останавливаться в нерабочие дни; под полным суточным регулированием понимается режим, при котором в течение суток в часы ночного и дневного провалов графика потребительской нагрузки ГЭС может полностью останавливаться, а в часы утреннего и вечернего максимума работать с полной располагаемой мощностью.

Протяженность зоны влияния недельного регулирования может в 3-5 раз превосходить длину зоны влияния суточного регулирования. Колебания уровней и распространение волн суточного регулирования прослеживается на расстоянии нескольких десятков километров. Скорость распространения волн попуска суточного регулирования в нижнем бьефе может достигать 3-4 м/с, скорость перемещения гребня волны в 2 - 4 раза превышать скорость течения. Амплитуды колебания уровней могут достигать нескольких метров, однако обычно они регламентируются с учетом требований водного транспорта и других водопользователей.

Прогнозирование параметров неустановившегося режима в нижнем бьефе (диапазона колебания уровней, скорости течения, протяженности зоны влияния и т.п.) должно выполняться методами матемагического моделирования на основе численного интегрирования одномерных или двумерных уравнений Сен-Венана [7] с учетом морфологических особенностей русла, наличия притоков и их водности, подпора со стороны водохранилища нижерасположенного гидроузла или водоема.

Степень недельного и суточного регулирования мощности ГЭС определяется их местом в энергосистеме и в каскаде, а также требованиями неэнергетических водопользователей к уровням воды в нижних бьефах гидроузлов. На ГЭС, нижние бьефы которых находятся в неподпертом состоянии, в маловодных условиях возможно полное прекращение суточного и недельного регулирования мощности, т.е. переход ГЭС из пиковой зоны графика нагрузки в базовую. При наличии подпора в нижнем бьефе, существенно снижающего размах колебаний уровня воды, ГЭС могут осуществлять более глубокое недельное и суточное регулирование мощности. Оно либо не ограничивается совсем, либо ограничивается незначительно требованиями обеспечения обязательного базового попуска. Во многих случаях при осуществлении суточного регулирования необходимо учитывать, что резкие подъемы уровня нижнего бьефа при одновременном включении нескольких агрегатов ГЭС и значительный размах суточных колебаний неблагоприятны и опасны не только для инфраструктуры нижнего бьефа, но и для населения (в частности, в рекреационный период).

Зимой при осуществлении суточного и недельного регулирования мощности снимается ограничение по обеспечению нормируемой глубины по условиям судоходства, благоприятных условий для рыбного хозяйства и т.п., но во многих случаях должны учитываться условия неподтопляемости территорий, находящихся в нижних бьефах гидроузлов, а также санитарно-гигиенические условия водопользования при наличии в нижнем бьефе сбросов сточных вод.

Существенное значение при оценке приемлемости гидравлического режима, обусловленного суточным регулированием мощности ГЭС, имеет направление и скорость течения воды в местах выпусков сточных вод. При этом абсолютно недопустимы ситуации, когда сточные воды, перемещаясь вверх по течению, могут попадать в водозаборы питьевой воды.

Влияние на русловой режим водотока

Задержка водохранилищем твердого стока и перераспределение во времени стока воды приводит к изменению руслового процесса в верхнем и нижнем бьефах гидроузла. Преобладающие в естественных условиях обратимые деформации русла, обусловленные транзитным транспортом наносов, поступающих с площади водосбора, после возведения гидроузла сменяются необратимыми деформациями. Создание водохранилища приводит к тому, что большая часть наносов (а в крупных водохранилищах на равнинных реках практически все наносы) осаждается в нем, и в нижний бьеф вода поступает осветленной. В результате происходит постепенное занесение чаши водохранилища донными наносами и его заиление взвешенными наносами. В этих условиях в нижнем бьефе поток, транспортирующая способность которого оказывается недостаточной, начинает насыщаться за счет размыва примыкающего к гидроузлу участка нижнего бьефа. Этот участок превращается в зону питания наносами расположенной ниже части реки. В русле начинают развиваться необратимые деформации, в которых преобладает общий размыв.

Как правило, это происходит уже в строительный период при стеснении русла перемычками. В дальнейшем, при временной, а затем и при постоянной эксплуатации гидроузла, зона переформирования русла распространяется вниз по течению. На этот процесс накладывается влияние изменения водного режима. Происходит трансформация русла нижнего бьефа - изменение геометрических и гидравлических характеристик русла реки, проходящее на значительном ее протяжении и обусловленное нарушением ранее существовавших режимов твердого и жидкого стока [8]. Трансформация русла влечет за собой изменение связей расходов и уровней воды, характеризовавших отдельные сечения водотока.

