Основные понятия и методы экономико-математического моделирования
Понятие и типы моделей. Этапы построения математической модели. Основы математического моделирования взаимосвязи экономических переменных. Определение параметров линейного однофакторного уравнения регрессии. Оптимизационные методы математики в экономике.
Рубрика | Экономико-математическое моделирование |
Вид | реферат |
Язык | русский |
Дата добавления | 11.02.2011 |
Размер файла | 431,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
адрес целевой ячейки (в нашем примере D5);
диапазон искомых ячеек (А2:A3);
ограничения: А2>=80
A2:A3=целое
A2:A3>=0
В2<=D2
B3<=D3 .
Добавления, изменения и удаления ограничений производятся с помощью кнопок Добавить, Изменить, Удалить (Add, Change, Delete).
Для нахождения оптимального решения нажмем кнопку Выполнить (Solve). В результате в таблице получим значение целевой функции - 42400 млн руб. при x1 = 80 и x2 = 1400.
Рис. 3.5. Диалоговое окно Поиск решения
Диалоговое окно Результаты поиска решения позволяет (рис. 3.6.):
· сохранить на текущем рабочем листе найденное оптимальное решение;
· восстановить первоначальные значения;
· сохранить сценарий;
· выдать отчеты по результатам, устойчивости, пределам, необходимые для анализа найденного решения.
Рис.3.6. Рабочий лист с найденным оптимальным решением
Рис. 3.7. Диалоговое окно Результаты поиска решения
Если щелкнуть по кнопке ОК, то на месте исходной таблицы получим таблицу с найденными оптимальными значениями (см. рис. 3.7).
Как видно из результатов решения, предприятию производить столы не очень выгодно. Поэтому оно ограничило объем их выпуска в количестве, необходимом для выполнения контракта. Остальные ресурсы направлены на производство стульев.
Двойственная задача линейного программирования
Двойственная задача линейного программирования может быть сформулирована следующим образом:
Найти переменные yi (i=1,2,...m), при которых целевая функция была бы минимальной
,
не нарушая ограничений
Данная задача называется двойственной (симметричной) по отношению к прямой задаче, сформулированной во втором параграфе данной главы. Однако, правильным будет и обратное утверждение, т.к. обе задачи равноправны. Переменные двойственной задачи называются объективно обусловленными оценками.
Прямая и обратная задачи линейного програмирования связаны между собой теоремами двойственности.
Первая теорема двойственности. Если обе задачи имеют допустимые решения, то они имеют и оптимальное решение, причем значение целевых функций у них будет одинаково:
F(x)=Z(y) или .
Если же хотя бы одна из задач не имеет допустимого решения, то ни одна из них не имеет оптимального решения.
Вторая теорема двойственности (теорема о дополняющей нежесткости). Для того чтобы векторы были оптимальными решениями соответственно прямой и двойственной задачи, необходимо и достаточно, чтобы выполнялись следующие условия:
Следствие1. Пусть оптимальное значение некоторой переменной двойственной задачи строго положительно
.
Тогда из условия (1) получим:
или
Экономический смысл данных выражений можно интерпретировать в следующей редакции. Если объективно обусловленная оценка некоторого ресурса больше нуля (строго положительна), то этот ресурс полностью (без остатка) расходуется в процессе выполнения оптимального плана.
Следствие2. Пусть для оптимального значения некоторой переменной xi прямой задачи выполняется условие строгого неравенства
.
Тогда основываясь на том же первом условии (1) можно заключить, что yi=0.
Экономически это означает, что если в оптимальном плане какой-то ресурс используется не полностью, то его объективно обусловленная оценка обязательно равна нулю.
Решение двойственной задачи линейного програмирования
Ранее мы рассматривали прямую задачу линейного програмирования:
В системе неравенств должны быть однотипные знаки «меньше или равно». Поэтому неравенство умножим на - 1 и поменяем знак неравенства на противоположный.
Ограничение на целочисленность переменных здесь не требуется.
Решение прямой задачи дало следующие результаты:
Х1=80; Х2=1400; F(x)=42400.
В результате решения двойственной задачи получим
Y1=0; Y2=33.3; Y3=220; Z(y)=42400.
Объективно обусловленная оценка Y1=0 указывает на то, что у нас избыток древесины. Y2=33.3, т.е. больше нуля. Это говорит о том, что этот ресурс (труд) полностью используется в оптимальном плане. Значение целевой функции Z(y)= F(x)=42400. Это свидетельствует о том, что найденное решение оптимально.
Свойства объективно обусловленных оценок и их анализ.
