Газоснабжение рабочего поселка на 8,5 тыс. жителей
Характеристика объекта, исходные данные, основные решения по газоснабжению. Расчетные расходы газа на бытовые и коммунальные нужды. Гидравлический расчет, анализ конструкций блочных котельных, технико-экономическое обоснование, организация строительства.
Рубрика | Экономика и экономическая теория |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 28.01.2010 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Изобретение поясняется чертежами, где на рис.1 представлен поперечный разрез водонагревателя; на рис.2 - вид сверху; на рис.3 - вид спереди водонагревателя с двумя жаровыми трубами.
Водонагреватель емкостной газовый содержит цилиндрический теплоизолированный резервуар 1, с крышей 2, в котором расположены жаровые трубы 3 Г-образной конфигурации, состоящие из соединенных друг с другом горизонтальных 4 и вертикальных 5 участков. Горизонтальные участки 4 одним концом закреплены в стенке резервуара 1 и подключены к горелочному устройству 6, а другим концом - размещены на опоре скольжения 7, закрепленной на днище резервуара 1. На крыше 2 резервуара 1 расположены соосно вертикальным участкам 5 жаровых труб 3 патрубки 8, имеющие дефлекторы 9. Взрывной клапан 10 также расположен на крыше 2 резервуара 1. Над крышей 2 размещена дымовая труба 11, являющаяся одновременно продолжением вертикального участка жаровой трубы. Горелочное устройство 6 подключено к блоку управления 12, через отсечной клапан 13. Датчик температуры 14, расположенный на стенке внутри резервуара, подключен также к блоку управления 12. Водонагреватель имеет также подогреватели газа 15, жестко закрепленные в стенке резервуара 1 и расположенные компланарно по отношению к соответствующим горизонтальным участкам 5 Г-образных жаровых труб 3, регул тор давления, расположенный перед отсечным клапаном 13. Подвод воды осуществляется по подпиточному и циркуляционному водоводам, а отвод воды - по отводящему водоводу (не показаны). Подвод воздуха к горелкам осуществляется по отдельному воздуховоду 16.
Водонагреватель емкостной газовый работает следующим образом.
Нагрев жидкости в резервуаре 1 осуществляется за счет передачи теплоты через стенку каждой из жаровых труб 3 от продуктов сгорания, выходящих из горелочных устройств 6. При этом, длину горизонтального участка 4 подбирают таким образом, чтобы исключить образование конденсата водяных паров в жаровой трубе. При этом среднюю температуру стенки жаровой трубы 3 выбирают выше температуры конденсации водяных паров на стенке жаровой трубы 3 или "точки росы по водяным парам".
В качестве примера конкретного исполнения определения оптимальной длины L горизонтального участка Г-образной жаровой трубы в двухтрубном водонагревателе используем следующие исходные данные:
- расход нагреваемой воды G=7,67 кг/с;
- теплоемкость нагреваемой воды С=4,19 кДж/(кг,o С);
- температура нагреваемой воды на выходе из резервуара tвых =15o С;
- температура нагреваемой воды на входе в резервуар tвх =1o С;
- количество Г-образных жаровых труб n=2;
- средний коэффициент теплопередачи от стенки жаровой трубы к нагреваемой воды К=0,2 кВт/(м2 o С);
- наружный диаметр жаровой трубы D=0,53 м;
- высота вертикального участка жаровой трубы, смачиваемого жидкостью, Н= 4,5 м;
- средняя температура стенки жаровой трубы tст =100o С.
При подстановке исходных данных можно определить, что при номинальной теплопроизводительности длина горизонтальных участков каждой из двух жаровых труб должна быть L=2,8 м. При этом водяные пары, образующиеся при сжигании газа, вывод тс с дымовыми газами из жаровых труб 3 и не конденсируются на их внутренней стенке.
Формула изобретения:
1. Водонагреватель емкостный газовый, содержащий резервуар с крышей, внутри которого расположены Г-образные жаровые трубы, горизонтальные участки каждой из которых подключены к горелочному устройству и расположены на опорах, установленных на днище резервуара под вертикальными участками, каждый из которых имеет соосно размещенный с ним патрубок, отличающийся тем, что длину горизонтального участка каждой из Г-образных жаровых труб выбирают из условия (5.1).
2. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно снабжен блоком управления, подключенным к датчику температуры, расположенному внутри резервуара на его стенке, и к горелочному устройству.
3. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно содержит взрывной клапан, расположенный на крыше резервуара.
4. Водонагреватель емкостный газовый, отличающийся тем, что каждый из вертикальных участков Г-образных жаровых труб выполнен выступающим за пределы резервуара и патрубка, при этом каждый патрубок снабжен дефлектором, расположен на крыше резервуара и имеет высоту менее одного диаметра Г-образной жаровой трубы.
5. Водонагреватель емкостный газовый, отличающийся тем, что опора выполнена в виде опоры скольжения.
6. Водонагреватель емкостный газовый, отличающийся тем, что он дополнительно содержит подключенные к горелочному устройству подогреватели газа, жестко закрепленные в стенке резервуара и расположенные компланарно по отношению к каждому из горизонтальных участков Г-образных жаровых труб.
Изобретение относится к водяным системам отопления и горячего водоснабжения и может быть использовано для нагрева воды в системах с индивидуальным отоплением. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению надежности и КПД установки и снижению температуры дымовых газов и давления в системе отопления. Котельная установка состоит из котла, имеющего патрубки прямой и обратной линии воды, дымовую трубу, верхняя часть которой над котлом выполнена в виде вертикального трубчатого кольцеобразного экономайзера, содержащего переливную трубку с запорным устройством, соединенным с котлом через патрубок прямой линии и через патрубок с подающей линией системы отопления, верхняя часть экономайзера выполнена в виде расширительного бака, последний соединен с воздушным ресивером посредством воздушной трубки, на обратной линии патрубка установлены предохранительный клапан и подпиточное устройство (рис.4).
Рис.5.2
5.2.3 Конструкция котельной установки [6]
Известна котельная установка, содержащая снабженный контактными воздухонагревателем и экономайзером котел, параллельно подключенный подвод щей и отвод щей лини ми к греющим трактам тепловой сети и поверхностного теплообменника, нагревающий тракт которого соединен с контактным воздухонагревателем и снабжен регул тором расхода, а экономайзер сообщен с подвод щей линией котла, установка содержит также датчик температуры воздуха (см. а.с. СССР №1666855, кл. F 22 D 1/36)[9]. Недостатком данной котельной установки являются высокие затраты на нагрев воды. Известны также котельные установки, состоящие из котла, в верхней чести соединенного с экономайзером и прямой линией отопления.
