Некоторые задачи оптимизации в экономике

Математические модели в экономике. Понятия функций нескольких переменных. Задача математического программирования. Задача потребительского выбора. Функция полезности. Общая модель потребительского выбора. Модель Стоуна.

Рубрика Экономико-математическое моделирование
Вид дипломная работа
Язык русский
Дата добавления 08.08.2007
Размер файла 259,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

F(X*) =Z(Y*) (3.9)

то Х* оптимальное решение исходной задачи I, а У* - двойственной задачи II.

? Пусть Х1 любое допустимое решение исходной задачи I. Тогда на основании основного неравенства (3.6) получим F(X1) ? Z(Y*). Однако Х1 - произвольное решение задачи I. Аналогично доказывается, что решение У* оптимально для задачи II.¦

Всегда ли для каждой пары двойственных задач есть одновременно оптимальные решения; возможны ли ситуации, когда одна из двойственных задач имеет решение, а другая нет?

Ответ на эти вопросы даёт следующая теорема.

Первая (основная) теорема двойственности. Если одна из взаимно двойственных задач имеет оптимальное решение, то его имеет и другая, причём оптимальные значения их линейных функций равны:

Fmax=Zmin или F(X*) =Z(Y*) (3.10)

Если линейная функция одной из задач не ограничена, то система ограничений другой задачи противоречива.

Из первой части утверждения теоремы следует, что равенство (3.9) является не только достаточным, но и необходимым признаком оптимальности взаимно двойственных задач.

? Докажем утверждение второй части методом от противного. Предположим, что в исходной задаче линейная функция не ограничена, т.е. Fmax=?, а условия двойственной задачи не являются противоречивыми, т.е. существует хотя бы одно допустимое решение У=(y1,y2,…,ym). Тогда в силу основного неравенство теории двойственности (3.6) F(X) ? Z(Y), что противоречит условию неограниченности F(X). Следовательно, при Fmax=? в исходной задаче, допустимых решений в двойственной задаче быть не может. ¦

Экономический смысл первой теоремы двойственности состоит в следующем: план производства X*=(x, x,…, x) и набор цен ресурсов У*=(у, у,…, у) оказываются оптимальными тогда и только тогда, когда прибыль от продукции, найденная при ценах с1, с2,…, сn,«внешних» (известных заранее), равна затратам на ресурсы по «внутренним»(определяемым только из решения задачи) ценам y1,y2,…,ym . Для всех же других планов Х и У обеих задач в соответствии с основным неравенством (3.6) теории двойственности прибыль (выручка) от продукции всегда меньше (или равна) затрат на ресурсы.

Экономический смысл первой теоремы двойственности можно интерпретировать и так: предприятию безразлично, производить ли продукцию по оптимальному плану X*=(x, x,…, x) и получать максимальную прибыль Fmax либо продавать ресурсы по оптимальным ценам У*=(у, у,…, у) и возместить от продажи равные ей минимальные затраты на ресурсы Zmin.

Связь между двумя взаимно двойственными задачами проявляется не только в равенстве оптимальных значений их линейных функций.

Пусть даны две взаимно двойственные задачи I и II. Если каждую из них решать симплексным методом, то необходимо привести их к каноническому виду, для чего в систему ограничений задачи I следует ввести m неотрицательных переменных xn+1, xn+2, … , xn+m, а в систему ограничений задачи II - n неотрицательных переменных ym+1, ym+2,…,ym+n. Системы ограничений двойственных задач примут вид:

+xn+i=bi, i=1,…,m (3.11) -ym+j=cj, j=1,…,n (3.12).

установим соответствие между первоначальными переменными одной из двойственных задач и дополнительными переменными другой задачи.

