Проблемы водоснабжения России

Формирование химического состава подземных вод. Миграция элементов в подземных водах. Водные ресурсы и баланс Кавказа. Влияние химического состава воды на здоровье населения. Методы определения показателей, гигиенические нормативы качества питьевой воды.

Рубрика Экология и охрана природы
Вид дипломная работа
Язык русский
Дата добавления 14.07.2010
Размер файла 159,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.8 Гигиеническая оценка источников и систем водоснабжения

Для целей водоснабжения могут применятся атмосферные, поверхностные и подземные воды, причем первые используются для хозяйственно-питьевых нужд лишь маловодных районах.

К открытым водоемам относятся реки, озера, водохранилища, каналы и пруды. По вполне понятным причинам они всегда подвержены опасности загрязнения и инфицирования, особенно в зоне расположения крупных населенных пунктов и выпусков бытовых и производственных стоков. При этом качество речной воды отчасти зависит от сезона года: водоем, находящийся подо льдом, фактически лишается поверхностного питания, в период половодья, наоборот, значительно повышается роль атмосферного стока, что сильно отражается на санитарном состоянии реки. В результате для открытых водоисточников характерна непостоянство химического и бактериологического состава воды.

Говоря о возможности загрязнение поверхностных водоемов, нельзя забывать об их способности к самоочищению, что отчасти обусловливается простым разбавлением поступающих стоков и осаждением на дно крупных взвешенных веществ, мелкие же частицы предварительно подвергаются процессу коагуляции. Вместе с тем происходит химическое окисление органических соединений растворенным в воде кислородом. Однако основным фактором самоочищения является все-таки биологический распад загрязняющих веществ, играющий наиболее существенную роль в обезвреживании фекально-хозяйственных и некоторых производственных стоков.

Аналогичные процессы происходят с токсическими органическими соединениями, которые в состоянии утрачивать свою ядовитость как за счет разбавления, так и за счет физико-химических и биологических факторов внешней среды. В частности, некоторые вредные вещества переходят в нетоксические ингредиенты, разрушаются или улетучиваются из воды. опасности загрязнения и инфицирования, особенно в зоне расположения крупных реки.

Плановое использование природных водных ресурсов требует во многих случаях значительных изменений в режиме поверхностного стока, регулирования течения рек и т.д. Следовательно, одним из важных аспектов воздействия на открытые водоемы являются самые различные виды крупного гидротехнического строительства, то есть мощные электростанции, большие водохранилища и каналы.

Специфической чертой искусственных водохранилищ является повышение содержание в них биогенных веществ, что содействует массовому развитию фитопланктона и летнему цветению воды. В результате возможно некоторое понижение ее прозрачности, появление характерного запаха и привкуса, образование дефицита кислорода.

Таким образом, при строительстве и эксплуатации водохранилищ необходимо строгое соблюдение целой системы профилактических мероприятий. Первостепенное значение имеют тщательная подготовка ложа водохранилища и запрещение выпуска в него бытовых и промышленных стоков.

При гигиенической характеристике открытых водоемов имеют значение как биохимические, так и биологические показатели. К первым можно отнести определение содержания в воде растворенного кислорода, главными источниками которого являются атмосфера и фотосинтез его водной растительностью. О завершении самоочищение принято судить по восстановлению кислородного режима водоемов, когда концентрация этого газа в летний период достигает не менее 4 мг/л.

Важнейшим источником питьевого водоснабжения служат подземные воды, которые принято разделять на почвенные, грунтовые и межпластовые. Как известно, эти воды образуются в результате просачивания в грунт атмосферных осадков, а также путем конденсации водяных паров, проникающих в поры почвы. Указанное явление зависит от разности их упругости в почвенном и атмосферном воздухе.

Вода, которая скапливается в первом от поверхности водоупорном слое, обычно называется грунтовой. В зависимости от местных условий глубина ее залегания колеблется от 1- 2 до нескольких десятков метров, причем в приделах населенных пунктов она может загрязняться и инфицироваться. Однако наиболее опасна в указанном отношении верховодка, представляющая собой самый поверхностный водоносный слой, расположенный выше грунтового горизонта.

Межпластовые воды, как показывает само название, располагаются между двумя водоупорными пластами и более надежно защищены от поверхностного стока, особенно глубокие, напорные подземные воды, именуемые артезианскими, которые проходят большой путь от места водосбора, почти полностью освобождаясь от органических веществ и микробов.

Однако на практике мы не можем полностью исключить опасность заражения и загрязнения даже очень глубоких водоносных горизонтов, что может происходить через трещины в земных породах, поглощающие колодцы, заброшенные шахты и т.д. Это делает необходимым проведение повседневного лабораторного контроля за грунтовыми водоисточниками при любой глубине их залегания.

Наряду с качеством воды большое гигиеническое значение имеют особенности ее получения и доставки. При этом различают системы децентрализованного (местного) и централизованного водоснабжения [24]. Первая из них по вполне понятным причинам является более примитивной, трудоемкой и опасной в эпидемиологическом отношении. Основным способом получения воды при данной системе служат различного вида колодцы.

Очевидные санитарные преимущества имеют глубокотрубчатые или буровые колодцы (скважины), которые могут обеспечивать получение воды из глубоких, надежно защищенных горизонтов. Поэтому они используются для устройства водопроводов как в городах, так и в сельской местности.

Необходимо подчеркнуть, что устройства любой системы централизованного водоснабжения следует начинать с принципиального решения трех основных вопросов: выбора источника питания водопровода, установления зон его санитарной охраны и определения необходимых мероприятий по очистке и обеззараживанию воды. Наиболее трудной и ответственной задачей является нахождение достаточно мощного водоема, удовлетворяющего определенным гигиеническим требованиям. При этом нужно предусматривать не только текущие нужды населения, но и рост водопотребления на 10 - 15 лет вперед.

Рис. 1. Примерная схема водопровода

1-водоем; 2- заборные трубы и береговой колодец; 3 - насосная станция 1-го подъема; 4 - очистные сооружения; 5- резервуары чистой воды; 6 - насосная станция 2-го подъема; 7- трубопровод; 8-напорная башня; 9-разводящая сеть; 10- место водопотребления.

Как указывалось выше, для хозяйственно-питьевых целей лучше всего использовать межпластовые воды, в определенной степени защищенные от попадания внешних загрязнений и обладающие более благоприятными стабильными физическими свойствами. Однако практика показывает, что для больших городов очень трудно найти достаточно мощные подземные водоисточники, поэтому для этой цели широко применяются открытые водоемы. Как видно из рис1, в схеме централизованного водоснабжения необходимо различать головные сооружения водопровода и разводящую сеть. К первым из них относятся водозаборные скважины для чистой воды и т.д. Распределение же воды на обслуживаемом участке производится с помощью сети подземных труб, обычно изготовляемых из чугуна.