Рис.5.3
Эти установки утилизируют тепло отходящих топочных газов котлов, работающих на твердом, жидком и газообразном топливе, одновременно позволяет производить подогрев воды из хозпитьевого водопровода (см. промышленные котлы ДЕ, ДКВР, ЭБ-2-94, ЭБ-1-300). Недостатком данных котельных установок является сложность конструкции, высокая стоимость получения тепла.
Рис.4
Наиболее близким по технической сущности и достигаемому положительному эффекту и принятый авторами за прототип является жаротрубный вертикальный водогрейный котел, содержащий топку с горелочным устройством, патрубками прямой и обратной воды, при этом верхняя часть котла выполнена в виде бака, содержащего переливную трубку и воздушную трубку с манометром, установленную на высоте, равной или большей отношения увеличения объема горячей воды в системе отопления и площади сечения в верхней части котла между вертикальным пучком жаровых труб и внешней трубой (см. пат. РФ №2150051, кл. F 24 Н 1/28)[14]. Недостатком данного котла является высокая температура дымовых газов после котла (170°С) и необходимость в связи с этим поддерживать высокое давление в системе отопления (8 атм) с целью исключения закипания воды в верхней части котла. Технический результат, который может быть достигнут с помощью предлагаемого изобретения сводится к повышению надежности КПД установки и снижению температуры дымовых газов и давления в системе отопления. Технический результат достигается с помощью котельной установки, содержащей котел с патрубками прямой и обратной линией воды, дымовую трубу, расширительный бак, при этом верхняя часть дымовой трубы выполнена в виде вертикального трубчатого кольцеобразного экономайзера, снабженного переливной трубкой с запорным устройством, соединенным с котлом с помощью патрубка прямой линии, при этом верхняя часть экономайзера выполнена в виде бака, последний соединен с воздушным ресивером посредством воздушной трубки.
Котельная установка состоит из котла 1, имеющего патрубок 2 прямой и патрубок 3 обратной линии воды, дымовую трубу 4, верхняя часть которой над котлом 1 выполнена в виде вертикального трубчатого кольцеобразного экономайзера, содержащего переливную трубку 5 с запорным устройством 6, соединенным с котлом 1 через патрубок 2 прямой линии и через патрубок 7 с подающей линией системы отопления (на фиг. не показано), верхняя часть экономайзера выполнена в виде расширительного бака 8, последний соединен с воздушным ресивером 9 посредством воздушной трубки 10, на обратной линии патрубка 3 установлены предохранительный клапан 11 и подпиточное устройство 12.
Котельная установка работает следующим образом.
Система отопления заполняется холодной водой через подпиточное устройство 12 до уровня переливной трубки 5, после запорное устройство 6 и подпиточное устройство 12 закрываются. Котел 1 включается в работу, вода нагревается в котле 1, поднимается вверх и через патрубок 2 прямой линии воды поступает в верхнюю часть дымовой трубы 4, выполненной в виде вертикального трубчатого экономайзера, и продолжает нагреваться отходящими дымовыми газами от котла 1, при этом уровень воды над переливной трубкой 5 поднимается, возникает циркуляционное давление в системе отопления, вода поступает в систему отопления по патрубку 7 и возвращается в котел 1 по патрубку 3 с предохранительным клапаном 11, температура дымовых газов после экономайзера снижается до 100°С. Поднявшаяся вода над переливной трубкой 5 вытесняет воздух из расширительного бака 6 в воздушный ресивер 9 по воздушной трубке 10, что повышает давление в системе на 0,3-0,5 атм и препятствует вскипанию воды в расширительном баке, обеспечивая надежную работу системы отопления и повышая коэффициент полезного действия котельной установки. Предлагаемое изобретение по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества: повышение коэффициента полезного действия котельной установки на 7-9%; повышение надежности работы системы отопления; удешевление производства теплоэнергии; снижение затрат на нагрев воды; снижение температуры дымовых газов и давления в системе отопления; биологическая чистота окружающей среды.
Формула изобретения:
Котельная установка, содержащая котел с патрубками прямой и обратной воды, дымовую трубу, расширительный бак, отличающаяся тем, что верхняя часть дымовой трубы выполнена в виде вертикального трубчатого кольцеобразного экономайзера, снабженного переливной трубкой с запорным устройством, соединенным с котлом с помощью патрубка прямой линии, при этом верхняя часть экономайзера выполнена в виде расширительного бака, последний соединен с воздушным ресивером посредством воздушной трубки.
Изобретение предназначено для нагрева воды и может быть использовано в теплоснабжении. Котел содержит газотрубную и водотрубную части, установленные в одном корпусе. Газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева. Котел снабжен передней поворотной камерой, расположенной на фронте котла, и имеет со стороны фронта дополнительные поверхности нагрева в виде фронтового экрана и переднего кольцевого канала, одновременно выполняющего функции коллекторов фронтовою экрана и тепловой изоляции корпуса котла. В конвективной камере теплообменная поверхность нагрева выполнена в виде съемного конвективного блока с ходом газов сверху вниз, состоящего из плоских секций, представляющих собой трубчато-мембранные панели, соединенные с коллекторами прямоугольной формы. В конвективной камере предусмотрена дополнительная поверхность нагрева в виде заднего кольцевого канала, одновременно выполняющего функции коллекторов раздачи воды в съемный блок и вод ной объем газотрубной части котла, а также тепловой изоляции корпуса котла. Изобретение обеспечивает надежность, ремонтопригодность, эффективность и удобство эксплуатации котла.
Рис.5
Изобретение относится к области теплоснабжения и может быть использовано в стальных водогрейных котлах.
Известны водогрейные газотрубные котлы, содержащие топку, выполненную в виде жаровой трубы или жарового пространства, одноходовой газотрубный конвективный пучок, а также “водотрубные” (возможны при этом щелевые, кольцевые или коробчатые) элементы, по которым вода движется с существенными скоростями, значительно превышающими скорости в вод ной рубашке жаротрубных котлов. При этом все эти элементы находятся внутри общей цилиндрической или коробчатой камеры (см. а.с. СССР №779756, МПК F 24 Н 1/28, бюл. №42, 15.11.80 г.; а.с. СССР №1744378, МПК F 24 Н 1/38, бюл. №24 от 30.06.92 г.; патент РФ №2160874, МПК F 24 Н 1/00 от 20.12.2000 г.) [18].