Преобладание общего размыва в процессе трансформации русел нижних бьефов является определяющим для равнинных рек, несущих сравнительно небольшое количество наносов. В условиях гидротехнического строительства в горных районах на реках с большим объемом твердого стока при малых объемах водохранилища происходит сравнительно быстрое его заиление и наносы вновь начинают поступать в нижний бьеф. Процесс общего размыва в этом случае прекращается, в ранее размытом русле начинают откладываться сбрасываемые через гидроузел наносы и происходит так называемый завал нижнего бьефа. Срок заиления равнинных водохранилищ, преобладающих на территории России, исчисляется сотнями лет, что и определяет основную роль общего размыва в процессе трансформации русел нижних бьефов гидроузлов, возведенных на равнинных реках.

Наряду с трансформацией русла нижнего бьефа, строительство гидроузлов вызывает его местные деформации, обусловленные повышенной турбулизацией, местным сосредоточением и изменением направления потока под воздействием гидротехнических сооружений и регуляционных работ.

В строительный и пуско-наладочный периоды работы гидроузла в русле реки, стесненном перемычками, а затем сооружениями, происходят интенсивные местные деформации, причиной которых являются чаще всего неблагоприятные гидравлические условия пропуска строительных расходов через не полностью построенные водопропускные сооружения, а также незавершенность работ по креплению нижнего бьефа. Объем размыва в русле реки (включая размыв перемычек) может значительно превосходить объем твердого стока, соответствующий транспортирующим возможностям потока в естественном русле. Ниже сооружений поток откладывает большую часть наносов в виде переката, отметки гребня которого постепенно нарастают. По мере затухания процесса местного размыва за сооружениями рост переката замедляется, а его гребень смещается вниз по течению. В ряде случаев этот перекат создает временный подпор на сооружения гидроузла со стороны нижнего бьефа. Со временем подпор уменьшается, что обычно связано с постепенным смывом переката, передвижением вниз по течению зоны отложений и с общим понижением уровней нижнего бьефа.

После завершения или временной стабилизации процесса местного размыва за водопропускными сооружениями начинается постепенный размыв русла нижнего бьефа и перемещение зоны наибольших отложений наносов вниз по течению. На ближайшем к сооружениям участке нижнего бьефа преобладающим видом деформации русла становится размыв. Зона размыва, продвигаясь вслед за зоной отложений, постепенно охватывает все большую длину бьефа, оставляя выше по течению участок более устойчивого, стабилизировавшегося русла, при взаимодействии которого с потоком уже не происходит значительных деформаций дна реки и существенного насыщения потока наносами. Повышение устойчивости русла в этой зоне обусловлено увеличением глубин за счет размыва, снижением скоростей потока и, как следствие, уменьшением подвижности донного материала по сравнению с бытовыми условиями в неразмытом русле.

Характер распространения зоны размыва зависит от уклона реки, геологического строения ее ложа и т. д. [9]. При малых уклонах реки, не очень больших скоростях течения, больших скоплениях аллювия (в том числе в виде островов, побочней и тому подобных русловых образований) общий размыв в длину развивается сравнительно медленно. Поэтому даже при больших глубинах размыва русла понижение уровней воды из-за малой протяженности зоны размывов и малого уклона реки получается очень небольшим.

При ограничении размывов выходами коренных пород или образованием естественной отмостки, чему особенно благоприятствует сложное геологическое строение русла, размыв может быстро развиваться в длину, особенно при больших уклонах водотока. Снижение уровней воды в этих случаях может быть весьма значительным при сравнительно быстрой стабилизации процесса [9, 10].

При возведении гидроузлов на участках рек, где в бытовых условиях происходило постепенное повышение русла за счет осаждения большого количества транспортируемых наносов при выходе реки с горного или предгорного участка на равнину, при зарегулировании реки происходит изменение общей направленности руслового процесса и начинается "врезка" русла за счет размыва его осветленным потоком.

Вследствие того, что в пределах зоны общего размыва нижнего бьефа расход наносов остается меньше транспортирующей способности потока, происходит размыв зоны отложений. В результате этого поток оказывается полностью насыщен наносами и вновь откладывает их ниже по течению. Таким образом, происходит перемещение вниз по течению зоны отложений.