Переменные исходной задачи I

Первоначальные

Дополнительные

x1 x2 xj … хn

¦ ¦ ¦ ¦

ym+1 ym+2 ym+jym+n

xn+1 xn+2 xn+I xn+m

¦ ¦ ¦ ¦

y1 y2 yj ym

Дополнительные

Первоначальные

Переменные исходной задачи II

Теорема. Положительным (ненулевым) компонентам оптимального решения одной из взаимно двойственных задач соответствуют нулевые компоненты оптимального решения другой задачи, т.е. для любых i=1,2,…,m и j=1,2,…,n: если >0, то =0; если >0, то=0, и аналогично, если >0, то =0; если >0, то=0.

? Выразим дополнительные переменные из системы ограничений (3.11) исходной задачи I и (3.12) двойственной задачи, представленных в каноническом виде:

xn+i=bi-, i=1,2,…,m (3.13)

ym+j=-cj, j=1,…,n. (3.14)

Умножая каждое равенство системы (4.9) на соответствующие переменные уj?0 и складывая полученные равенства, найдём

xn+iyi=biyi-yi (3.15)

Аналогично, умножая каждое неравенство системы (4.10) на соответствующие переменные xj?0 и складывая полученные равенства, найдём

ym+j=yi-cj . (3.16)

Равенства (4.11)и(4.12) будут справедливы для любых допустимых значений переменных, в том числе и для оптимальных значений ,,, . В силу первой теоремы двойственности (3.10) F(X*) =Z(Y*) или =, поэтому из записи правых частей равенств (3.15) и (3.16) следует, что они должны отличаться только знаком. С другой стороны, из неотрицательности выражений xn+i yi и ym+j, входящие в выражения (3.15) и (3.16), следует, что правые части этих равенств должны быть неотрицательны.

Эти условия могут выполняться одновременно только при равенстве этих правых частей для оптимального значения переменных нулю:

=0,

=0. (3.17)

В силу условия неотрицательности переменных каждое из слагаемых в равенстве (4.13) должно равняться нулю:

=0, i=1,2,…,m

=0, j=1,2,…,n

Откуда и вытекает заключение теоремы. ¦

Из доказанной теоремы следует, что введённое ранее соответствие между переменными двойственных задач представляет соответствие между основными (как правило не равными нулю) переменными одной из двойственных задач и неосновными (равными нулю) переменными другой задачи, когда они образуют допустимые базисные решения.

Рассмотренная теорема является следствием следующей теоремы.

Вторая теорема двойственности. Компоненты оптимального решения двойственной задачи равны абсолютным значениям коэффициентов при соответствующих переменных линейной функции исходной задачи, выраженной через неосновные переменные её оптимального решения.

Метод, при котором вначале симплексным методом решается двойственная задача, а затем оптимум и оптимальное решение исходной задачи находятся с помощью теорем двойственности, называется двойственным симплексным методом. Этот метод бывает выгодно применять, когда первое базисное решение исходной задачи недопустимое или, например, когда число её ограничений m больше числа переменных n.

С помощью теорем двойственности найдём решение задачи II. Получаем следующий набор цен ресурсов ( ), при котором минимальные затраты составят 1330. [5]

4) Задача нелинейного программирования. (ЗНП)

Рассмотрим ЗНП и способы её решения. Математическая модель ЗНП в общем виде формулируется следующим образом:

f =(x1,x2, …,хn) > min (max). При этом переменные должны удовлетворять ограничениям:

g1(x1,x2, …,хn) ?b1,

…………………………

gm(x1,x2, …,хn) ?bm,

gm+1(x1,x2, …,хn) ?bm+1,

…………………………

gk(x1,x2, …,хn) ?bk,

gk+1(x1,x2, …,хn)=bk+1,

………………………

gp(x1,x2, …,хn)=bp.

x1,x2,…,хn ?0, где хотя бы одна из функций f, gi нелинейная.

Для ЗЛП нет единого метода решения. В зависимости от вида целевой функции и системы ограничений разработаны специальные методы решения, к которым относятся метод множителей Лагранжа, градиентные методы, приближённые методы решения, графический метод.

Рассмотрим основные идеи графического метода.