Недостатком таких конструкций котлов является сложность выполнения таких “водотрубных” элементов, а также то, что определенный элемент, как правило, осуществляет одну или две из следующих функций: распределение воды, или увеличение поверхности нагрева, или повышение надежности работы, или улучшение условий эксплуатации котла, или снижение потерь в окружающую среду.
Наиболее близким аналогом к предлагаемому техническому решению является водогрейный котел, содержащий газотрубную и водотрубную часть, причем газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, сообщенной с конвективным пучком и топкой, установленными в одном корпусе (см. патент RU №2162574, МПК F 24 Н 1/32, опубл. 27.01.01 г.).[ ]
Недостатками котла-прототипа являются неразборность, плохая доступность к элементам, следовательно, низкая ремонтопригодность конвективной поверхности нагрева, а также высокое аэродинамическое сопротивление и возможность засорения конвективной поверхности нагрева. Задачей создания изобретения является разработка простой, надежной, ремонтопригодной, эффективной и удобной в эксплуатации конструкции котла.
С помощью кольцевых каналов осуществляется сразу несколько функций: увеличение поверхности нагрева котла, распределение воды, повышение надежности и срока службы котла, увеличение КПД, улучшение условий эксплуатации.
Изобретение поясняется описанием конкретного, но не ограничивающего его примера реализации и прилагаемыми чертежами, где на рис.5 - представлен общий вид котла, продольный разрез по А-А; на рс.6 - поперечный разрез по Б-Б рис.5; на рис.7 - поперечный разрез по В-В рис.5; на рис.8 - разрез Г-Г и вид по “Д”.
Котел содержит топку 1 в виде жаровой трубы, поворотную камеру газов 2 во фронтовой части котла, одноходовой газотрубный конвективный пучок 3, конвективную камеру 4, съемный конвективный блок 5 из плоских секций 6, содержащих трубчато-мембранные панели 7 и коллекторы прямоугольной формы 8, соединительные трубы 9 плоских секций, передний кольцевой канал 10 с разделительными перегородками 11, фронтовой экран 12 с камерой 13 дл горелки и водотрубными элементами 14, задний кольцевой канал 15 с разделительными перегородками 16, перепускной трубопровод 17 из переднего кольцевого канала 10 в задний кольцевой канал 15, перепускные трубопроводы 27 из заднего кольцевого канала 15 в съемный конвективный блок 5, переднюю трубную доску 18, заднюю трубную доску 19 с отверстиями 20 для выхода воды из задней кольцевой камеры в водяной объем 26 газотрубной части котла, выходное окно газов 21, заднюю дверцу котла 22, переднюю дверцу котла 23, собственно корпус котла 28, входной патрубок воды 24, выходной патрубок воды 25. Конвективный блок 5 достается из конвективной камеры котла 4 через заднюю дверцу 22. Передний кольцевой канал 10 соединяется с задним кольцевым каналом 15 перепускным трубопроводом 17.
Котел работает следующим образом: образующиеся при сжигании топлива в топке 1 дымовые газы поступают в поворотную камеру 2, расположенную со стороны фронта котла, далее, проход внутри трубок газотрубного конвективного пучка 3, направляются в конвективную камеру 4, проходят сверху вниз через конвективные плоские секции 6 съемного конвективного блока 5, разворачиваются на 90° и покидают котел через выходное окно 21. Вода из системы трубопроводов котельной поступает в середину переднего кольцевого канала 10 через входной патрубок воды 24, проходит через верх кольцевого канала и на противоположной стороне заходит в трубы 14 фронтового экрана 12, проходит камеру 13 дл горелки, остальные трубные элементы 14 фронтового экрана 12, и снизу переднего кольцевого экрана выходит в перепускной трубопровод 17. Циркуляция в трубных элементах фронтового экрана организуется с помощью разделительных перегородок 11 переднего кольцевого канала 10. Из перепускного трубопровода 17 вода поступает в нижнюю часть заднего кольцевого канала 15, поднимается по нему к конвективному блоку 5, проходит через перепускной трубопровод 27, плоские секции 6, их соединительные трубы 9 и выходит через трубопровод 27 в противоположную сторону заднего кольцевого канала 15, далее через отверстия 20 в задней трубной доске 19 - в водяной объем 26 газотрубной части котла, поднимается по нему вверх и выходит из корпуса котла 28 через выходной патрубок 25 в систему трубопроводов котельной. Циркуляция в заднем кольцевом канале 15 осуществляется с помощью разделительных перегородок 16.
Формула изобретения:
Водогрейный котел, содержащий газотрубную и водотрубную части, установленные в одном корпусе, при этом газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, отличающийся тем, что он снабжен передней поворотной камерой, расположенной на фронте котла и имеет со стороны фронта котла дополнительные поверхности нагрева в виде фронтового экрана и переднего кольцевого канала, одновременно выполняющего функции коллекторов фронтового экрана и тепловой изоляции корпуса котла, а в конвективной камере теплообменная поверхность нагрева выполнена в виде съемного конвективного блока с ходом газов сверху вниз, состоящего из плоских секций, представляющих собой трубчато-мембранные панели, соединенные с коллекторами прямоугольной формы, причем в конвективной камере предусмотрена дополнительна поверхность нагрева в виде заднего кольцевого канала, одновременно выполняющего функции коллекторов раздачи воды в съемный блок и вод ной объем газотрубной части котла, а также тепловой изоляции корпуса котла.
Рис.6
Рис.7
Рис.8
На основании изучения и анализа блочных котельных выбрана котельная установка. Изобретение относится к водным системам отопления и горячего водоснабжения и может быть использовано дл нагрева воды в системах с индивидуальным отоплением. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к повышению надежности и КПД установки и снижению температуры дымовых газов и давления системе отопления.
5.3 Выбор блочной котельной
На основании изучения и анализа выбрана блочная котельная c водогрейный котел, содержащий газотрубную и водотрубную часть, причем газотрубная часть имеет топку в виде жаровой трубы и газотрубный одноходовой пучок, а водотрубная часть имеет конвективную камеру с теплообменной поверхностью нагрева, сообщенной с конвективным пучком и топкой, установленными в одном корпусе (см. патент RU №2162574, МПК F 24 Н 1/32, опубл. 27.01.01 г.).[14], как наиболее технически совершенная и имеющая минимальные экономические показатели.