Это общее для абсолютного большинства исследованных гидроузлов явление наиболее отчетливо проявляется в смещении лимитирующих судоходство перекатов.

В верхнем бьефе, в зоне выклинивания подпора происходит отложение наносов, постепенно смещающееся вверх по течению (регрессивная аккумуляция наносов), иногда с образованием дельты. При этом может происходить повышение уровней воды и распространение подпора вверх.

При резком колебании уровней нижнего бьефа, обусловленном суточным регулированием мощности ГЭС, процесс продвижения вниз по течению зоны интенсивного переформирования и зоны стабилизации русла может несколько замедляться за счет увеличения притока наносов в русло при обрушении и оползании берегов (боковая эрозия) после прохождения попусковых волн. Приток наносов в русло, происходящий за счет боковой эрозии, увеличивает заносимость перекатов и уменьшает их устойчивость. Однако, поскольку зона интенсивной боковой эрозии русла, как и весь процесс его переформирования, смещается вниз по течению, общая направленность этого процесса, выражающаяся в постепенной стабилизации примыкающего к гидроузлу участка нижнего бьефа, сохраняется.

Причиной обрушения берегов в нижнем бьефе является, как правило, интенсивная суффозия грунта береговых откосов фильтрационным потоком, направленным в русло в периоды резкого спада уровней воды в реке при практически мгновенном отключении агрегатов ГЭС.

Увеличение боковой эрозии непосредственно ниже сооружений может происходить в результате изменения направления потока и перераспределения расходов воды на отдельных участках русла реки в нижнем бьефе.

Эрозия берегов бывает также связана с волнами от проходящих судов или другого происхождения, например с волнами, обусловленными работой водосливов.

В процессе переформирования русла нижнего бьефа, перестраивающегося в соответствии с новым гидрологическим режимом потока, во многих случаях отмечается уменьшение извилистости русла и выравнивание разницы между объемами русла на плесовых и перекатных участках. Наряду с размывом перекатов и занесением плесовых участков при взаимодействии зарегулированного потока и русла, этому выравниванию способствуют землечерпательные работы на перекатах, при проведении которых плесовые участки используются для отвалов грунта. В результате речное русло приобретает форму, приближающуюся к форме канала.

В реках с побочневым типом руслового процесса зарегулирование стока может привести, наоборот, к увеличению извилистости русла в связи с тем, что срезка паводков и уменьшение затопления отмелей обусловливает закрепление и зарастание песков и, как следствие, преобразование побочней в пойму.

Процесс трансформации русла нижнего бьефа, имеющий общую тенденцию к затуханию русловых переформирований и к стабилизации русла на участке большой протяженности, заметно интенсифицируется при прохождении высоких паводков. При этом в руслах со сравнительно однородным по крупности грунтом происходят дополнительные размывы и увеличение транспорта наносов, а в руслах, сложенных разнозернистыми грунтами, нарушается слой естественной отмостки, и они становятся не защищенным от размыва меньшими расходами.

Пропуск паводков редкой повторяемости через сооружения гидроузла в период завершения его строительства или в начальный период эксплуатации может вызвать очень быстрое продвижение зоны интенсивной трансформации русла вниз по течению. В этом случае подпор, создаваемый перекатом, образованным в результате отложения продуктов размыва, не распространяется до створа гидроузла.

В зимний период эксплуатации гидроузлов волны суточного регулирования могут явиться причиной подвижек льда и заторных явлений, когда ледяные поля, приведенные в движение волнами попусков, нагромождаясь друг на друга, могут перекрыть отдельные рукава многорукавных русел. Последующие за этим прорывы потока в другие протоки могут привести к существенному их размыву и, как следствие, к увеличению живого сечения и пропускной способности по сравнению с бытовым состоянием. При этом возможно перераспределение потока между рукавами и уход основной части расхода реки во второстепенные рукава. Такие явления особенно важно учитывать в тех случаях, когда они могут нарушить работу водозаборных сооружений и судоходство.

При возведении гидроузлов в створах, характеризующихся наличием проток или рукавов, в период производства работ по возведению бетонных сооружений одна из проток часто бывает перекрыта и весь сток сосредотачивается во второй протоке. Такое перераспределение стока в течение периода, длительность которого может исчисляться несколькими годами, приводит к размыву отложений в работающей протоке с выносом их в основное русло; в перекрытой протоке за это время может произойти интенсивное развитие подводной растительности и кустарника, обусловливающее увеличение шероховатости русла.