В настоящее время вспышки водных инфекций связаны не столько с неудовлетворительной эксплуатацией головных сооружений, сколько с непосредственным проникновением загрязнений в распределительную сеть. В этом отношении наиболее уязвимыми являются стыки между отдельными трубами и водоразборные колонки.

Таким образом, состояние любой системы централизованного водоснабжения нуждается в строжайшем, повседневном контроле, который необходим также при определении эффективности очистки и обеззараживания воды.

Глава 2 Экспериментальная часть

2.1 Организация контроля за качеством воды централизованных систем питьевого водоснабжения

Контроль за качеством питьевой воды, осуществляющийся до настоящего времени в соответствии с требованиями ГОСТ 2874-82 «Вода питьевая», не в полной мере давал реальное представление о качестве воды и самое главное не обязывал выбирать контролируемые показатели в зависимости от конкретных условий.

Сохранив преемственность ГОСТ 2874-82, вышли в свет новые ГОСТы, санитарные правила и нормы, методические указания по контролю за качеством питьевой воды.

Контроль качества питьевой воды проводится согласно ГОСТ Р 51232-98 «Вода питьевая. Общие требования к организации и методам контроля качества»:

a) в местах водозабора из источника водоснабжения, перед поступлением её в распределительную водопроводную сеть;

б) в точках распределительной сети:

- из уличных водоразборных устройств на основных магистральных линиях;

- на наиболее возвышенных и тупиковых участках сети;

- из наиболее удаленных от насосной станции участков сети;

- в точках, в которых качество воды вызывает сомнение;

- из кранов внутренних водопроводных сетей домов [23].

Отбор проб питьевой воды, подаваемой централизованными системами питьевого водоснабжения и предназначенной для потребления в питьевых и бытовых целях, в том числе используемой для производства пищевых продуктов и напитков для исследований проводится согласно ГОСТ Р 51593-2000 «Вода питьевая. Отбор проб» [25].

Пробы воды из распределительной сети отбираются в период наибольшего расхода воды.

Методы отбора, подготовки к определению состава и свойств, транспортированию и хранению проб воды обеспечивают неизменность состава проб в интервале времени между отбором проб и их анализом.

При отборе проб в одной и той же точке для различных целей первыми отбирают пробы для бактериологического анализа. Для получения представительной пробы необходимо отбирать воду в точке, где исследуемые компоненты распределены равномерно. Для этого пробу отбирают из системы с перемешивающимся потоком на расстоянии, максимально удаленном от различных препятствий, таких как изгибы или задвижки. Отбирают пробу на прямом участке трубопровода.

Перед отбором проб не менее 10 минут сливают застоявшуюся воду. При необходимости отбора проб из тупиковых участков трубопровода время слива застоявшейся воды можно увеличить до 30 минут.

При отборе проб из крана потребителя время слива воды перед отбором проб зависит от цели отбора. Если целью отбора является оценка влияния материалов, контактирующих с водой, на качество воды, то пробу отбирают без предварительного слива воды из первой порции. При отборе проб для определения микробиологических показателей металлические краны предварительно обжигают, а пластмассовые дезинфицируют и проводят спуск воды не менее 10 минут при полностью открытом кране.

Для проведения химико-аналитического контроля качества воды пробы отбирают в емкости из химически стойкого стекла с притертыми пробками и в полиэтиленовые емкости. Перед отбором проб емкости не менее двух раз ополаскивают водой, подлежащей анализу, и заполняют до верха.

Для определения в пробе кислорода или сероводорода при отборе проб используется шланг, достигающий дна емкости. Этим избегается контакт воды с атмосферным воздухом.

Вода подвергается анализу в день отбора. Если это невозможно, отобранную пробу охлаждают или подвергают консервации.

Объем пробы устанавливается в зависимости от числа и номенклатуры исследований в соответствии с НД на метод определения и с учетом повторного анализа. Для проведения химико-аналитического контроля качества воды отбирается пять литров воды. В отдельные емкости отбирается вода: для определения фтора - в полиэтиленовые флаконы объемом 500 мл; для определения остаточного хлора - в стеклянные на 500 мл; для определения растворенного кислорода - во взвешенные стеклянные на 250мл.

После отбора проб вода под действием повышенной температуры, света, взаимодействия с воздухом и проч. меняет свой химический состав. Иногда нет возможности провести все исследования в день отбора проб. Поэтому некоторые виды исследований необходимо проводить на месте отбора или пробу подвергать консервации. Для дальнейшего исследования на содержание алюминия, растворенного кислорода и сероводорода пробы воды консервации подвергались.

1. Консервация для последующего определения алюминия - пробу консервируют на месте отбора добавлением концентрированной соляной кислоты из расчета 3 см3 на 1000 см3 пробы и анализируют не ранее чем через 15-20 минут. Пробу хранят не более 3 суток.

1. Консервация для последующего определения растворенного кислорода - кислород в пробе консервируют на месте тотчас же после отбора пробы. Для этого в неё вводят пипеткой 1 мл сульфата марганца и 1 мл щелочного раствора йодида калия на 100 мл пробы. После введения реактивов закрывают склянку пробкой, следя за тем, чтобы в ней не осталось пузырьков воздуха. Затем содержимое тщательно перемешивают. В таком состоянии проба может храниться не более суток.

2. Консервация для последующего определения массовой концентрации сероводорода. Сероводород обычно обнаруживается в пробах в которых визуально присутствуют взвешенные вещества. Поэтому перед фиксацией пробы проводится её коагуляция, чтобы осадить взвесь. Вследствие неустойчивости сероводорода отбор пробы производят сразу после отбора пробы для определения растворенного кислорода также с помощью сифона. В склянку с притертой пробкой вместимостью 1 дм3 наливают воду так, чтобы первая порция вылилась из склянки. Добавляют 5 мл 20% раствора хлорида алюминия и 3 мл раствора гидроксида натрия с концентрацией 4 моль/дм3. Склянку закрывают пробкой, встряхивают и дают отстояться в течение 20-30 минут. Затем с помощью сифона отбирают из середины склянки прозрачную воду в заранее взвешенную склянку вместимостью 500 мл с притертой пробкой. Добавляют 5 мл раствора N,N-диметил-п-фенилендиамин дигидрохлорида (ДМДФА) и 5 мл 5% раствора хлорида железа (III). Проба может храниться не более 3 суток.