Максимум и минимум достигается в точках касания линии уровня с областью допустимых решений (ОДР), которая задается системой ограничений. Например, если линии уровня - прямые, то точки касания можно определить, используя геометрический смысл производной.

Рассмотрим на примерах решение ЗНП.

1. Найти экстремумы функции L(x1,x2)=x1+2x2 при ограничениях

, .

Решение. ОДР - это часть круга с радиусом 5, расположенная в I четверти. Найдём линии уровня функции L: x1+2x2=C. Выразим x2=. Линиями уровня будут параллельные прямые с угловым коэффициентом, равным -. Минимум функции достигается в точке (0;0), Lmin=0, т.к. градиент (1,2) направлен вверх вправо. Максимум достигается в точке касания кривой х2= и линии уровня. Т.к. угловой коэффициент касательной к графику функции равен -, найдём координаты точки касания, используя геометрический смысл производной.

=-; ()=-;

=-; x0=; x2=2.

Тогда L=+2•2=5.

Ответ: Минимум достигается в точке О(0;0), глобальный максимум, равный 5, в точке А(;2) .

2. Найти экстремумы функции L=(x1-6)2+(x2-2)2 при ограничениях

x1+x2?8

3 x1+x2 ?15

x1+x2 ?1

.

Решение. ОДР - многоугольник ABCDE. Линии уровня представляют собой окружности (x1-6)2+(x2-2)2 с центром в точке О1(6;2). Возьмём, например, С=36, видим, что максимум достигается в точке А(0;4), которая лежит на окружности наибольшего радиуса, пересекающую ОДР. L(A)=(0-6)2+(4-2)2=40. Минимум - в точке F, находящейся на пересечении прямой 3x1+x2 =15 и перпендикуляра к этой прямой, проведённого из точки О1. Т.к. угловой коэффициент равен -3, то угловой коэффициент перпендикуляра равен . Из уравнения прямой, проходящей через данную точку О1 с угловым коэффициентом , получим (x2-2)= (x1-6). Найдём координаты точки Е

х1-3х2=0

3 x1+x2 =15.

Решив систему, получаем Е(4.5; 1.5).

L (E) = (4.5-6)2+ (1.5-2)2=2.5.

Ответ: Минимум, равный 2.5 достигается в точке (4.5; 1.5), максимум, равный 40, в точке (0;4).

3. Найти экстремумы функции L=(x1-1)2+(x2-3)2

при ограничениях , .

Решение: ОДР является часть круга, с центром в начале координат, с радиусом 5, расположенная в I четверти. Линии уровня - это окружности с центром в точке О1 и радиуса С, т.к. (x1-1)2+(x2-3)2. Точка О1 - это вырожденная линия уровня, соответствующая минимальному значению С=0. глобальный максимум достигается в точке А, лежащей на пересечении ОДР с линией уровня наибольшего радиуса. При этом

L(A)=(5-1)2+(0-3)2=25.

Ответ: Минимум, равный 0, достигается в точке (1;3),

Максимум, равный 25, - в точке А(5;0).

4. Предприниматель решил выделить на расширение своего дела 150 тыс.руб. известно, что если на приобретение нового оборудования затратить х тыс. руб., а на зарплату вновь принятых работников у тыс. руб., то прирост объёма продукции составит Q=0.001x0.6·y0.4 . Как следует распределить выделенные денежные ресурсы, чтобы прирост объёма продукции был максимальным.

Решение: Целевая функция имеет вид 0.001x0.6·y0.4 >max при ограничениях x+y?150,

.

ОДР - треугольник. Линии уровня будут иметь вид 0.001x0.6·y0.4. Выразив отсюда у, получим у=. Т.к. максимум достигается в точке касания линии уровня с ОДР, то условие касания имеет вид =-1. Найдя производную, получаем =-1. Выразив х, получим х=. у==.

Ответ: Факторы х и у следует распределить в отношении 2:3.