Задержка водохранилищем пика паводка и его снижение могут приводить к увеличению отложений на перекатах зарегулированных рек в местах слияния их с незарегулированными притоками. Происходящее при этом увеличение уклонов свободной поверхности в устьевой части притока приводит к увеличению скоростей притока, размыву его русла и выносу большого количества наносов, которые, осаждаясь в русле основной реки, способствуют росту отметок перекатов, расположенных в месте слияния.

Следствием трансформации русла ниже гидроузла является изменение уровенного режима реки в его нижнем бьефе. Это изменение в створе гидроузла и других створах нижнего бьефа характеризуется смещением кривых связи расходов и уровней относительно положения этой кривой к моменту пуска гидроузла. При этом в ряде случаев, переформирования русла нижнего бьефа в строительный период могут вызвать уже к моменту пуска гидроузла смещение кривой расходов по отношению к ее среднемноголетнему (как правило, устойчивому) положению в бытовых условиях.

Прогноз трансформации русла в нижнем бьефе производится в соответствии с Рекомендациями П 95-81/ВНИИГ и методом, изложенным в работе [11], прогноз переработки берегов водохранилищ -- в соответствии с Рекомендациями П 30-75/ВНИИГ, а прогноз заиления -- по Указаниям [12].

Влияние на ледотермический режим водотока

Эксплуатация гидроузла оказывает существенное влияние на преобразование ледотермического режима водотока как в верхнем, так и в нижнем бьефах [26].

В верхнем бьефе гидроузла, как правило, происходит увеличение глубины и ширины потока, что ведет к снижению скоростей течения и интенсивности турбулентного перемешивания на этом участке реки.

Температурный режим верхнего бьефа зависит от времени полного водообмена, объема и глубины в его приплотинной части, морфометрических параметров рельефа, температуры и расхода воды и льда, поступающих в верхнюю часть водохранилища. Существенное влияние на температурный режим верхнего бьефа оказывает компоновка гидроузла, конструкция водозаборных и водосбросных сооружений. Работа гидроузла изолированно или в каскаде также влияет на температуру воды и ледотермический режим водотока.

К числу факторов, под воздействием которых формируется ледотермический режим нижних бьефов ГЭС, относятся:

· температура воды, поступающей из верхнего бьефа в нижний;

· режим расходов, проходящих через ГЭС;

· скорости течения и уровни воды в нижнем бьефе;

· морфометрические характеристики русла в нижнем бьефе;

· работа гидроузла изолированно или в каскаде;

· климат региона: температура и влажность воздуха, облачность, скорость и направление ветра, количество выпавших осадков;

· химический состав воды в потоке (минерализация);

· температурные и криогенные характеристики грунтов ложа;

· наличие притоков и сбросов коммунальных и промышленных предприятий.

Степень влияния каждого из факторов на ледотермический режим нижнего бьефа различна, некоторые из них взаимосвязаны между собой. Например, режим скоростей и уровней связан с режимом расходов и морфометрическими параметрами русла; климат региона зависит от температурного режима как верхнего, так и нижнего бьефов, возможно даже изменение климата вследствие создания гидроузла.

Грунты ложа определяют не только шероховатость русла (и следовательно, гидравлический режим потока), но и оказывают влияние на теплоприток от дна и температуру воды, а также на процесс образования донного льда.

Существенное влияние на процессы льдообразования в нижнем бьефе оказывает химический состав воды. Так в нижних бьефах гидроузлов, расположенных на устьевых участках рек, впадающих в море, вследствие смешения пресных речных и соленых морских вод часто наблюдается интенсивное шугообразование, вызывающее формирование зажоров, подъем уровней и подтопление примыкающих территорий.

На температуру воды в нижних бьефах ГЭС большое влияние оказывает проточность водохранилища. Чем больше проточность, тем интенсивнее турбулентный теплообмен в водохранилище, тем, при прочих равных условиях, теплее вода, сбрасываемая в летний период, и холоднее в зимний.