Выбор показателей, характеризующих химический состав питьевой воды, для проведения расширенных исследований проводится организацией, осуществляющей эксплуатацию системы водоснабжения, совместно с центром санэпиднадзора в два этапа. центр госсанэпиднадзора разрабатывает

На первом этапе анализируются следующие материалы за период не менее 3-х последних лет:

· государственной статистической отчетности о составе и объемах сточных вод, поступающих в источники водоснабжения выше места водозабора в пределах их водосборной территории;

· органов охраны природы, гидрометеослужбы, управления водными ресурсами, геологии и использования недр о качестве поверхностных, подземных вод и питьевой воды в системе водоснабжения по результатам осуществляемого ими мониторинга;

· центра госсанэпиднадзора по результатам санитарных обследований предприятий и организаций, осуществляющих хозяйственную деятельность и являющихся источниками загрязнения поверхностных и подземных вод, а также по результатам исследований качества вод в местах водопользования населения и в системе водоснабжения.

На втором этапе организации, осуществляющие эксплуатацию систем водоснабжения, проводят расширенные лабораторные исследования воды.

Центром госсанэпиднадзора анализируются результаты расширенных исследований химического состава воды по каждой системе водоснабжения и с учетом оценки санитарно-гигиенических условий питьевого водопользования населения и санитарно-эпидемиологической обстановки на территории г. Нальчика и прилегающих поселков, определяется потенциальная опасность влияния присутствующих в воде химических веществ на здоровье населения.

При обнаружении в питьевой воде нескольких химических веществ, относящихся к 1 и 2 классам опасности и нормируемых по санитарно-токсикологическому признаку вредности, сумма отношений обнаруженных концентраций каждого из них в воде к величине его ПДК должна быть больше 1.

Расчет ведется по формуле:

++…+ ?1,

где С1, С2, Сn - концентрации индивидуальных химических веществ 1 и 2 класса опасности: факт. (фактическая) и доп. (допустимая).

Благоприятные органолептические свойства воды определяются её соответствием по запаху, вкусу, цветности и мутности, а также нормативам содержания веществ, оказывающих влияние на органолептические свойств. Не допускается присутствие в питьевой воде различимых невооруженным глазом водных организмов и поверхностной пленки.

В соответствии с Федеральным законом «О санитарно-эпидемиологическом благополучии населения» за качеством питьевой воды осуществляется государственный санитарно-эпидемиологический надзор и производственный контроль.

Производственный контроль качества питьевой воды обеспечивается индивидуальными предпринимателями и юридическими лицами, осуществляющими эксплуатацию системы водоснабжения, т.е. «Водоканалом» и индивидуальными предпринимателями на территории которых находятся водозаборы. Качество питьевой воды постоянно контролируется в местах водозабора, перед поступлением в распределительную сеть, а также в точках водоразбора наружной и внутренней водопроводной сети.

Количество и периодичность проб воды в местах водозабора, отбираемых для лабораторных исследований, устанавливается с учетом требований санитарных правил и норм (СанПиН) 2.1.4.1074-01 и соответствует:

Виды показателей

Количество проб в течение одного года, не менее

Для подземных источников

Для поверхностных источников

Микробиологические

4 (по сезонам года)

12 ежемесячно

Паразитологические

не проводятся

12 ежемесячно

Органолептические

4 (по сезонам года)

12 ежемесячно

Обобщенные показатели

4 (по сезонам года)

12 ежемесячно

Неорганические и органические вещества

1

4 (по сезонам года)

Радиологические

1

1

Виды определяемых показателей и количество исследуемых проб питьевой воды перед её поступлением в распределительную сеть установлены следующим образом:

Таблица:

Виды показателей

Количество проб в течение одного года,

не менее

Для подземных источников

Для поверхностных источников

Численность населения, обеспечиваемого водой из данной системы водоснабжения, тыс. чел.

свыше 100

свыше 100

Микробиологические

365

365

Паразитологические

не проводятся

12

Органолептические

365

365

Обобщенные показатели

12

24

Неорганические и органические вещества

1

12

Показатели, связанные с технологией водоподготовки

Остаточный хлор - не реже одного раза в час, остальные реагенты не реже одного раза в смену

Радиологические

1

1

2.2 Методы определения показателей качества питьевой воды

2.2.1 Метод определения содержания вкуса, запаха, цветности и мутности

1.Область применения

Настоящий стандарт распространяется на питьевую воду и устанавливает органолептические методы определения запаха, вкуса и привкуса и фотометрические методы определения цветности и мутности.

2 . Отбор проб

Отбор проб производят по ГОСТ 24481-80.

Объем пробы воды не должен быть менее 500 мл.

Пробы воды для определения запаха, вкуса, привкуса и цветности не консервируют. Определение производится не позднее, чем через 2 ч после отбора пробы.

3. Органолептические методы определения запаха

3.1. Органолептическими методами определяют характер и интенсивность запаха.

3.2. Проведение испытания.

3.2.1. Характер запаха воды определяют ощущением воспринимаемого запаха (землистый, хлорный, нефтепродуктов и др.)

3.2.2. Определение запаха при температуре 200С.

В колбу с притертой пробкой вместимостью 250-350 мл отмеривают 100 мл испытуемой воды с температурой 200С. Колбу закрывают пробкой, содержимое колбы несколько раз перемешивают вращательными движениями, после чего колбу открывают и определяют характер и интенсивность запаха при 600С.

3.2.3. Определение запаха при температуре 600С.

В колбу отмеривают 100 мл испытуемой. Горлышко колбы закрывают часовым стеклом и подогревают на водяной бане до 50-600С.

Содержимое колбы несколько раз перемешивают вращательными движениями.

Сдвигая стекло в сторону, быстро определяют характер и интенсивность запаха.

3.2.4. Интенсивность запаха определяют при 20 и 600С и оценивают по пятибалльной системе согласно требованиям таблицы 2.

Таблица 2

Интенсивность запаха

Характер проявления запаха

Оценка интенсивности запаха, балл

Нет

Запах не ощущается

0

Очень слабая

Запах не ощущается потребителем, но обнаруживается при лабораторном исследовании

1

Слабая

Запах замечается потребителем, если обратить на это его внимание

2

Заметная

Запах легко замечается и вызывает неодобрительный отзыв о воде

3

Отчетливая

Запах обращает на себя внимание и заставляет воздержаться от питья

4

Очень сильная

Запах настолько сильный, что делает воду непригодной к употреблению

5

4. Органолептический метод определения вкуса

4.1. Органолептическим методом определяют характер и интенсивность вкуса и привкуса.

Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький.

Все другие виды вкусовых ощущений называются привкусами.

Проведение испытания.

Характер вкуса или привкуса определяют ощущением воспринимаемого вкуса или привкуса (соленый, кислый, щелочной, металлический и т.д.)