5.Предприятие выпускает изделия А и Б, при изготовлении которых используется сырьё S1 и S2. Известны запасы bi (i=1,2) сырья, нормы его расхода на единицу изделия aij (j=1,2), оптовые цены pj на изделия и их плановая себестоимость с. Как только объём выпускаемой продукции перестаёт соответствовать оптимальному размеру предприятия, дальнейшее увеличение выпуска хj ведёт к повышению себестоимости продукции b, в первом приближении фактическая себестоимость сj описывается функцией сj= с+ схj, где сj - некоторая постоянная. Все числовые данные приведены в таблице

b1

b2

a11

a12

a21

a22

p1

p2

с

с

с

с

90

88

13

6

8

11

12

10

7

8

0.2

0.2

Найти план выпуска изделий, обеспечивающий предприятию наивысшую прибыль в условиях нарушения баланса между объёмом и оптимальным размером предприятия.

Решение: Составим математическую модель задачи.

Пусть Z - прибыль, получаемая предприятием после реализации х1 выпущенных изделий А и х2 изделий Б.

Z=( 12-( 7+ 0,2 х1)) х1+( 10-( 8+ 0,2 х2)) х2 >max,

при ограничениях 13 х1+ 6 х2? 90,

8 х1+ 11 х2?88,

Преобразуя целевую функцию, получим:

Z=5х1-0,2х+2 х2-0,2х>max

ОДР - многоугольник ОАВD. Для построения линий уровня функции, приведём функцию к следующему виду:

1-12,5)2+(х2-5)2=181,25-5Z .

Линиями уровня будут окружности с центром в точке О1(12,5; 5) и радиуса . Окружность наибольшего радиуса будет проходить через точку М, находящейся на пересечении прямой ВD и прямой O1М, перпендикулярной к BD. Найдём координаты точки М.

13х1+ 6х2=90

х2-5=6/131-12,5). Решив систему, получим, М(6;2).

Z(М)=30-7,2-2,8+4=26.

Ответ: Для получения предприятием максимальной прибыли, составляющей 26 ден.ед., следует выпустить 6 ед. изделия А и 2 ед. изделия Б.

5) Задача на условный экстремум.

Если система ограничений (3.1) задана в виде равенств, то это задача на условный экстремум. В случае функции n независимых переменных (x1,x2, …,хn) задача на условный экстремум формулируется следующим образом:

L=f(x1,x2, …,хn )>max (min)

при условиях: gi(x1,x2, …,хn)=0, i=. (m<n).

В конце XVIII века Лагранж предложил остроумный метод решения задачи на условный экстремум. Суть метода Лагранжа состоит в построении функции L(x1,x2, …,хn)= f(x1,x2, …,хn)+gi(x1,x2, …,хn), где лi неизвестные постоянные, и нахождении экстремума функции L.

Верна следующая теорема: если точка () является точкой условного экстремума функции f(x1,x2, …,хn) при условии g(x1,x2, …,хn)=0, то существует значение лi такие, что точка () является точкой экстремума функции L().

Рассмотрим метод Лагранжа для функции двух переменных.

L(x1,x2,л)= f(x1,x2)+л g(x1,x2)

Таким образом, для нахождения условного экстремума функции f(x1,x2) при условии g(x1,x2)=0 требуется найти решение системы

L=f (x1,x2)+лg(x1,x2)=0, (3.18)

L=f (x1, x2) +лg(x1, x2) =0,

L= g(x1, x2) =0. [4]

Есть и достаточные условия, при выполнении которых решение (x1,x2) системы (3.18) определяет точку, в которой функция f достигает экстремума, для этого нужно вычислить значения и составить определитель

=-.

Если <0, то функция имеет в точке () условный максимум, если >0 - то условный минимум.

Решим задачу методом множителей Лагранжа.

Общие издержки производства заданы функцией Т=0,5х2+0,6ху+0,4у2+ +700х+600у+2000, где х и у соответственно количество товаров А и В. Общее количество произведённой продукции должно быть равно 500 единиц. Сколько единиц товара А и В нужно производить, чтобы издержки на их изготовление были минимальными?