Влияние на гидрохимический режим водотока

Создание водохранилищ приводит к значительным изменениям условий формирования качества воды. Гидрохимический режим бьефов ГЭС является следствием естественных процессов образования и таяния льда, испарения и выпадения осадков, антропогенной нагрузки на водоем, а также следствием процессов самоочищения, складывающихся под влиянием притока в водохранилище, боковой приточности, режимов сброса расходов воды через ГЭС. При этом существенными факторами, под воздействием которых происходит формирование гидрохимического режима, являются:

· природные фоновые характеристики качества воды;

· морфометрические характеристики водохранилища, в том числе глубина сработки уровня воды и мертвый объем;

· водообмен, степень проточности;

· сброс хозяйственно-бытовых и производственных сточных вод в водные объекты и на рельеф местности;

· процессы образования и таяния льда;

· процессы биологического самоочищения водоема;

· температура воды;

· смещение фаз гидрохимического режима и амплитуды максимумов концентрации примесей;

· режим поступления загрязняющих веществ, в том числе химических веществ, с высокой сорбционной способностью, аккумулированных в ледяном покрове, включая нефтепродукты (особенно при их аварийном поступлении на ледяной покров);

· химический состав пород и подземных вод ложа и бортов водохранилища.

Водообмен или степень проточности сказывается на времени запаздывания прохождения менее минерализованной паводочной воды по отношению ко времени наступления фаз гидрохимического и термического режимов. Под действием этого фактора движение с малыми скоростями в пределах водохранилищ ведет к накоплению излишних примесей в единице объема. Чем больше время водообмена в водохранилище, тем больше примесей оно накапливает, тем больше загрязнений сбрасывается с водой в нижний бьеф. Процессы образования и таяния льда являются тем механизмом, который разбавляет воду в период половодья за счет таяния льда до минимальных концентраций в конце паводка и увеличивает ее концентрацию в период ледостава за счет вытеснения примесей в подледный поток в процессе роста льда. Лед является одним из источников поступления чистой воды в водоемы и водотоки, причем объем весеннего снего- и льдотаяния определяет уровень минерализации водоема к весне будущего года. Чем больше сбрасывается в водоем талой воды, тем более глубокая очистка водоема производится [33].

1.2.3 Зарегулированность водного стока рек РБ прудами и водохранилищами

Сток рек Башкортостана характеризуется значительной изменчивостью внутри города. В соответствии с этим предъявляются требования к улучшению условий водопользования, что обуславливает необходимость зарегулирования речного стока. Строительство прудов и водохранилищ на Урале началось в XVIII - XIX вв., что было связанно с развитпем горнозаводского производства и необходимостью водоснабжения многочисленных металлургических заводов. Это в последующем сопровождалось строительством значительного количества прудов, а после 1917 г. - гидроэлектростанций на малых и средних реках.

В настоящее время реки республики характеризуются достаточной зарегулированностью. Преимущественным назначением существующих водохранилищ и прудов в Предуралье и Зауралье является обеспечение потребностей водоснабжения, а также орошаемого земледелия, гидроэнергетки и рыбного хозяйства.

В целях более подробного изучения особенностей зарегулирования речного стока и их эксплуатации водных объектов в хозяйственных целях в 1976 - 1982 гг. под руководством А.М. Гареева было выявлено, что плотины до 30 % от общего количества прудов во время весеннего половодья ежегодно размываются, а последующее их восстановление производится в меженный период. Резкое сокращение и во многих случаях прекращение стока ниже восстановленных плотин наносит фауне водных объектов непоправимый ущерб. Это обуславливает необходимость усовершенствования водосливных сооружений широкого применения гибких плотин, отличающихся от построенных хозяйственным способом высокой экономической и экологической эффективностью, а также проведение водоохранных мероприятий на водосборе.

Реки Белая, Буй, Ик и их притоки, а также р. Урал в верховьях зарегулированы, в основном, в целях улучшения условий водоснабжения промышленных предприятий и узлов (города Белорецк, Учалы, Сибай п. Карманово). Самыми крупными в республике являются Павловское и Нугушское водохранилища комплексного назначения, построенные соответственно в 1961, 1966. Существенная зарегулированность стока р. Белой в нижней части обусловлена влиянием Бельского отрога Нижнекамского водохранилища [1].

Водохранилища в основном сезонного регулирования. Степень зарегулированности стока существенно дифференцируется по бассейнам рек, что зависит как от потребностей хозяйственных объектов, так и удобства территорий. Если в бассейне р. Белой наиболее крупные водохранилища размещены на притоках (Павловское - на р. Уфа, объем 1,41 км3; Нугушское на р. Нугуш, объем 0,4 км3), то на р. Урал - главным образом на самой реке.