Раздел 6. Технико-экономическое обоснование
6.1 Выявление оптимальной трассировки межпоселкового распределительного газопровода
Выбор оптимального варианта трассы сводится к выявлению такого положения головной магистрали, при котором суммарная металлоемкость ответвлений к потребителям имеет минимальное значение.
В этом случае используется метод математической статистики, который позволяет найти уравнение прямой (кривой) линии, расположенной на минимальном расстоянии от нескольких случайных точек (метод наименьших квадратов).
Суть метода заключается в следующем. На генеральном плане населенного пункта, промплощадки или какой-либо другой территории произвольно наносится система координат XOY и на ней фиксируется положение потребителей (рис. 2).
Поскольку общая металлоемкость ответвлений прямо пропорциональна их суммарной длине и среднему диаметру, при выборе оптимального варианта трассировки головной магистрали необходимо учитывать не только количество и положение потребителей, но и их нагрузка.
Анализ гидравлических режимов эксплуатации систем газо- и теплоснабжения показывает, что диаметр трубопровода при прочих равных условиях определяется расходом транспортируемой среды G в степени m. Показатель степени имеет следующие численные значения:
газопроводы низкого давления m = 0,368;
трубопроводы тепловых сетей m = 0,38;
газопроводы высокого (среднего) давления m = 0,38.
Для определения расчетных координат головной магистрали распределительного трубопровода используется следующее выражение (6.1):
(6.1)
где x, y - расчетные координаты магистрали;
a, b - искомые параметры прямой.
Задача заключается в нахождении наименьшей суммы квадратов отклонений расчетных значений координат по уравнению
(6.2)
где n - количество ответвлений к потребителям;
xi, yi - заданные координаты потребителей.
Дифференцируя функцию S по искомым параметрам a и b и приравнивая полученные выражения к нулю, приходим к следующей системе:
(6.3)
решая которую, находим aopt, bopt и оптимальную трассировку трубопровода:
(6.4)
В частном случае, когда нагрузки потребителей одинаковы, то есть
Gi = const, целевая функция задачи (6.2) трансформируется в уравнение
(6.5)
Нахождение искомых значений параметров aopt, bopt сводится к решению следующей системы:
(6.6)
Пример: Найти оптимальную трассировку распределительного трубопровода на три потребителя с координатами
x1 = 1,0 км; y1 = 1,5 км;
x2 = 3,0 км; y2 = 2,5 км;
x3 = 5,0 км; y3 = 3,0 км;
x4 = 8,0 км; y4 = 9,0 км.
Нагрузки потребителей одинаковы.
Подставляя координаты в уравнение (6.6), получим
После преобразований имеем
откуда aopt = -0,45; bopt = 1,05.
Таким образом, оптимальное положение головной магистрали распределительного трубопровода определяется уравнением:
(6.7)
В общем случае, когда конфигурация головной магистрали представляет собой ломаную линию, содержащую k линейных участков, задача решается последовательно для каждого участка трубопровода. При этом условие оптимальной трассировки магистрали реализуется следующей системой уравнений:
где j = 1,2,….k. (6.8)
Если при реальном проектировании осуществить оптимальную трассировку не представляется возможным (специфика рельефа местности, особенности застройки населенного пункта и другие обстоятельства), принимаем тот вариант трассы, который обеспечивает максимальное приближение к оптимальному с учетом заданных ограничений.
6.2 Выбор оптимального количества очередей строительства газораспределительной станции
На экономическую эффективность проектного (планового) решения большое влияние оказывает фактор времени.
Согласно нормативной методике, распределенные во времени затраты приводятся к сравниваемому уровню (базисному году) с помощью коэффициента приведения. Сущность этого методического подхода заключается в следующем. Денежные средства, подлежащие затрате в последующий (за базисным годом) период, определенное время используются в других отраслях народного хозяйства, отдаление предстоящих затрат, чем больше их окупаемость, тем меньше та, приведенная к сравниваемому уровню часть этих затрат, которую следует учитывать в экономических расчетах. Если затраты предшествуют базисному году, возникает экономический ущерб от замораживания денежных средств. Чем больше отдаление предшествующих затрат, тем больше народнохозяйственный ущерб и тем больше та, приведенная к сравниваемому уровню величина этих затрат, которую необходимо учитывать в экономических расчетах.
Сравнивание вариантов с учетом фактора времени происходит в тех случаях, когда варианты имеют:
- различные сроки службы;
- различную продолжительность строительства (в одну или несколько
очередей);
- различное время выхода объектов на проектную эксплуатацию и т. д.
Характерной особенностью задач первого типа является необходимость учета дополнительных затрат в замену менее долговечной техники за время службы более долговечной техники. Для определения приведенных затрат по сравниваемым вариантам используется уравнение:
(6.9)
при m=0,1,2,…..n,
где m - номер очередного вложения капитальных затрат;
n - количество замен оборудования за расчетный период (срок службы
объекта), определяемое по уравнению
(6.10)
- коэффициент приведения затрат для года, отдаленного от базисного на
mt0 лет.
Задачи второго типа решаются при экономическом обосновании строительства объекта (системы) в несколько этапов (очередей). Сметная стоимость строительства объекта в несколько очередей возрастает за счет дополнительных работ, связанных со сменой части установленного оборудования, устройством временных торцевых стен зданий, монтажом и демонтажем строительной техники и механизмов и т. д. Вместе с тем происходит снижение расчетных затрат во вторую и последующие очереди вследствие их отдаленности во времени. Обеспечивается также экономия расходов по эксплуатации за счет более полного использования установленного оборудования и других основных фондов. Для определения приведенных затрат по сравниваемым вариантам используется уравнение:
(6.11)
где З - суммарные приведенные затраты, руб;
tсл - срок службы объекта;
Кt - капитальные вложения в t-ом году, руб;
Иt - расходы по эксплуатации t-ом году (без отчисления на реновацию), руб;
бt - коэффициент приведения равнопеременных затрат базисному году, определяемый по формуле
(6.12)
где Енп - норматив приведения разновременных затрат, равный 0,08;
t - разность между годом приведения и базисным годом;
tн - начальный год расчетного периода, определяемый началом финансирования строительства объекта.