Решение: составим функцию Лагранжа.

L(x, y, л) =0,5х2+0,6ху+0,4у2+ +700х+600у+2000+л(х+у-500). Приравнивая к нулю её частные производные, получим

х+0,6у+700+ л=0,

0,6х+0,8у+600+ л=0,

х+у-500=0.

Решив систему, найдём (0, 500, -1000).

Воспользуемся достаточным условием для определения найденного значения L(x0,y0)=1, L(x0,y0)=0.8, L(x0,y0)=0.6. Функция g= х+у-500. g=1, g=1.

=-(0·L·L+ g·L· g+ g·g·L- g·L·g-0·L·L- g· g·L)=0,6>0

Значит, в точке (0;500) функция L имеет условный минимум.

Ответ: Выгодно производить только 500 ед. товара В, а товар А не производить.

Наиболее простым способом нахождения условного экстремума функции двух переменных является сведение задачи к отысканию экстремума функции одной переменной. Пусть уравнение g(x1,x2)=0 удалось разрешить относительно одной из переменных, например, выразить х2 через х1: х2=ц(х1). Подставив полученное выражение в функцию, получим y=f(x1,x2)= y=f(x1, ц(х1)), т.е. функцию одной переменной. Её экстремум и будет условным экстремумом функции y=f(x1,x2).

Проиллюстрируем данный метод на конкретной задаче.

Фирма реализует автомобили двумя способами: через розничную и оптовую торговлю. При реализации х1 автомобилей в розницу расходы на реализацию составляют (4 х1) у. е., а при продаже х2 автомобилей оптом - ху. е. Найти оптимальный способ реализации автомобилей, минимизирующий суммарные расходы, если общее число, предназначенных для продажи автомобилей составляет 200шт.

Решение: Составим функцию L12)=4х1+х+х и будем находить её минимум. Т.к. для продажи предназначено 200 автомобилей, то х12=200. Разрешим данной уравнение относительно переменной х2: х2=200-х1. Подставим полученное выражение в функцию L, получим L=4 х1+ х+ (200- х1)2=2х--396 х1+40000, х10.

Найдём экстремум данной функции.

L=4 х1-396.

Приравняв её к нулю, получим х1=99.

Ответ: оптимальный способ реализации автомобилей - это 99 автомобилей в розницу и 101 автомобиль оптом 2=200-99). Расходы составят 20398 р.

В экономических задачах, в которых отыскивается оптимум функции f =(x1,x2, …,хn), где n 2, полагают, что найденное единственное решение, удовлетворяющее необходимому условию экстремума, является оптимальным.

4. Задача потребительского выбора.

1) Функция полезности. Бюджетное ограничение. Формулировка задачи потребительского выбора.

Будем считать, что потребитель располагает доходом Q, который он полностью тратит на приобретение благ (продуктов) Учитывая структуру цен, доход и собственные предпочтения, потребитель приобретает определённое количество благ, и математическая модель такого его поведения называется моделью потребительского выбора.

В некоторых задачах выделяют один продукт, а вторым считают все остальные. Поэтому сначала рассмотрим модель с двумя видами продуктов. Потребительский набор - это вектор (x1,x2), координата x1 которого равна количеству единиц первого продукта, а координата x2 равна количеству единиц второго продукта.

Выбор потребителя характеризуется отношением предпочтения, суть которого состоит в следующем. Считается, что потребитель про каждые два набора может сказать, что либо один из них более желателен, чем другой, либо потребитель не видит между ними разницы. Отношение предпочтения транзитивно, т.е. если набор А=(а12) предпочтительнее набора B=(b1,b2), а набор B=(b1,b2) предпочтительнее набора С=(с12), то набор А=(а12) предпочтительнее набора С=(с12).