Испытываемую воду набирают в рот малыми порциями, не проглатывая, задерживая 3-5 с.

Интенсивность вкуса и привкуса определяют при 200С и оценивают по пятибалльной системе согласно требованиям таблицы.

Таблица 3

Интенсивность вкуса и привкуса

Характер вкуса и привкуса

Оценка интенсивности вкуса и привкуса, балл

Нет

Вкус и привкус не ощущаются

0

Очень слабая

Вкус и привкус не ощущается потребителем, но обнаруживается при лабораторном исследовании

1

Слабая

Вкус и привкус замечаются потребителем, если обратить на это его внимание

2

Заметная

Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде

3

Отчетливая

Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья

4

Очень сильная

Вкус и привкус настолько сильный, что делает воду непригодной к употреблению

5

5. Фотометрический метод определения цветности

Цветность воды определяют фотометрически - путем сравнения проб испытуемой жидкости с растворами, имитирующими цвет природной воды.

5.1. Построение градуировочного графика

Градуировочный график строится по шкале цветности. Полученные значения оптических плотностей и соответствующие им градусы цветности наносят на график.

Таблица 4

Раствор №1, мл

0

1

2

3

4

5

6

8

18

12

14

Раствор №2, мл

100

99

98

97

96

95

94

92

90

88

85

Градусы цветности

0

5

10

15

20

25

30

40

50

60

70

5.2. Проведение испытаний

В цилиндр Несслера отмеривают 100 мл профильтрованной через мембранный фильтр исследуемой воды и сравнивают со шкалой цветности, производят просмотр сверху на белом фоне. Если исследуемая проба воды имеет цветность выше 700С, то пробу следует разбавить дистиллированной водой в определенном соотношении до получения окраски исследуемой воды, сравниваемой с окраской шкалы цветности.

Полученный результат умножают на число, соответствующее величине разбавления.

При определении цветности с помощью электроколориметра используют кюветы с толщиной поглощающего свет слоя 5-10 см. Контрольной жидкостью служит дистиллированная вода, из которой удалены взвешенные вещества путем фильтрации через мембранные фильтры №4.

Оптическая плотность фильтрата исследуемой пробы воды измеряется в синей части спектра со светофильтром при ? - 413 нм.

Цветность определяют по градуировочному графику и выражают в градусах цветности.

6. Фотометрический метод определения мутности

6.1. Определение мутности производят не позднее, чем через 24 после отбора пробы.

Проба может быть законсервирована добавлением 2-4 мл хлороформа на 1 л воды.

Мутность воды определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями.

6.2. Построение градуировочного графика.

Градуировочный график строят по стандартным рабочим суспензиям. Полученные значения оптических плотностей и соответствующие им концентрации стандартных суспензий (мг/л) наносят на график.

6.3. Проведение испытания

Перед проведением испытания во избежание ошибок производят калибровку фотоколориметров по жидким стандартным суспензиям мутности или по набору твердых стандартных суспензий мутности с известной оптической плотностью.

В кювету с толщиной поглощающего свет слоя 5-10 см вносят хорошо взболтанную испытуемую пробу, измеряют оптическую плотность в зеленой части спектра (? - 530 нм. Контрольной жидкостью служит испытуемая вода, из которой удалены взвешенные вещества путем центрифугирования или фильтрования через мембранные фильтры №4 (обработанные кипячением).

Содержание мутности в мг/л определяют по градуировочному графику.

2.2.2 Метод определения общей жесткости

1. Область применения

Настоящий стандарт распространяется на питьевую воду и устанавливает комплексонометрический метод определения общей жесткости.

2. Метод измерения

Метод на образовании прочного комплексного соединения трилона Б с ионами кальция и магния.

Определение проводят титрованием пробы трилоном Б при рН 10 в присутствии индикатора.

3. Методы отбора проб

Пробы воды отбирают по ГОСТ 2874-82 и ГОСТ 4979-49

Объем пробы воды для определения общей жесткости должен быть не менее 250 мл.

Если определение жесткости не может быть проведено в день отбора пробы, то отмеренный объем воды, разбавленный дистиллированной водой 1:1, допускается оставлять для определения до следующего дня.

Пробы воды, предназначенные для определения общей жесткости, не консервируют.

4. Проведение анализа

Определение общей жесткости воды мешают: медь, цинк, марганец и высокое содержание углекислых и двууглекислых солей. Влияние мешающих веществ устраняется в ходе анализа.

Точность определения при титровании 100 мл пробы составляет 0.ю05 мг·экв/л.

В коническую колбу вносят 100 мл отфильтрованной испытуемой воды или меньший объем, разбавленный до 100 мл дистиллированной водой. При этом суммарное содержание ионов кальция и магния во взятом объеме воды не должно превышать 0,5 мг·экв. Затем прибавляют 5 мл буферного раствора, 5-7 капель индикатора или приблизительно 0,1 г сухой смеси индикатора хромоген-черного с сухим хлористым натрием и сразу же титруют при сильном взбалтывании 0,05 н растром трилона Б до изменения окраски в эквивалентной точке (окраска должна быть синей с зеленоватым оттенком).

Если на титрование было израсходовано больше 10 мл 0,05 н раствора трилона Б, то это указывает, что в отмеренном объеме воды суммарное содержание ионов кальция и магния больше 0,5 мг·экв. В таких случаях следует определение повторить, взяв меньший объем воды и разбавив его до 100 мл дистиллированной водой.

Нечеткое изменение окраски в эквивалентной точке указывает на присутствие меди и цинка. Для устранения влияния мешающих веществ к отмеренной для титрования пробе воды прибавляют 1-2 мл раствора сульфида натрия, после чего проводят испытание, как указано выше.

Если титрование приобретает крайне затяжной характер с неустойчивой и нечеткой окраской в эквивалентной точке, что наблюдается при высокой щелочности воды, ее влияние устраняется прибавлением к пробе воды, отобранной для титрования, до внесения реактивов, 0,1 н раствора соляной кислоты в количестве необходимом для нейтрализации щелочности воды, с последующим кипячением или продуванием раствора воздухом в течение 5 мин. После этого прибавляют буферный раствор, индикатор и далее определяют жесткость, как указано выше.

5. Обработка результатов

Общую жесткость воды (Х) в мг·экв/л вычисляют по формуле:

где v - количество раствора трилона Б, израсходованного на титрование, мл;

К - поправочный коэффициент к нормальности раствора трилона Б;

V - объем воды, взятый для определение, мл;

Расхождение между повторными определениями не должно превышать 2 отн.% [26].

