Линейный множественный регрессионный анализ
Основы линейного регрессионного анализа. Особенности использования функции Кобба-Дугласа. Применение множественной линейной регрессии. Сущность метода наименьших квадратов. Пути избегания ложной корреляции. Проверка значимости коэффициентов регрессии.
Рубрика | Экономика и экономическая теория |
Вид | реферат |
Язык | русский |
Дата добавления | 31.10.2009 |
Размер файла | 101,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сущность и применение метода наименьших квадратов для однофакторной линейной регрессии. Нахождение коэффициента эластичности для указанной модели в заданной точке X и его экономический анализ. Прогноз убыточности на основании линейной регрессии.
контрольная работа [47,3 K], добавлен 15.06.2009Классическая линейную модель множественной регрессии. Значимость уравнения регрессии и его коэффициентов. Доверительный интервал. Матрица парных коэффициентов корреляции. Модель множественной регрессии. Автокорреляция.
контрольная работа [172,9 K], добавлен 17.01.2004Изучение и оценка коэффициентов и уравнения линейной регрессии показателей грузоперевозок по РБ за 2011-2012 гг. Проверка гипотез о значениях коэффициентов регрессии, построение доверительных интервалов, анализ статистической однородности и независимости.
курсовая работа [773,3 K], добавлен 23.10.2012Порядок построения линейного уравнения парной регрессии, расчет коэффициентов и оценка статической значимости параметров регрессии и корреляции. Точность прогноза. Множественная регрессия и корреляция. Системы эконометрических уравнений. Временные ряды.
контрольная работа [1,3 M], добавлен 24.09.2013Парная линейная регрессия. Полный регрессионный анализ. Коэффициент корреляции и теснота линейной связи. Стандартная ошибка регрессии. Значимость уравнения регрессии. Расположение доверительных интервалов. Расчет параметров множественной регрессии.
контрольная работа [932,7 K], добавлен 09.06.2012Расчет параметров уравнения линейной регрессии, экономическая интерпретация регрессии. Определение остаточной суммы квадратов. Выполнение предпосылок МНК. Расчет коэффициента детерминации, проверка значимости уравнения регрессии с помощью критерия Фишера.
контрольная работа [317,0 K], добавлен 11.05.2009Основные этапы многофакторного корреляционного анализа и интерпретация его параметров. Назначение коэффициентов эластичности и стандартизированных бетта-коэффициентов. Расчет значимости коэффициентов регрессии и корреляции с помощью f-критерия Стьюдента.
контрольная работа [605,2 K], добавлен 29.07.2010Составление матрицы парных коэффициентов корреляции переменных. Построение линейного уравнения регрессии, характеризирующее зависимость цены от факторов. Оценка статистической значимости параметров в регрессионной модели с помощью t-критерия Стьюдента.
лабораторная работа [1,6 M], добавлен 13.04.2010Составление матрицы парных коэффициентов корреляции. Построение уравнения регрессии, характеризующего зависимость цены от всех факторов. Проведение регрессионного анализа с помощью пакета SPSS. Экономическая интерпретация коэффициентов модели регрессии.
лабораторная работа [2,5 M], добавлен 27.09.2012Расчет параметров линейного уравнения множественной регрессии с перечнем факторов по данным о деятельности компаний США. Оценка силы связи факторов с результатом с помощью средних (общих) коэффициентов эластичности. Доверительный интервал прогноза.
лабораторная работа [666,9 K], добавлен 21.04.2015