На множестве потребительских наборов (x1,x2) определена функция u(x1,x2) (называемая функцией полезности потребителя), значение u(x1,x2) которой на потребительском наборе (x1,x2)равно потребительской оценке индивидуума для этого набора. Потребительскую оценку u(x1,x2) набора (x1,x2) принято называть уровнем (или степенью) удовлетворения потребительского индивидуума, если он приобретает или потребляет данный набор (x1,x2). Каждый потребитель имеет, вообще говоря, свою функцию полезности. Если набор А предпочтительнее набора В, то u(А)>u(В).

Функция полезности удовлетворяет следующим свойствам:

1. Возрастание потребления одного продукта при постоянном потреблении другого продукта ведёт к росту потребительской оценки, т.е. если x>x, то u(x,x2)> u(x,x2);

если x>x, то u(x1, x)> u(x1, x).

Иначе говоря, u(x1,x2)=u>0, u(x1,x2)=u>0.

Первые частные производные u и u называются предельными полезностями первого и второго продуктов соответственно.

2. Предельная полезность каждого продукта уменьшается, если объём его потребления растёт (закон убывания предельной полезности). Из свойства второй производной следует, что u(x1,x2)<0, u(x1,x2)<0.

3. Предельная полезность каждого продукта увеличивается, если растёт количество другого продукта. В этом случае продукт, количество которого фиксировано, оказывается относительно дефицитным. Если блага могут замещать друг друга в потреблении, свойство не выполняется. u(x1,x2)=u12>0, u(x1,x2)=u21>0.

Линия, соединяющая потребительские наборы (x1,x2), имеющие один и тот же уровень удовлетворения потребностей называется линией безразличия. Линия безразличия есть не что иное, как линия уровня функции полезности. Множество линий безразличия называется картой линий безразличия. Линии безразличия, соответствующие разным уровням удовлетворения потребностей не пересекаются и не касаются. Чем выше и правее расположена линия безразличия, тем большему уровню удовлетворения потребностей она соответствует. Условия 1-3 означают, что линия безразличия убывает и является выпуклой вниз.

Задача потребительского выбора заключается в выборе такого потребительского набора , х), который максимизирует его функцию полезности при заданном бюджетном ограничении.

Бюджетное ограничение означает, что денежные расходы на продукты не могут превышать денежного дохода, т.е. p1x1+p2x2?Q, где p1 и p2 - рыночные цены, а Q - доход потребителя, который он готов потратить на приобретение первого и второго продуктов. Величины p1, p2 и Q заданы.

Задача потребительского выбора имеет вид:

u(x1,x2)>max

при ограничении p1x1+p2x2?Q

и условие x1?0, x2?0.

Допустимое множество (т.е. множество наборов продуктов, доступных для потребителя) представляет собой треугольник, ограниченный осями координат и бюджетной прямой. На этом множестве требуется найти точку, принадлежащую кривой безразличия с максимальным уровнем полезности. Поиск этой точки можно интерпретировать графически как последовательный переход на линии всё более высокого уровня полезности до тех пор, пока эти линии ещё имеют общие точки с допустимым множеством.

42

2) Решение задачи потребительского выбора и его свойства.

Набор , х), который является решением задачи потребительского выбора, принято называть оптимальным для потребителя.

Рассмотрим некоторые свойства задачи потребительского выбора. Во - первых, решение задачи , х) сохраняется при любом монотонном (т.е. сохраняющем порядок значении) преобразовании функции полезности u(x1,x2). Поскольку значение u, х), было максимальным на всём допустимом множестве, оно остаётся таковым и после монотонного преобразования функции полезности (допустимое множество, определяемое бюджетным ограничением, остаётся неизменным). Таким монотонным преобразованием может быть умножение функции полезности на некоторое положительное число, возведение её в положительную степень, логарифмирование.

Во - вторых, решение задачи потребительского выбора не изменится, если все цены и доход увеличиваются (уменьшаются) в одно и то же число раз л . (л>0)

Это равнозначно умножению на положительное число л обеих частей бюджетного ограничения p1x1+p2x2?Q, что даёт неравенство, эквивалентное исходному. Поскольку ни цены, ни доход Q не входят в функцию полезности, задача остаётся той же, что и первоначально.