2.2.3 Метод определения содержания сухого остатка

1.Область применения

Настоящий стандарт распространяется на питьевую воду и устанавливает весовой метод определения содержания сухого остатка.

2. Метод измерения

Величина сухого остатка характеризует общее содержание растворенных в воде нелетучих минеральных и частично органических соединений.

3. Методы отбора проб

Пробы воды отбирают по ГОСТ 2874-82 и ГОСТ 4979-49.

Объем пробы воды для определения сухого остатка должен быть не менее 300 мл.

3. Проведение анализа

Определение сухого остатка без добавления соды (проводится в день отбора пробы).

250-500 мл профильтрованной воды выпаривают в предварительно высушенной до постоянной массы фарфоровой чашке. Выпаривание ведут на водяной бане с дистиллированной водой. Затем чашку с сухим остатком помещают в термостат при 1100С и сушат до постоянной массы.

5. Обработка результатов

Сухой остаток (Х) в мг/л вычисляют по формуле:

где m - масса чашки с сухим остатком, мг;

m1 - масса пустой чашки, мг;

V - объем воды взятый для определения, мл.

Данный метод определения сухого остатка дает несколько завышенные результаты вследствие гидролиза и гигроскопичности хлоридов магния и кальция и трудной отдачи кристаллизационной воды сульфатами кальция и магния. Эти недостатки устраняются прибавлением к выпариваемой воде химически чистого карбоната натрия. При этом хлориды, сульфаты кальция и магния переходят в безводные карбонаты, а из натриевых солей лишь сульфат натрия обладает кристаллизационной водой, но она полностью удаляется высушиванием сухого остатка при 150 - 1800С.

2.2.4 Метод определения общего железа

1. Область применения

Настоящий стандарт распространяется на питьевую воду и устанавливает колориметрическим метод определения массовой концентрации общего железа с роданидом.

2. Методы отбора проб

Пробы воды отбирают по ГОСТ 2874-82 и ГОСТ 24481-80.

Объем пробы воды для определения содержания массовой концентрации железа должен быть не менее 200 см3.

Пробы воды, предназначенные для определения массовой концентрации общего железа, не консервируют.

1. Сущность метода

Метод основан на взаимодействии в сильнокислой среде окисного железа и роданида с образованием окрашенного в красный цвет комплексного соединения роданового железа. Интенсивность окраски пропорциональна концентрации железа. Чувствительность метода 0,05мг/л Fe.

2. Проведение анализа

Качественное определение с приближенной количественной оценкой.

В пробирку наливают 10 мл исследуемой воды, вносят две капли концентрированной соляной кислоты и несколько кристаллов персульфата аммония и 0,2 мл роданида аммония или калия. После внесения каждого реактива содержимое пробирки перемешивают. Приближенно массовую концентрацию железа определяют в соответствии с таблицей 5.

Таблица 5

Окрашивание при рассмотрении сбоку

Окрашивание при рассмотрении сверху вниз

Массовая концентрация елеза, мг/л

Окрашивания нет

Окрашивания нет

Менее 0,05

Едва заметное желтовато-розовое

Чрезвычайно слабое желтовато-розовое

0,1

Очень слабое желтовато-розоватое

Слабое желтовато-розоватое

0,25

Слабое желтовато-розоватое

Светло-желтовато-розоватое

0,5

Светло-желтовато-розоватое

Желтовато-розовое

1,0

Сильное желтовато-розовое

Желтовато-красное

2,0

Светло-желтовато-красное

Ярко-красное

Более 2,0

Количественное определение.

В мерную колбу вместимостью 50 мл отбирают 50 мл тщательно перемешанной исследуемой воды или меньшим объемом, содержащей пробе не более 1,0 мг/дм железа и доводят объем до метки дистиллированной водой. Затем добавляют 1 мл соляной кислоты, несколько кристаллов персульфата аммония, перемешивают и добавляют 1 мл роданида калия. После перемешивают сразу же измеряют оптическую плотность на ФЭКе, применяя сине-зеленый светофильтр (?=490-500 нм) в кюветах с толщиной оптического слоя 2,3 или 5 см по отношению к дистиллированной воде, в которую добавлены те же реактивы.

Массовую концентрацию общего железа находят по калибровочному графику.

Для построения калибровочного графикав мерные колбы вместимостью 50 мл вносят 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; и 10 мл рабочего стандартного раствора железоаммонийных квасцов (в 1 мл 0,01 мг железа) и доводят дистиллированной водой до метки. Поучают серию растворов с массовой концентрацией железа 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; и 10 мг/дм3. К стандартным растворам и раствору сравнения прибавляют 1 мл соляной кислоты (плотностью 1,12 г/см3) несколько кристаллов персульфата аммония и перемешивают. Затем в раствор сравнения и стандартный раствор с массовой концентрацией железа 0,1 мг/см3 прибавляют по 1 мл раствора роданида калия, содержимое перемешивают и сразу же измеряют оптическую плотность в тех же условиях, что и исследуемой воды. Затем добавляют роданид калия в следующий стандартный раствор и опять определяют оптическую плотность и т.д.

По полученным данным строят калибровочный график, откладывая по оси абсцисс массовую концентрацию железа в мг/дм3, а по оси ординат - соответствующие значения оптической плотности.

3. Обработка результатов

Массовую концентрацию общего железа (Х) в мг/дм3 вычисляют по формуле:

где С - концентрация железа, найденная по калибровочному графику,

мг/дм3;

V - объем пробы, взятый для определения, мл.

За окончательный результат принимают среднее арифметическое результатов двух параллельных определений, допускаемые расхождения между которыми не должны превышать 25%.

2.2.5 Метод определения содержание нитратов

1. Область применения

Настоящий стандарт распространяется на питьевую воду и устанавливает методы определения нитратов колориметрическим методом салициловокислым натрием.

2. Методы отбора проб

Пробы воды отбирают по ГОСТ 2874-82 и ГОСТ 4979-49.

Объем пробы воды для определения содержания нитратов не должен быть менее 200 мл.

Пробу отбирают проведения определения или ее консервируют, добавляя на 1 л исследуемой воды 2-4 мл хлороформа или 1 мл концентрированной серной кислоты.

3. Сущность метода

Метод основан на реакции нитратов с салициловокислым натрием в присутствии серной кислоты с образованием соли нитросалициловой кислоты, окрашенной в желтый цвет.

Чувствительность метода 0,1 мг/л нитратного азота.