Задачи третьего типа имеют особое значение при проектировании систем инженерного оборудования новых городов или жилых массивов. По мере застройки населенного пункта, ввода потребителей в эксплуатацию расчетные нагрузки (тепло-, водо-, газопотребление и т. д.) возрастают практически от нуля до проектных (планируемых) величин. Поэтому оптимальное решение подобных задач требует подробной информации о темпах роста населенного пункта, развития его структуры и застройки, динамике потребления топливно-энергетических ресурсов и других определяющих параметров по всем годам расчетного периода строительства.
Пример. Газораспределительная станция (ГРС) может быть построена сразу на полную мощность при сметной стоимости К1= 1500000 рублей или в две очереди (вторая через 4 года) при сметной стоимости К2 = 1980000 рублей, в том числе затраты на первую очередь 1200000 рублей. Переменная часть годовых эксплуатационных расходов составляет 5% от соответствующих капитальных вложений. Срок службы станции tсл = 25 лет. Необходимо определить экономически более целесообразный вариант строительства.
Расчетные затраты по вариантам определяем, используя формулу (6.11):
а) При строительстве ГРС в одну очередь
б) При строительстве ГРС в две очереди
Следовательно, экономически целесообразным является строительство ГРС в одну очередь.
6.3 Определение оптимальной мощности и радиуса действия газорегуляторного пункта
При проектировании многоступенчатых систем газоснабжения населенных пунктов возникает необходимость определения оптимального количества точек питания сети низкого давления, то есть выбора оптимального количества газорегуляторных пунктов.
Рассмотрим основные задачи на примере методики, разработанной МИСИ им. Куйбышева.
С увеличением радиуса действия ГРП (с уменьшением количества ГРП) снижаются приведенные затраты в газорегуляторные пункты и распределительные сети высокого давления. Вместе с тем возрастают затраты в распределительные сети низкого давления за счет увеличения их среднего диаметра.
Примем в качестве целевой функции суммарные приведенные затраты по комплексу: ГРП - сети низкого давления - сети высокого (среднего) давления:
(6.13)
Под радиусом действия ГРП подразумевается расстояние по прямой от ГРП до точки встречи потоков газа на границе зон действия двух соседних ГРП. Выявим взаимосвязь между радиусом R действия ГРП и радиусом действия газопровода между радиусом Rг. Рассмотрим два варианта размещения ГРП на территории населенного пункта: шахматный и коридорный (графическая часть).
При шахматном размещении ГРП радиус действия ГРП совпадает с радиусом действия газопровода, то есть Rг = R. При коридорном варианте радиусы действия ГРП и газопровода связаны между собой следующим соотношением:
(6.14)
В общем случае, при смешанной схеме размещения ГРП, можно записать:
(6.15)
Численное значение коэффициента б изменяется в пределах от 1 до и в среднем может быть принято б ? 1,3. Выразим количество газорегуляторных пунктов n через радиус действия ГРП и площадь газоснабжаемой территории F.
и (6.16)
Откуда
(6.17)
а также
(6.18)
Следовательно,
(6.19)
Выявим приведенные затраты по элементам газоснабжающей системы. Капитальные вложения в ГРП можно определить по формуле
(6.20)
или с учетом (6.19)
(6.21)
где К'грп - удельные капитальные вложения в один ГРП, руб. Принимаются по сметным нормативам в зависимости от конструктивного решения регуляторного пункта (ГРП, ШРП и т. п.) и его пропускной способности.
Затраты по эксплуатации ГРП могут быть выражены в виде годовых отчислений от капитальных вложений по формуле:
(6.22)
Приведенные затраты на ГРП с учетом (6.21) и (6.22) определяется функцией:
(6.23)
Выявим расчетные затраты в сети низкого давления. Для газопроводов, работающих в режиме “гладких” труб:
(6.24)
где d - диаметр газопровода, см;
a - коэффициент пропорциональности, зависящий от состава газа;
Q - расход газа по трубопроводу, м3/ч;
l - длина газопровода, м;
ДP - потеря давления в газопроводе, Па.
Положив в уравнение (6.24)
(6.25)
получим для среднего диаметра распределительных газопроводов низкого давления
(6.25)
где ДPн - нормативный перепад давлений в уличных распределительных сетях, Па.
Считая, что газопроводы несут только путевую нагрузку, можно записать для среднего расхода газа:
(6.26)
где q - удельный путевой расход газа, м3/ч·м.
Численные значения указанного параметра определяются по формуле
(6.27)
где ?Q - максимальный часовой расход газа населенным пунктом, м3/ч;
?lн.д. - общая протяженность уличных газопроводов низкого давления, м.
Подставив (6.26) в (6.25) и преобразуя полученное выражение, имеем
(6.28)
Удельные капитальные вложения в 1 м газопровода определяется по формуле
(6.29)
где а, в - стоимостные параметры 1 м газопровода, имеющие размерность руб/м и руб/м·см соответственно;
d - диаметр газопровода, см.
Численные значения параметров a и в зависят от способа прокладки газопровода (надземная или подземная), характера грунта, типа дорожных покрытий и других условий. Для подземных газопроводов низкого давления допускается применение упрощенной зависимости:
(6.30)
Общие капитальные вложения в сети низкого давления
(6.31)
или с учетом (6.28)
(6.32)
Расходы по эксплуатации одного метра газопровода низкого давления определяется по формуле:
(6.33)
Общие расходы по эксплуатации сетей низкого давления
(6.34)
или с учетом (6.28) и (6.30)
(6.35)
Приведенные затраты в сети низкого давления
(6.36)
Подставляя (6.32) и (6.35) в (6.36), нетрудно убедиться, что затраты в сети низкого давления представляют собой функцию радиуса действия ГРП
(6.37)
Выявим расчетные затраты в сети высокого (среднего) давления.
Изменение радиуса действия ГРП (количества ГРП) мало сказывается на общей конфигурации сети высокого (среднего) давления. Изменяются, в основном, количество и протяженность ответвлений к газорегуляторным пунктам.
Суммарная протяженность ответвлений определяется количеством ГРП и их радиусом по формуле:
(6.38)
Численные значения коэффициента пропорциональности в зависят от схемы размещения ГРП на территории населенного пункта и варьируется в условиях реального проектирования от нуля до двух. На стадии предпроектных проработок допустимо принимать в=1.