По состоянию на 1 января 1999 г. По данным Бельского БВУ в пределах республики насчитывается около 450 водохранилищ и прудов. Кроме указанных водоемов эксплуатируется значительное количество мелких прудов, построенных хозяйственным способом. В соответствии с отсутствием проектов на них, а также почти ежегодным размывом и неравномерным восстановлением их плотин представлять подробные сведения о них затруднительно.

Суммарный объем водохранилищ и прудов достигает 2,43 км3, общая площадь их водного зеркала - 312,6 км2. Общие потери речного стока за счет дополнительных потерь на испарение с поверхности их акваторий превышают 0,20 км3/год.

Как по территориям административных районов, так и бассейнам рек искусственные водоемы распределены весьма неравномерно. Это в основном зависит от общих потребностей в водопользовании и удобства их возведения с учетом рельефа местности. В то же время, наибольшее количество водоемов насчитывается в тех районах, территории которых отличаются высокой освоенностью, в т. ч. Развитием оросительной мелиорации и др.: в Аургазинском (21), Бакалинском (18), Буздякском (26), Дюртюлинском (40), Илишевском (17), Ишимбайском (17), Миякинском (14), Туймазинском (14), Федоровском (14), Чишминском (16) районах. В отдельных районах имеется небольшое количество водоемов. Так, в Абзелиловском и Архангельском районах насчитывается по 4 объекта, Балтачевском - 2, Белокатайском - 4, Белорецком - 5, Гафурийском - 2, Дуванском - 2, Зианчуринском - 1, Зилаирском - 5, Калтасинском - 1, Кигинском и Краснокамском - по 2, Мечетлинском, Мишкинском и Нуримкновском - по 1, Татышлинском - 3, Янаульском - 4.Это, в одних случаях можно объяснить относительно благоприятными условиями увлажнения территорий, в других - небольшими значениями густоты речной сети в условиях засушливости климата или развития карста.

Наибольшей степенью искусственной зарегулированности характеризуются реки, бассейны которых расположены в пределах Предуралья (рр. Ашкадар, Уршак, Дема, Чермасан, База, Сюнь, Усень), где удельная площадь прудов превышает 0,02 га/км2. Реки Быстрый Танып, Буй в Предуралье; Ай, Юрюзань Северо-Восточной лесостепи; Урал (в верховьях), а также её притоки Янгелька, Большой Кизил, Худолаз, Таналык, Сакмара характеризуются несколько меньшей зарегулированностью.

В пределах Уфимского плато и горного Башкортостана количество прудов незначительно. В то же время здесь находятся наиболее крупные гидроузлы - Павловское и Нугушское водохранилища [1].

Из числа средних по размерам гидроузлов следует привести Буйский (134 млн. м3), Слакский (135 млн. м3), Хворостянский (14,2 млн. м3), Маканский (9,3 млн. м3) и др., последние два из которых построены соответственно на рр. Таналык и Макан в 1996г. И 1998 г.

Назначение гидротехнических сооружений, в основном, комплексное. В то же время в районах, отличающихся интенсивным проявлением эрозионных процессов, имеются и пруды с преимущественно противоэрозионным назначением.

Оценивая влияние прудов на сток малых и средних рек, следует заметить, что оно зависит как от географической зональности, так и защищенности водоемов хребтами, горными образованиями, древесной растительностью и др. Это подтверждается расчетами по различным регионам страны. Так, в работе И.М. Кургановой (1972) показано, что в Белоруссии, основная часть территории которой находится в условиях достаточного увлажнения, уменьшение речного стока под влиянием прудов происходит несущественно. В то же время в регионах расположенных южнее Белоруссии (Украина, Центрально-Черноземный район РФ и др.) в средние по водности годы в результате потерь на испарение происходит снижение стока рек на 3-8%, возрастая в отдельных бассейнах до 15-23%, в маловодные годы - до 16-32%. Наибольшим испарением, соответственно снижением стока, характеризуются территории южных районов.

Изучение влияния водохранилищ на сток крупных рек проводилось в течение продолжительного времени, на основании которого можно установить снижение стока в различных бассейнах рек. Так, например, расчеты, проведенные И.А. Шикломановым (1979), показывают, что в результате этого среднегодовой сток р. Волги снизился на 15%, Урала - на 2,5%, Дона - на 7%.