4.Проведение анализа

Определению мешают цветность воды, влияние которой устраняется так же, как и в методе с фенолдисульфокислотой; хлориды в концентрации, превышающей 200 мг/л , удаляют добавлением раствора сернокислого серебра к 100 мл исследуемой воды в количестве ,эквивалентом содержанию хлор-иона. Осадок хлорида серебра отфильтровывают или отделяют центрифугированием; нитриты в концентрации 1-2 мг/л и железо в концентрации более 0,5 мг/л. Влияние железа может быть устранено добавлением 8-10 капель раствора калия-натрия виннокислого перед выпариванием воды в фарфоровой чашке.

10 мл исследуемой воды помещают фарфоровую чашку. Прибавляют 1 мл раствора салициловокислого натрия и выпаривают на водяной бане досуха. После охлаждения сухой остаток увлажняют 1 мл концентрированной серной кислоты, тщательно растирают его стеклянной палочкой и оставляют на 10 мин. Затем добавляют 5-10 мл дистиллированной воды и количественно переносят в мерную колбу вместимостью 50 мл. Прибавляют 7 мл 10 н. раствора едкого натра, доводят объем дистиллированной водой до метки и перемешивают. В течение 10 мин после прибавления едкого натра окраска не изменяется. Сравнение интенсивности окраски исследуемой пробы производят фотометрическим методом, измеряя оптическую плотность раствора с фиолетовым светофильтром в кюветах с толщиной рабочего слоя 1-5 см. Из найденных величин оптической плотности вычитывают оптическую плотность нулевой пробы и по калибровочному графику находят содержание нитратов.

5. Построение калибровочного графика

Для приготовления стандартных растворов в колориметрические пробирки с отметкой на 10 мл отбирают 0,0; 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; и 10 мл рабочего стандартного раствора азотнокислого калия (1 мл- 0,01 мг N) и доводят дистиллированной водой до отметки. Содержание нитратного азота в растворах соответственно равно 0,5; 1,0; 2,0; 3,0; 4,0; 6,0; и 10 мг/л. Затем растворы переносят в фарфоровые чашки, прибавляют по 1 мл раствора салициловокислого натрия и выпаривают на водяной бане досуха. Сухой остаток обрабатывают так же, как описано при анализе пробы исследуемой воды. Оптическую плотность окрашенных растворов измеряют при помощи электрофотокалориметра, используя фиолетовый фильтр и кюветы с толщиной рабочего слоя 1-5 см. Из полученных величин вычитают оптическую плотность нулевой пробы и результаты наносят на график.

6. Обработка результатов

Содержание нитратов (Х) в мг/л вычисляют по формуле в пересчете на нитратный азот Х=С,

где С - содержание нитратов, найденное по графику, мг/л.

2.2.6 Методика определения массовой концентрации сероводорода и сульфидов в водах

1. Назначение и область применения методики

Настоящий руководящий документ устанавливает фотометрическую методику выполнения измерений массовой концентрации сероводорода и растворимых в воде или в кислоте сульфидов в сумме (в пересчете на сероводород) в пробах природных и очищенных сточных вод любой минерализации в диапазоне 2 - 4000 мкг/дм3. При анализе проб воды с массовой концентрацией сероводорода и сульфидов, превышающей 4000 мкг/дм3, необходимо соответствующее разбавление пробы дистиллированной водой.

2. Нормы погрешности и значения характеристик погрешности измерения

В соответствии с ГОСТ 27384 нормы погрешности при выполнении измерений сероводорода и сульфидов в природных водах в диапазоне массовых концентраций 25-50 мкг/дм3 составляет ±50%, свыше 50 - 100 мкг/дм3 - ±25%, свыше 100 мкг/дм3 - ±10%. При выполнении измерений в сточных водах нормы погрешности составляют ±25% в диапазоне массовых концентраций 50-500 мкг/дм3 и ±10% свыше 500 мкг/дм3.

Установленные для настоящей методики значения характеристик погрешности и ее составляющих приведены в таблице 4.

При выполнении измерений сероводорода и сульфидов в пробах с массовой концентрацией свыше 4000 мкг/дм3 после соответствующего разбавления погрешность измерения не превышает величины ? · n, где ? - погрешность измерения концентрации сульфидов в разбавленной пробе; n - степень разбавления.

Таблица 6

Значения характеристик погрешности и ее составляющих (Р=0,95)

Диапазон измеряемых концентраций сероводорода и сульфидов С, мкг/дм3

Характеристика случайной составляющей погрешности, ?(?), мкг/дм3

Характеристика погрешности, ?, мкг/дм3

Экстракционно-фотометрическое определение

2,0-80,0

0,4+0,04 С

0,9+0,07 С

Фотометрическое определение

50-4000

5+0,02 С

10+0,04 С

Определение основано на способности сероводорода образовывать в кислой среде с продуктами окисления N,N-диметил-n-фенилендиамина солью железа(Ш) метиленовую синь, интенсивность окраски которой пропорциональна содержанию сульфидов и сероводорода. При содержании сульфидов более 50 мкг/дм3 проводят измерение интенсивности окраски в водном растворе, при меньшей при меньшей концентрации проводят экстракционное концентрирование окрашенного соединения хлороформом в присутствии лаурилсульфата натрия. Измерение интенсивности окраски проводят на фотоэлектроколориметре ( ?max в водном растворе 667 нм, в экстракте 656 нм).

Определению сероводорода и сульфидов с N,N-диметил-n-фенилендиамином мешают взвешенные вещества. Их устраняют соосаждением с гидроксидом алюминия, при этом, однако, теряется и часть сульфидов, нерастворимых в воде, но растворимых в сильнокислой среде.

Мешающее влияние на определение сероводорода могут оказать сульфиты и гипосульфиты при концентрации более 10 мкг/дм3, практически не встречающейся в природных и очищенных сточных водах.

В присутствии значительного количества сульфида метиленовая синь не образуется, а выпадает белый осадок, представляющий собой элементарную серу. В этом случае пробу разбавляют в 10 и более раз.

4. Средства измерений

Определение сероводорода проводили на фотокалориметре типа КФК-2.

5. Отбор, предварительная обработка и хранение проб

Отбор проб производится в соответствии с ГОСТ 17.1.5.05. Вследствие неустойчивости сероводорода отбор аликвоты водной пробы для его определения производят на водном объекте, сразу после отбора пробы для определения кислорода, и немедленно проводят предварительную обработку пробы.

Если в анализируемой воде визуально заметно присутствие взвешенных веществ, то объем пробы должен быть не менее 1 дм3. В склянку с притертой пробкой вместимостью 1 дм3 на месте отбора пробы наливают анализируемую воду посредством сифона, опущенного до дна склянки так, чтобы первая порция воды вылилась из склянки. Добавляют 5 см3 20% раствора хлорида (или сульфата) алюминия и 3 см3 раствора гидроксида натрия с концентрацией 4 моль/дм3. Склянку закрывают пробкой, встряхивают и дают отстояться в течение 20-30 мин. Затем с помощью сифона отбирают из середины склянки прозрачную воду в калиброванную склянку вместимостью 500 см3 с притертой пробкой или завинчивающейся пробкой с плотным полиэтиленовым вкладышем. Далее проводят фиксацию или консервацию пробы как описано ниже.