Если на каком - то потребительском наборе (x1,x2) бюджетное ограничение p1x1+p2x2?Q будет выполнятся в виде строгого неравенства, то мы можем увеличить потребление какого - либо из продуктов и тем самым увеличить функцию полезности. Следовательно, набор , х), максимизирующий функцию полезности, должен обращать бюджетное ограничение в равенство, т.е. p1х+p2х=Q.

Графически это означает, что решение , х) задачи потребительского выбора должно лежать на бюджетной прямой, которая проходит через точки пересечения с осями координат, где весь доход тратиться на один продукт: (0, ) и (,0).

Итак, задачу потребительского выбора можно заменить задачей на условный экстремум (ибо решение , х) этих двух задач одно и то же)

u(x1,x2)>max

при условии p1x1+p2x2=Q.

Для решения этой задачи применим метод Лагранжа. Выписываем функцию Лагранжа L(x1,x2, л)= u(x1,x2)+ л (p1x1+p2x2-Q), находим её частные производные по переменным x1,x2 и л и приравниваем к нулю:

L= u p1=0,

L= u p2 =0,

L=p1x1+p2x2-Q =0.

Исключив из полученной системы неизвестную л, получим систему двух уравнений с двумя неизвестными x1, и x2

=,

p1x1+p2x2=Q .

Решение , х) этой системы есть критическая точка функции Лагранжа. Подставив решение , х) в левую часть равенства

=,

получим, что в точке , х) отношение предельных полезностей u, х) и u, х) продуктов равно отношению рыночных цен p1 и p2 на эти продукты:

=. (5.1)

В связи с тем, что отношение равно предельной норме замены первого продукта вторым в точке локального рыночного равновесия , х), из (5.1) следует, что эта предельная норма равна отношению рыночных цен на продукты. Приведённый результат играет важную роль в экономической теории.

Геометрически решение , х) можно интерпретировать как точку касания линии безразличия функции полезности u(x1,x2) с бюджетной прямой p1x1+p2x2=Q. Это определяется тем, что отношение =- показывает тангенс угла наклона линии уровня функции полезности, а отношение - представляет тангенс угла наклона бюджетной прямой. Поскольку в точке потребительского выбора они равны, в этой точке происходит касание данных двух линий.

Решим задачу потребительского выбора.

Оптимальный набор потребителя составляет 6 ед. продукта х1 и 8 ед. продукта х2. Определите цены потребляемых благ, если известно, что доход потребителя равен 240 руб. Функция полезности потребителя имеет вид: u(x1,x2)=xx.

Решение. Следуя принципу решения, получаем систему уравнений:

=, =, =,

p1x1+p2x2=240. p1x1+p2x2=240 . p1x1+p2x2=240 .

Подставив, вместо х1 - 6 ед., вместо х2 - 8 ед., получим: p1=10руб., p2=22.5руб.

3) Общая модель потребительского выбора.

Была рассмотрена модель потребительского выбора с двумя продуктов и её решение с помощью метода множителей Лагранжа. Сейчас рассмотрим свойства задачи потребительского выбора с произвольным числом продуктов и целевой функцией общего вида.

Пусть задана целевая функция предпочтения потребителя u(x1,x2, …,хn), где хi- количество i-го продукта, вектор цен pi=(p1,p2,…,pn) и доход Q. Записав бюджетное ограничение и ограничение на неотрицательность, получаем задачу

u(x)>max (5.2)

при условии px?Q, x?0

(здесь x=(x1,x2, …,хn), p=(p1,p2,…,pn), px=( p1x1+…+pnxn)).

Будем считать, что неотрицательность переменных обеспечивается свойствами целевой функции и бюджетного ограничения. В этом случае можно записать функцию Лагранжа и исследовать её на безусловный экстремум.