Анализ снижения годового стока рек Башкортостана под влиянием прудов и водохранилищ, осуществленный А.М. Гареевым (1995) с учетом площадей водосборов относительно замыкающих створов показал, что оно за счет дополнительных потерь на испарение с их поверхности на больших, средних и малых реках происходит дифференцированно. Большие реки, включая р. Белую и её притоки - реки Уфа и Дема, характеризуются ограниченным количеством существующих крупных водохранилищ. К тому же они расположены главным образом в горной и расчлененной пригорной частях, что обусловливает большие показатели средних глубин и защищенность акватории. Это снижает дополнительные потери на испарение. Таким образом, снижение стока этих рек происходит незначительно (1-3%), что находится в пределах погрешности самих гидрологических расчетов. Как было показано выше, несущественно снижение годового стока под влиянием водохранилищ в пределах Башкортостана и на р. Урал (2,5%), что следует принять в качестве характерного значения изменения стока для рек лесостепной зоны в целом.

Влияние на сток рек прудов и водохранилищ, расположенных на средних и малых водотоках, в зависимости от их количества, суммарной площади и морфометрических характеристик заметно дифференцируется по площадям водосборов. Об этом свидетельствуют материалы расчетов, выполненных А.М. Гареевым по 39 бассейнам рек, выбранных в пределах изучаемого региона (1989,1995).

Площади их водосборов (F) изменяются от 68,0 км2 (р. Карамалы - устье) до 3570 км2 (р. Чермасан - д. Новоюрманово). Они характеризуются весьма различной зарегулированностью. Наибольшее количество прудов относительно расчетных створов насчитывалось на реках Ашкадар (16), Уршак (17), Чермасан (42), Сюнь (11), Усеннь (31) с площадями водосборов более 2000 км2. На реках меньшего порядка (F< 500 км2) их насчитывалось гораздо меньше (от 1 до 9), за исключение ре Большой, Малый Нугуш, при площадях водосборов, равных 594 и 199 км2 на них функционировали 17 и 11 гидротехнических сооружений соответственно. Наблюдения показывают, что в условиях высокого зарегулирования речного стока, во многих прудах и малых водохранилищах, расположенных в лесостепной и степной зонах, обнаруживается ежегодная евтрофикация с интенсивным развитием сине - зеленых водорослей. К неблагоприятным процессам, формирующимся при искусственном зарегулировании речного стока, кроме того, относятся: резкое нарушение условий миграции рыб, уничтожение нерестилищ, ухудшение условий обитания для наиболее ценных видов, затопление и подтопление значительных территорий, имеющих важное хозяйственно - экономическое и экологическое значение. Следует обратить внимание на то, что имеющиеся высказывания о возможности активизации процессов водообмена в подземных водоносных горизонтах (например, в пределах Белебеевско - Стерлибашевской возвышенности) в результате строительства 500 - 600 прудов с эколого-экономической точки зрения являются не совсем оправданными. Анализ архивных и ведомственных материалов показывает, что по сравнению с 18-м 19-м столетиями в настоящее время бассейны малых и средних рек Башкортостана испытывают чрезмерную нагрузку хозяйственной деятельностью человека. Сведение лесов, распашка территорий и последующая их эксплуатация с применением органических и минеральных удобрений, многократный перевыпас скота на водосборе, поступление загрязняющих веществ с селитебных территорий и многие другие факторы способствуют евтрофикации водоемов, но и наносят существенный экологический и экономический ущерб природным и природно-хозяйственным комплексам [1]. Наиболее критические условия связаны со случаями прорывов плотин ГТС. Они происходят не только га прудах и малых водохранилищах вследствие нарушений режимов их эксплуатации, но и характерны для водоемов с большими площадями зеркала и объемами. Примером этому является катастрофа, связанная с прорывом плотины Тирлякского пруда (на правом притоке р.Белой в верховьях) в 1995 г.

Виды и масштабы хозяйственной деятельности в бассейнах рек различной категории должны согласовываться с оптимальными требованиями природопользования и природоохранных мероприятий, с включая факторы, связанные с хозяйственной деятельностью человека как на водосборе, так и на самом водном объекте.