Если анализируемая вода визуально прозрачна, ее помещают непосредственно в калиброванную склянку с помощью сифона. Склянку заполняют водой доверху и дают возможность первым порциям воды вылиться из склянки, поднимая при этом трубку сифона. Пробу немедленно закрывают пробкой.

Для предотвращения окисления сероводорода и сульфидов сразу после отбора пробы или после осаждения взвешенных веществ проводят их фиксацию, добавляя в склянку 5 см3 раствора ДМФДА и 5 см3 раствора хлорида железа(Ш). Дальнейшая обработка пробы и определение сероводорода и сульфидов могут быть выполнены в лаборатории не позднее, чем через 3 сут. Пробы с зафиксированным сероводородом хранят в темноте.

При необходимости более длительного хранения (до 14 сут) пробу консервируют. Для этого в склянку с анализируемой водой добавляют 0,3 см3 раствора гидроксида натрия с концентрацией 4 моль/дм3 и доводят рН до 9-10 по универсальной индикаторной бумаге, добавляя по каплям этот же раствор, а затем приливают 5 см3 10 % раствора ацетата кадмия.

Если проводится фиксация проб растворами ДМФДА и хлорида железа, то одновременно следует зафиксировать холостой опыт. Для этого в склянку вместимостью 500 см3 наливают дистиллированную воду и обрабатывают ее так же, как и анализируемую воду.

При добавлении всех реактивов в пробы пипетку с раствором опускают до середины склянки и поднимают по мере вытекания раствора.

6. Подготовка к выполнению измерений

6.1. Определение точной концентрации растворов тиосульфата натрия и иода

6.1.1 Раствор тиосульфата натрия

В коническую колбу вместимостью 250 см3 наливают 70-80 см3 дистиллированной воды, добавляют пипеткой 10 см3 раствора дихромата калия с концентрацией 0,0200 моль/дм3 эквивалента, всыпают 1 г сухого KI и добавляют 10 см3 соляной кислоты (2:1). Колбу закрывают пробкой и ставят в тёмное место. Через 5 мин титруют выделившийся иод раствором тиосульфата натрия до бледно-жёлтой окраски. Затем добавляют 1 см3 раствора крахмала и продолжают титрование по каплям до обесцвечивания раствора. Определение повторяют и при отсутствии расхождения в объёмах титранта более 0,05 см3 за результат определения берут среднее арифметическое. Концентрацию раствора тиосульфата определяют по формуле:

где Сt - концентрация раствора тиосульфата натрия, моль/дм3 эквивалента;

Vt - объём раствора тиосульфата натрия, пошедшего на титрование, см3;

Сд - концентрация раствора дихромата калия, моль/дм3 эквивалента;

Vд - объём раствора дихромата калия, см3.

6.1.2. Раствор иода

В коническую колбу вместимостью 250 см3 наливают 70-80 см3 дистиллированной воды, добавляют пипеткой 10 см3 раствора иода, 10 см3 раствора соляной кислоты (2:1) и титруют тиосульфатом натрия до бледно-жёлтой окраски. Затем добавляют 1 см3 раствора крахмала и титруют по каплям до обесцвечивания раствора. Титрование повторяют ещё 1-2 раза и из полученных отсчётов, различающихся не более чем на 0,05 см3 берут среднее. Концентрацию раствора иода определяют по формуле:

где Си - концентрация раствора иода, моль/дм3 эквивалента;

Vи - объём раствора иода, см3;

Ст - концентрация раствора тиосульфата натрия, моль/дм3 эквивалента;

YT - объём раствора тиосульфата натрия, пошедшего на титрование , см3.

6.2. Приготовление градуировочных растворов

Градуировочные растворы, аттестованные по процедуре приготовления, готовят из судьфида натрия в соответствии с 6.3.1-6.3.3.

Для всех градуировочных растворов погрешности, обусловленные процедурой приготовления, не превышают 2,5% относительно приписанного значения массовой концентрации сероводорода.

6.2.1. Основной раствор сульфида натрия

0,1-0,2 г Na2S·9H20, предварительно ополоснутого водой для удаления следов сульфатов с поверхности кристаллов и отжатого фильтровальной бумагой, растворяют в 25 см3 дистиллированной воды, в которую добавлена щелочь до рН 9-10, добавляют 25 см3 глицерина и тщательно перемешивают. Точную концентрацию сульфида в полученном растворе определяют иодометрически. Для этого в колбу с притёртой пробкой вместимостью 250 см3 наливают 60-70 см3 воды, добавляют пипеткой 25 см3 раствора иода, 10 см3 соляной кислоты (2:1) и 5 см3 основного раствора сульфида натрия. Колбу закрывают пробкой, перемешивают и помещают в темное место. Через 5 мин оттитровывают избыток иода раствором тиосульфата натрия до бледно-жёлтой окраски. Затем добавляют 1 см3 раствора крахмала и продолжают титрование по каплям до обесцвечивания раствора. Если после добавления основного раствора сульфида натрия иод обесцветился, следует повторить определение с меньшим количеством раствора сульфида.

Массовую концентрацию сульфида в пересчете на сероводород находят по формуле:

где Сс - массовая концентрация сульфида натрия в пересчете на

H2S, миг /см3-,

Си - концентрация раствора иода, моль/дм3 эквивалента;

Vи - объем добавленного раствора иода, см3;

Ст - концентрация раствора тиосульфата натрия, моль/дм3 эквивалента;

VT - объем раствора тиосульфата натрия, израсходованного на

титрование избытка раствора, иода, см3;

Vc - объем раствора сульфида натрия, см3; Хранят раствор в холодильнике не более 3 дней.

6.2.3. Рабочий раствор сульфида натрия с концентрацией по сероводороду 100 мкг/см3.

Рассчитывают объем основного раствора сульфида натрия, который необходимо разбавить до 100 см3, чтобы получить раствор с концентрацией 100 мкг/см3 по формуле:

где Vc - объем основного раствора, см3;

Сс - концентрация основного раствора, мкг/см3.