Переменная часть капитальных вложений в сети высокого (среднего) давления
(6.39)
или с учетом (6.30)
(6.40)
где dср - средний диаметр ответвлений, см.
В условиях реального проектирования диаметр ответвлений к ГРП составляет dу = 50-100 мм. На стадии предпроектных проработок допустимо принимать dср = 7,5 см.
Подставив в уравнение (6.40) уравнения (6.38), получим
(6.41)
Расходы по эксплуатации одного метра газопровода высокого (среднего) давления определяется по формуле:
(6.42)
Переменная часть эксплуатационных расходов по сетям высокого (среднего) давления
(6.43)
или с учетом (6.30), (6.38)
(6.44)
Переменная часть приведенных затрат по сетям высокого (среднего) давления
(6.45)
Подставляя (6.41) и (6.44) в (6.45), нетрудно убедиться, что затраты в сети высокого (среднего) давления представляют собой функцию от радиуса действия ГРП:
(6.46)
Таким образом, общие затраты в систему газоснабжения будут
(6.47)
Для нахождения оптимального радиуса действия ГРП необходимо взять первую производную от затрат и приравнять ее к нулю.
В результате детальной проработки приведенных уравнений получено следующее выражение для оптимального радиуса действия ГРП:
(6.48)
где Ropt - оптимальный радиус действия ГРП, м;
µ - коэффициент плотности сети низкого давления, 1/м;
q - удельная нагрузка сети низкого давления, м3/(ч·м).
На основании статистического анализа технико-экономических показателей реальных проектов газоснабжения предложены следующие расчетные уравнения:
(6.49)
(6.50)
где m - плотность населения газоснабжаемой территории, чел/Га;
l - удельный часовой расход газа на одного человека, м3/(ч·чел);
?Q - максимальный часовой расход газа населенным пунктом, м3/ч;
?lн.д - общая протяженность уличных газопроводов низкого давления, м;
F - площадь газоснабжаемой территории, Га.
Положив в уравнение (6.48) в =0,55 руб/(м·см), получим с учетом (6.49) и (6.50):
(6.51)
При известном значении радиуса Ropt оптимальную нагрузку ГРП находим по формуле
(6.52)
где 2R2 - площадь территории, снабжаемой газом от одного ГРП.
Оптимальное количество ГРП в населенном пункте
(6.53)
Если в проекте не удается выдержать оптимальное количество ГРП (исходя из целочисленности или технических ограничений), то лучше запроектировать меньшее количество пунктов, так как целевая функция в направлении R>Ropt изменяется более полого, чем в направлении R<Ropt.
В реальном проектировании результаты расчетов по уравнениям (6.48) - (6.53) необходимо уточнить путем дополнительных вариантных сравнений.
Пример. Определить оптимальный радиус действия, количество и оптимальную пропускную способность ГРП для системы газоснабжения со следующими исходными данными:
1. Стоимость одного ГРП К'грп =75000 руб;
2. Нормируемый перепад давлений в уличных газопроводах низкого давления ДPн = 1200 Па;
3. Плотность населения m = 360 чел/Га;
4. Удельный часовой расход газа на одного человека l = 0,08 м3/(ч·чел);
5. Площадь газоснабжаемой территории F = 8400 Га.
По уравнению (6.50) коэффициент плотности сети низкого давления
Оптимальный радиус действия ГРП по формуле (6.51)
Оптимальная пропускная способность одного ГРП по формуле (6.52)
Оптимальное количество ГРП по формуле (6.53)
штук.
Раздел 7. Газооборудование отделения сушки кирпича
7.1 Внутреннее газооборудование сушильного отделения
В сушильном отделении переводу с мазута на газообразное топливо предусматривается три барабанных сушила.
Подачу газа в помещение сушильного отделения предусматривается от газопровода среднего давления.
Давление газа на вводе в сушильное отделение .
Расход газа на одну печь составляет
Общий расход на сушильное отделение
На вводе газопровода в помещении сушильного отделения устанавливаются: термозапорный клапан, перекрывающий подачу газа к горелкам в случае повышения температуры в помещении выше допустимой, быстродействующий электромагнитный запорный клапан, который работает в системе автоматического контроля загазованности и, который закрывается при срабатывании от датчиков оксида углерода и загазованности по метану.
Учет расхода газа осуществляется счетчиком.
Очистка газа от механических примесей осуществляется фильтром типа ФГ - 100 - 12.
Для сжигания газа в сушилках проектом предусматривает в топках установка по одной горелке типа ГГВ - МГП - 500, расход газа на горелку
На каждую горелку по ходу газа от коллектора отделения сушки устанавливается: задвижка для отключения газа, по два клапана с электромагнитным приводом с клапаном утечки между ними и заслонка, которые работают в системе автоматики сушила.
Давление газа у горелок .
Для дутья воздуха в горелки проектом предусматривается установка вентиляторов типа ВР - 100 - 42 - 8.01 ; с электродвигателем типа АИР 132М4 , по одному вентилятору на одну горелку. Давление воздуха у горелок .
Существующие дымососы 5М 900 производительностью и ; (по одному на каждое сушило) удовлетворяют требованиям при работе на газовом топливе и остается без изменений.
На топках сушил, на скрубберах и на газоходах от скрубберов до дымососов предусматривается установка взрывных клапанов из расчета 0,05 на 1 объема.
7.2 Гидравлический расчет газопровода отделения сушки кирпича
Схема газопровода отделения сушки кирпича приведена на рисунке 6.1 смотри лист 8.
Таблица гидравлического расчета газопровода отделения сушки кирпича приведена в таблице 6.1
Раздел 8. Автоматика регулирования и безопасности газовых агрегатов
8.1 Общие положения
Автоматика регулирования и безопасности (АРБ) участка подсистемы газоснабжения от шкафного газорегуляторного пункта ШРП до ОАО «Стройматериалы (сушильное отделение)» включает в себя АРБ газоснабжения на базе комплекта автоматики типа КАМК.
8.2 Автоматика и КИП сушильного отделения
Данный раздел проекта предусматривает автоматическое регулирование температуры в топке барабана №1 (№2, №3) с применением регулирующих приборов типа РС 29.0.42М. по этой схеме в зависимости от изменения температуры изменяется подача газа к агрегату, что позволяет поддержать заданную температуру. Регулирование подачи воздуха так же осуществляется по изменению температуры в топке барабана. В качестве датчика температуры выбран прибор МЕТРАН - 900Т с унифицированным выходным сигналом.