1.2.4 Использование водных ресурсов рек в других хозяйственных целях

Известно, что природная вода используется людьми для удовлетворения их всевозможных потребностей. В то же время, в зависимости от специфики водопользования и оказания влияния на природные водные объекты выделяются промышленное, коммунально-бытовое, хозяйственно-питьевое, сельскохозяйственное водоснабжение, использование водных ресурсов в целях орошения, гидроэнергетики, речного транспорта, рыбного и лесного хозяйства, рекреации, здравоохранения и др.

Рисунок 1- Потенциальный запас водных ресурсов (баллы).

Использование водных объектов осуществляется с изъятием (забором воды) или без изъятия (например, в речном транспорте, рыбном хозяйстве) водных ресурсов. Сложная и многоуровневая система водоснабжения различных водопользователей образуют водохозяйственный комплекс, управляемый и контролируемый в целом отраслью экономики "водное хозяйство" [2].

Рисунок 2- Интенсивность использования водных ресурсов (баллы).

Таким образом, функции водного хозяйства реализуются с помощью различных водохозяйственных и гидротехнических объектов межотраслевого и отраслевого назначения, водохозяйственных комплексов, систем, агротехнических и лесотехнических мероприятий.

Государственное управление водным хозяйством в Республике Башкортостан осуществляется Кабинетом Министров РБ, исполнительными органами на местах, Госкомэкологией РБ, а также специальным уполномоченным органом - Бельским бассейновым водным управлением.

Количество учтенных водопользователей в 2005 г. по Республике Башкортостан в целом составило 1587 предприятия (табл. 2). Забор воды из природных водных объектов ими осуществляется в количестве 837,85 млн. куб. м, в том числе из поверхностных источников было забрано 438,74 млн. куб. м, из подземных - 399,1 млн. куб. м.

Таким образом, из общего объема свежей воды, забранной из природных водных объектов, доля поверхностных вод составила 53,0 %, подземных - 47,0 %.

В целях удовлетворения различных хозяйственных потребностей было использовано всего 777,71 млн. куб. м, в том числе на производственные нужды 419,24 млн. куб. м, хозяйственно-питьевое водоснабжение - 286,66 млн. куб. м, сельскохозяйственное водоснабжение 20,67 млн. куб. м, орошение - 11,41 млн. куб. м и прочие нужды - 16,77 млн. куб. м.

Анализируя динамику забора и использования водных ресурсов по видам водопользования за 1999 - 2005 гг. следует отметить, что в целом наблюдается тенденция его сокращения (см. табл. 3). Использование водных ресурсов на хозяйственно-питьевые нужды увеличилось в среднем на 4 %, что связано с увеличением потребления воды городским населением. Однако следует отметить то, что при этом велики потери воды в сетях водоснабжения (до 20 % и более).

Таблица 3- Динамика использования природных ресурсов Республики Башкортостан за 1999 - 2005 годы, млн. м3.

Наименование показателей

Годы

1999

2000

2001

2002

2003

2004

2005

Забрано пресной воды, всего

964,0

947,0

927,16

898,3

876,6

858,66

837,9

Использовано, в т.ч.

904,0

880,0

863,45

841,5

822,8

805,42

777,7

На промнужды

449,0

447,0

444,75

438,4

420,6

423,64

419,2

На хозпитьевые нужды

318,0

343,0

327,37

318,8

307,6

298,29

286,7

На орошение

18,0

10,0

11,1

12,7

12,8

10,96

11,4

На с/х водоснабжение

89,0

48,0

40,5

33,3

29,4

23,59

20,7

Объем оборотного водоснабжениея

5424,0

5611,0

5442,2

4940,9

4896,1

4831,9

5191,2

Экономия свежей воды за счет оборотного и повторного водоснабжения в %

92,3

93,0

92,0

92,0

92,0

92,0

93,0

Снижение использования воды промышленностью большей частью произошло за счет уменьшения объемов производства и в меньшей степени за счет внедрения водосберегающих технологий. Наиболее водоемкими отраслями народного хозяйства являются: электроэнергетика (37,7 % объема воды, используемой в промышленности), химическая и нефтехимическая (17,5 %), нефтедобывающая (10,0 %) промышленность, черная металлургия 5,3 %.

В промышленности более 85 % технологического расхода воды приходилось на долю оборотного и поворотного водоснабжения. Безвозвратное потребление относительно природных водных объектов составило 365,92 млн. куб. м. Снижение этого показателя во времени объясняются сокращением объёмов воды, используемой в системах оборотного водоснабжения.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.