В мерную колбу вместимостью 100 см3 наливают 50-70 см3 дистиллированной воды с рН 9-10, приливают рассчитанный объем основного раствора сульфида натрия, опуская пипетку до уровня воды в колбе, доводят объем раствора в колбе до метки и перемешивают. Рабочий раствор сульфида натрия следует готовить непосредственно перед использованием; раствор устойчив не более 3 ч,

6.2.3. Рабочий раствор сульфида натрия с концентрацией по сероводороду 10 мкг/см3

Рассчитывают объем основного раствора сульфида натрия, который необходимо разбавить до 100 см3, чтобы получить раствор с концентрацией 10 мкг/см3 по формуле:

где Vc - объем основного раствора, см3;

Сс - концентрация основного раствора, мкг/см3.

В мерную колбу вместимостью 100 см3 наливают 50-70 см3 дистиллированной воды с рН 9-10, приливают рассчитанный объем основного раствора сульфида натрия, опуская пипетку до уровня воды в колбе, доводят объем раствора в мерной колбе до 100 см3 и перемешивают.

Раствор готовят непосредственно перед использованием; он устойчив не более 1ч.

6.3 Установление градуировочных зависимостей

В мерные колбы с притертыми пробками вместимостью 500 см3 наливают приблизительно 400 см3 дистиллированной воды с рН 9-10, затем поочередно пипетками вводят 0; 0,25; 0,50; 0,75; 1,0; 1,5; 2,0; 2,5; 3,0; 4,0 см3 рабочего раствора сульфида натрия с концентрацией 10 мкг/см3 и 0,4; 0,3; 1,2; 1,6; 2,0; 3,0; 4,0; 6,0; 8,0 см3 рабочего раствора сульфида натрия с концентрацией 100 мкг/см3. При этом пипетки опускают до уровня воды в колбе (но не погружая в нее). Щелочной дистиллированной водой доводят объем растворов до метки, закрывают пробкой, и перемешивают несколько раз, переворачивая колбу вверх-вниз (не встряхивая). Концентрация сероводорода в пробах составит соответственно 0; 5; 10; 15; 20; 30; 40; 50; 60; 80; 80; 160; 240; 320; 400; 600; 800; 1200; 1600 мкг/дм3.

В каждую колбу сразу после добавления сульфида, доведения объема раствора до метки и перемешивания вводят 5 см3 раствора ДМФДА и 5 см3 раствора хлорида железа(Ш), погружая пипетки в раствор сульфида и поднимая вверх по мере вытекания растворов. Затем колбу закрывают пробкой, тщательно перемешивают, помещают в темноту и приступают к приготовлению следующего раствора.

Растворы с концентрацией сероводорода 0-80 мкг/дм3 не ранее, чем через 30 мин после добавления реактивов, переносят в делительные воронки вместимостью 0,75-1,0 дм3 и далее проводят определение, как описано в 7.2.

Оптическую плотность растворов с концентрацией сероводорода 5-30 мкг/дм3 измеряют в кюветах с толщиной слоя 2 см, оптическую плотность растворов с концентрацией 20-80 мкг/дм3 - в кюветах с толщиной 1 см. Оптическую плотность холостого раствора измеряют в обеих кюветах.

Оптическую плотность водных растворов с концентрацией сероводорода 80-400 мкг/дм3 не ранее чем через 30 мин после добавления реактивов измеряют в кюветах с толщиной слоя 5 см. Оптическую плотность растворов с концентрацией 400 - 1600 мкг/дм3 измеряют в кюветах толщиной слоя 1 см. Оптическую плотность холостого измеряют в обеих кюветах.

Градуировочные зависимости строят в координатах: концентрация сероводорода, мкг/дм3 - оптическая плотность графически или расчитывают методом наименьших квадратов.

Проверку градуировочных зависимостей проводят не реже одного раза в 3 мес. и обязательно при приготовлении нового раствора ДМФДА. Для каждого прибора устанавливают свою градуировочную зависимость.


Подобные документы

  • Основные источники загрязнения водных объектов. Физико-химические, бактериологические и паразитологические, радиологические показатели качества воды, методы очистки. Влияние химического состава питьевой воды на здоровье и условия жизни населения.

    реферат [459,5 K], добавлен 28.11.2011

  • Санитарный контроль качества воды в Российской Федерации и гигиенические нормативы на питьевую воду. Органолептические показатели: прозрачность, цвет, вкус, запах и температура. Физические и химические свойства воды, ее бактериологические показатели.

    реферат [20,5 K], добавлен 14.11.2010

  • Физико-химическая характеристика питьевой воды. Гигиенические требования к качеству питьевой воды. Обзор источников загрязнения воды. Качество питьевой воды в Тюменской области. Значение воды в жизни человека. Влияние водных ресурсов на здоровье человека.

    курсовая работа [50,2 K], добавлен 07.05.2014

  • Рассмотрение особенностей стронция и его поведения в подземных водах мира, России и области. Изучение экологической гидрогеохимии элемента в подземных водах. Выбор природных сорбентов для очистки питьевой воды от стронция, выявление лучшего из них.

    дипломная работа [1,2 M], добавлен 14.11.2017

  • Круговорот воды в природе, поверхностные и грунтовые воды. Проблемы водоснабжения, загрязнение водных ресурсов. Методические разработки: "Водные ресурсы планеты", "Исследование качества воды", "Определение качества воды методами химического анализа".

    дипломная работа [105,2 K], добавлен 06.10.2009

  • Общая характеристика условий водопроводной сети. Источники водоснабжения. Технология очистки воды в системе водоснабжения. Подача и распределение питьевой воды. Контроль качества питьевой воды. Водозаборные сооружения. Групповой водозабор подземных вод.

    отчет по практике [25,3 K], добавлен 09.11.2008

  • Проблема качества питьевой воды в городах Российской Федерации. Сравнительный анализ состава воды из-под крана в различных городах России. Способы решения проблемы водоподготовки государством. Рекомендации по повышению качества питьевой воды в РФ.

    контрольная работа [25,8 K], добавлен 08.01.2016

  • Анализ показателей качества питьевой воды и ее физико-химическая характеристика. Изучение гигиенических требований к качеству питьевой воды и основные источники ее загрязнения. Значение воды в жизни человека, влияние водных ресурсов на его здоровье.

    курсовая работа [52,6 K], добавлен 17.02.2010

  • Пробоотбор питьевой воды в различных районах г. Павлодара. Химический анализ качества питьевой воды по шести показателям. Проведение сравнительного анализа показателей качества питьевой воды с данными Горводоканала, рекомендации по качеству водоснабжения.

    научная работа [30,6 K], добавлен 09.03.2011

  • Водные ресурсы: понятие и значение. Водные ресурсы Алтайского края. Водные экологические проблемы города Барнаула и пути их решения. Подземные воды как источник питьевого водоснабжения. О методах очистки воды. Вода и ее уникальные термические свойства.

    реферат [18,7 K], добавлен 04.08.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.