При работе печей на газовом топливе для обеспечения соблюдения «правил безопасности систем газораспределения и газопотребления» ПБ 12 - 529 - 03 проектом предусмотрена установка комплекта автоматики типа КАМК.
Комплект обеспечивает:
- осуществление заданной последовательности операций при пуске и остановке барабана;
- автоматическую защиту сушил в аварийной ситуации;
- рабочую и аварийную сигнализацию.
Комплект обеспечивает установку барабана с одновременным включением световой и звуковой сигнализации в следующих случаях:
- повышение давления газа до 5000 ;
- понижение давления газа до 3000 ;
- понижение разрежения в топке до 1 ;
- понижение давления воздуха до 180 ;
- погасание факела в топке сушила;
- неудавшийся розжиг;
- повышение температуры в топке выше 950 ;
- ручной останов сушила.
Питание комплекта осуществляется от существующей сети переменного тока напряжением 220 , мощностью не более 100 .
Проектом предусмотрены:
- показывающий самопишущий прибор контроля температуры в топке барабана ДИСК - 250, выходной сигнал с которого использован в схеме безопасности;
- приборы контроля давления газа, перед барабаном, газа и воздуха перед горелками, разрежение в топке, разрежение дымовых газов;
- состав дымовых газов.
Для размещения приборов регулирования, управления, регистрирующих приборов проектом предусмотрены щиты автоматики - один на каждое сушило - барабан.
Щиты автоматики и блоки управления комплекта КАМК устанавливаются в помещении операторской.
Питание электроэнергией щитов автоматизации выполняется от ближайшего распределительного щита напряжением 220 , 50 .
Процесс сушки является одним из самых ответственных этапов при производстве керамического кирпича. На этой стадии требуется достаточно высокая точность поддержания термо-влажностного режима сушки в сушильной камере. В подавляющем большинстве кирпичных заводов по производству керамического кирпича этот процесс управляется непосредственно оператором. Но опыт показывает, что человеческий фактор, вкупе со многими другими, делает такое управление малоэффективным, а порой и неэффективным. Так же рынок требует сведение к минимуму затрат тепло- и электроэнергии. Эти проблемы достаточно полно и эффективно решаются с помощью современных средств автоматизации производства.
Разработана и внедрена в производство система автоматического управления (далее САУ) режимом сушки в камерных сушилах.
САУ управляет технологическим процессом в трёх камерных сушилах.
Структура САУ представлена на рис.
Она включает в себя следующие уровни:
- уровень датчиков и исполнительных механизмов;
- уровень устройства ввода-вывода;
- уровень взаимодействия САУ с оператором (интерфейсный уровень).
Рис. Структура САУ режимом сушки в камерных сушилах
Уровень датчиков и исполнительных механизмов реализован на отечественных изделиях, что существенно снижает стоимость системы. Состоит из исполнительных механизмов типа МЭО, термометров сопротивления ТСМ.
Уровень устройства ввода-вывода построен на отечественном контроллере КПС 19-06. На этом уровне происходит опрос датчиков, обмен технологической информацией с интерфейсным уровнем. Тут же реализована логика управления рециркуляционными вентиляторами, ПИД-закон управления заслонками подачи и отбора теплоносителя в сушильных камерах и поддержания давления в центральном подающем канале (ЦПК).
Интерфейсный уровень состоит из IBM PC совместимого персонального компьютера (ПК) и программы управления технологическим процессом. Программа управления интерфейсного уровня реализована в среде программирования Borland Delphi и функционирует под управлением операционной системы Microsoft Windows 98 и выше. Обеспечивает взаимодействие оператора с САУ.
На этом уровне происходит прием от оператора управляющих команд и их передача на устройства управления, отображение на мнемосхеме на экране монитора ПК необходимой технологической информации, отображение технологического процесса в реальном времени в виде графиков соответствия фактических параметров заданным, архивация (сохранение в памяти ПК и распечатка на бумажный носитель) полученных отчетных данных, сигнализация оператору об аварийных состояниях системы. Тут же реализована возможность настройки и калибровки частей САУ, а также инструмент для формирования типовых графиков задания режимов сушки, их применение для конкретной камеры, времени года и других параметров.
При разработке программы управления интерфейсного уровня особое внимание уделялось созданию интерфейса, интуитивно понятного, простого в использовании и насколько это возможно, наглядно отображающего ход технологического процесса сушки в камерах. Оператору для контроля и управления сушильными камерами предоставляются окна с элементами анимации: с общей мнемосхемой, девять - с мнемосхемами отдельно для каждой камеры.
Раздел 9. Организация строительства
9.1 Выбор методов производства работ
На выбор способов производства работ влияет объем работ и условия, в которых осуществляются эти работы. Наиболее рациональным методом организации монтажа санитарно-технических систем является поточный метод, при котором работы осуществляются специализированными звеньями, переходящими с одной захватки на другую и выполняющими свой комплекс работ. Монтаж производится из узлов и деталей, изготовленных на заводах или мастерских. При организации работ по монтажу санитарно-технических систем необходимо стремиться к использованию средств механизации, которые облегчат производство работ и повышают производительность труда. При выборе типа механизмов следует подбирать наиболее эффективные, которые обладают необходимыми техническими характеристиками и которые можно использовать в данных конкретных условиях монтажа санитарно-технических систем.
При организации строительства наружных инженерных сетей приходится выполнять целый комплекс трудоемких работ: разработка грунта для прокладки трубопроводов, монтаж сборных железобетонных конструкций, прокладка трубопроводов и т.д. Для выполнения указанных работ используются различные строительные машины и механизмы, и очень важно правильно подобрать наиболее экономичный комплект машин, обладающий необходимыми техническими характеристиками.