Анализ задачи с использованием объективно обусловленных оценок показывает, что первый ресурс (древесина) используется не полностью. Можно убедиться, что для найденного оптимального плана достаточно 96 куб. м древесины, а 104 куб. м избыточны. Изменение ограничения по древесине с 200 до 96 куб. м не повлияет на оптимальный план. Следовательно, объективно обусловленные оценки является устойчивыми в некоторых пределах изменения исходных условий задачи.
Объективно обусловленные оценки выступают, как мера дефицитности ресурсов. Древесина, объективно обусловленная оценка которой у нас равна нулю, не дефицитна, а трудовые ресурсы с объективно обусловленной оценкой, равной в нашей задаче 33.3, дефицитны и используются полностью.
Объективно обусловленные оценки выступают как мера влияния ограничений на целевую функцию при приращении данного ресурса на единицу. Так, например, уменьшение задания по производству столов с 80 до 79 увеличивает целевую функцию на 220 руб., а увеличение трудовых ресурсов с 1800 до 1801 чел. час. увеличивает целевую функцию (если снять условие целочисленности) на 33.3 руб.
Объективно обусловленные оценки выступают как меры взаимозаменяемости резервов (ограничений). Так, например, если увеличить задание по производству столов на единицу, то для того чтобы целевая функция осталась прежней, нужно добавить 6.6 чел.-чис. (220/33.3). В этом случае х1 будет равен 81, х2 =1391, а значение целевой функции составит 42400.
Следует иметь в виду, что при существенном изменении исходных условий задачи, обычно, получается уже другая система оценок. Следовательно, объективно обусловленные оценки обладают свойством конкретности, так как определяются совокупностью условий определенной задачи. Для другой задачи и других условий их значения будут совершенно иными.
Таким образом, оптимизационные задачи можно рассматривать как простые модели принятия решения типа планирования. Они различаются по характеру цели (максимизация или минимизация целевой функции) и по типам целевой функции и ограничений (линейные и нелинейные). Каждая такая задача требует решения трех проблем относительно оптимального решения: установление существования, выявление признаков оптимальности и разработки метода вычисления. Основным методом решения задач линейного программирования является симплекс-метод. Гладкие задачи нелинейного программирования можно решить методом множителей Лагранжа.
Размещено на Allbest.ru
Подобные документы
Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.
реферат [91,1 K], добавлен 16.05.2012Сущность экономико-математического моделирования. Понятия и типы моделей. Принцип работы симплекс-метода. Разработка математической модели по формированию производственной программы. Оптимизационные расчеты, связанные с выбором производственной программы.
курсовая работа [1,3 M], добавлен 09.07.2015Применение методов оптимизации для решения конкретных производственных, экономических и управленческих задач с использованием количественного экономико-математического моделирования. Решение математической модели изучаемого объекта средствами Excel.
курсовая работа [3,8 M], добавлен 29.07.2013Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.
курсовая работа [1,3 M], добавлен 02.10.2009Потенциальная возможность математического моделирования любых экономических объектов и процессов. Методы минимизации, связанные с вычислением градиента. Суть метода градиентного спуска. Анализ симплекс-таблицы. Построение экономико-математической модели.
курсовая работа [998,7 K], добавлен 01.10.2011Сущность экономико-математической модели, ее идентификация и определение достаточной структуры для моделирования. Построение уравнения регрессии. Синтез и построение модели с учетом ее особенностей и математической спецификации. Верификация модели.
контрольная работа [73,9 K], добавлен 23.01.2009Открытие и историческое развитие методов математического моделирования, их практическое применение в современной экономике. Использование экономико-математического моделирования на всей уровнях управления по мере внедрения информационных технологий.
контрольная работа [22,4 K], добавлен 10.06.2009Основы экономико-математического моделирования управления фирмой. Понятие и роль управления проектами. Методы построения сетевых моделей и календарных планов. Оптимизация сетевых моделей. Корректировка стоимостных и ресурсных параметров сетевого графика.
курсовая работа [539,3 K], добавлен 21.12.2014Основные понятия моделирования. Общие понятия и определение модели. Постановка задач оптимизации. Методы линейного программирования. Общая и типовая задача в линейном программировании. Симплекс-метод решения задач линейного программирования.
курсовая работа [30,5 K], добавлен 14.04.2004Методологические основы эконометрики. Проблемы построения эконометрических моделей. Цели эконометрического исследования. Основные этапы эконометрического моделирования. Эконометрические модели парной линейной регрессии и методы оценки их параметров.
контрольная работа [176,4 K], добавлен 17.10.2014