Срезка растительного слоя и предварительное планирование площадей ведется бульдозером ДЗ-28 на базе трактора Т-100.Технические характеристики: длина отвала-3,03м, высота отвала- 1,1м, управление - канатное, мощность-79кВт. Разработка навымет ведется экскаватором ЭО-3322В, оборудованным обратной лопатой с гидравлическим приводом. Технические характеристики: вместимость ковша- 0,65м3, наибольшая глубина копания- 7,1м, наибольшая высота выгрузки- 4,5м, максимальный радиус копания- 7,1м, мощность двигателя-59кВт. Ограждения траншей и котлованов выполняют из инвентарных щитов высотой до 1,2м. Временные металлические пешеходные мосты из готовых деталей. Выгрузка материалов выполняется стреловидными самоходными кранами грузоподъемностью до 25т, при общей массе поднимаемого груза до 0,5т. Доработка грунта выполняется экскаватором Э 4010, оборудованным планировочным ковшом вместимостью до 0,4м3, на базе КрАЗ -221. Технические характеристики: скребок длиной- 2,5м, высотой-0,4-0,45м, наибольший вылет стрелы в горизонтальной плоскости- 7,38м, наибольшая глубина копания с удлинением -4,05м, наибольший радиус копания с удлинением- 11м. Уплотнение грунта выполняют грунтоуплотняющей машиной ДУ-12Б на базе Т-100. Технические характеристики: ширина полосы уплотнения-2,5м, глубина уплотняемого слоя- 1,2м, скорость перемещения 150м/ч.
Земляные работы. Общие положения. При строительстве линейно-протяженных сооружений и устройстве газовых сетей ведут планировку, разработку, перемещение, укладку и уплотнение грунта. Непосредственному выполнению данных процессов предшествуют или сопутствуют подготовительные процессы. Все земляные сооружения создают путем образования выемок в грунте или насыпей, которые могут быть временными или постоянными. Отдельные выемки называют котлованами, если соотношение их длины к ширине не более 10:1, и траншеями, если оно более этой величины. Наклонные боковые поверхности выемок называют откосами.
Транспортно- заготовительные работы включают в себя доставку и выгрузку материалов со складов на места производства монтажных работ.
К общестроительным работам относятся: доработка грунта в траншеи экскаватором оборудованным планировочным ковшом, устройство песчаного основания слоем 200 мм вручную.
Монтажные работы по прокладке наружных газовых сетей должны вестись согласно проекту производства работ и [2].Современные сети газоснабжения характеризуются сборностью деталей, узлов и фасонных частей заводского изготовления: секций труб, заглушек, отводов, полу отводов, переходов, узлов для колодцев и т.п. К монтажно-сборочным работам на площадке относят следующие технологические операции: подготовка концов труб, их стыковка, подготовка концов звеньев труб, их стыковка, установка тройников, отводов, установка задвижек, монтаж присоединений для продувки, установка контрольно- измерительной аппаратуры.
Испытание газопроводов. Перед испытанием смонтированных газопроводов на прочность и герметичность должна производиться их продувка с целью очистки внутренней полости от влаги и засорений. Испытание газопроводов манометрическим методом производится строительно-монтажной организацией в присутствии технологического надзора заказчика и представителя газового хозяйства в две стадии: на прочность и герметичность. Испытание газопроводов производится с установленной арматурой и оборудованием но если они не рассчитаны на испытательное давление, то вместо них на период испытания устанавливают катушки, заглушки или пробки. Окончательное испытание газопроводов производят при их полной засыпки до проектной отметки. Сначала газопровод наполняют воздухом, а затем его выдерживают на время, необходимое для уравновешивания температуры воздуха в трубопроводе с температурой грунта.
После произведения испытательных работ производится сдача объекта в эксплуатацию.
9.2 Расчет потребности в основных строительных материалах, деталях и оборудовании
Потребность в основных строительных материалах, деталях и оборудовании, оказывающем влияние на организацию складского хозяйства, определяем на основе результатов расчета объемов работ и норм расхода на единицу измерения по производственным нормам расхода, номенклатуре типовых индустриальных изделий. Полученные результаты заносим в таблицы.
Подобные документы
Определение плана производственной мощности проектируемого предприятия. Технико-экономическое обоснование варианта размещения проектируемого предприятия в одном из предложенных пунктов. Расчет экономической эффективности проектируемого объекта.
курсовая работа [577,6 K], добавлен 06.09.2008Характеристика и технико-экономическое обоснование выбора мощности трансформаторов. Особенности расчёта планового баланса рабочего времени одного рабочего и численности электротехнического персонала. Затраты на потребление и преобразование электроэнергии.
курсовая работа [909,5 K], добавлен 21.02.2010Обоснование сроков разработки месторождения природного газа. Расчет капитальных вложений в разработку месторождения, эксплуатационных затрат. Обоснование проекта системы магистрального транспорта газа и диаметра газопровода. Расчет транспортной работы.
курсовая работа [343,9 K], добавлен 14.03.2011Расчет и обоснование технико-экономических показателей состава и содержания технико-экономического решения по созданию нового производства. Потребность в материалах, полуфабрикатах, комплектующих изделиях, энергоносителях. Фонд заработной платы персонала.
курсовая работа [71,5 K], добавлен 31.05.2010Технико-экономические показатели инвестиционного проекта, включающие расчет производственной мощности предприятия, затрат на приобретение земельного участка и на строительство зданий и сооружений. Амортизационные отчисления и расходы на оплату труда.
курсовая работа [265,3 K], добавлен 27.01.2011Организация производства и характеристика опережающей организации. Целесообразность создания проектируемого предприятия. Расчеты технико-экономических показателей деятельности предприятия и выработка управленческих решений. Рекламные мероприятия.
курсовая работа [225,5 K], добавлен 04.12.2008Маркетинговое исследование производства и товара - преимущества продукции перед конкурентами, анализ рынка. Определение плана производства и обоснование производственной мощности. Технико-экономическое обоснование создания и размещения предприятия.
курсовая работа [72,8 K], добавлен 16.03.2008Организация производственного процесса. Выбор и обоснование режима работы проектируемого объекта. Расчет фонда времени работы оборудования в году, сметной стоимости зданий, сооружений. Составление баланса рабочего времени одного среднесписочного рабочего.
курсовая работа [291,8 K], добавлен 03.02.2015Технико-экономическое обоснование строительства понизительной подстанции 220/10 кВ для предприятия автомобильной промышленности. Расчет капитальных вложений и годовых текущих эксплуатационных издержек. Технико-экономические показатели строительства.
курсовая работа [202,4 K], добавлен 12.01.2013Расчет производственной мощности, капитальных вложений, себестоимости, показателей по труду и заработной плате. Расходы на содержание и эксплуатацию оборудования, общепроизводственные расходы. Обоснование экономической эффективности проектного решения.
курсовая работа [108,3 K], добавлен 03.07.2014