L(x, л )= u(x)+ л ( px-Q).

Необходимое условие экстремума - равенство нулю частных производных: L=u+ лpi=0 для всех i[1;n] и L=px-Q=0. Отсюда вытекает, что для всех i в точке х рыночного равновесия выполняется равенство

(5.3)

которое получается после перенесения вторых слагаемых, необходимых условий в правую часть и делением i-го равенства на j-ое. Итак, в точке оптимума отношение предельных полезностей любых двух продуктов равно отношению их рыночных цен. Равенство (5.3) можно переписать и в другой форме:

(5.4)

Это означает, что полезность, приходящаяся на единицу денежных затрат, в точке оптимума одинаковая по всем видам благ. Если бы это было не так, то по крайней мере одну денежную единицу можно было бы перераспределить так, чтобы выросло благосостояние (значение функции полезности) потребителя. Если для некоторых i, j

,

то некоторое количество денег можно было бы перераспределить от i -го продукта к j-му, увеличив уровень благосостояния.

4) Модель Стоуна. Выведем теперь функцию спроса для конкретной функции потребительского предпочтения, называемой функцией Р.Стоуна. Эта функция имеет вид

u(x)=>max (5.5)

Здесь аi - минимально необходимое количество i-го продукта, которое приобретается в любом случае и не является предметом выбора. Для того чтобы набор {ai} мог быть полностью приобретен, необходимо, чтобы доход Q был больше - количество денег, необходимого для покупки этого набора. Коэффициенты степени аi>0 характеризуют относительную «ценность» продуктов для потребителя.

Добавив к целевой функции (5.5) бюджетные ограничения ?Q, хi?0, получим задачу, называемую моделью Стоуна. Как было сказано на стр. 36, бюджетное ограничение должно обращаться в равенство. Составим функцию Лагранжа L(x1,x2, …,хn, л )= u(x)+ л (p1x1+…+pnxn -Q).


Подобные документы

  • Модели распределения доходов. Количественный подход к анализу полезности и спроса. Отношение предпочтения и функция полезности. Кривые безразличия, решение задачи оптимального выбора потребителя. Функции спроса, изменение цен и коэффициент эластичности.

    курсовая работа [412,7 K], добавлен 11.02.2011

  • Транспортная задача линейного программирования, закрытая модель. Создание матрицы перевозок. Вычисление значения целевой функции. Ввод зависимостей из математической модели. Установление параметров задачи. Отчет по результатам транспортной задачи.

    контрольная работа [202,1 K], добавлен 17.02.2010

  • Основные понятия моделирования. Общие понятия и определение модели. Постановка задач оптимизации. Методы линейного программирования. Общая и типовая задача в линейном программировании. Симплекс-метод решения задач линейного программирования.

    курсовая работа [30,5 K], добавлен 14.04.2004

  • Основные понятия математических моделей и их применение в экономике. Общая характеристика элементов экономики как объекта моделирования. Рынок и его виды. Динамическая модель Леонтьева и Кейнса. Модель Солоу с дискретным и непрерывным временем.

    курсовая работа [426,0 K], добавлен 30.04.2012

  • Общая постановка задачи линейного программирования (ЛП). Приведение задачи ЛП к стандартной форме. Теоремы двойственности и их использование в задачах ЛП. Транспортная задача и её решение методом потенциалов. Интерполирование табличных функций.

    курсовая работа [337,1 K], добавлен 31.03.2014

  • Модели распределения доходов. Количественный подход к анализу полезности и спроса. Кривые безразличия, решение задачи об оптимальном выборе потребителя. Функции спроса и коэффициент эластичности. Предельная полезность и предельная норма замещения.

    презентация [470,8 K], добавлен 28.04.2013

  • Целевая функция, экстремальное значение которой нужно найти в условиях экономических возможностей, как показатель эффективности или критерий оптимальности. Оптимальное использование ресурсов и производственных мощностей. Общая идея симплексного метода.

    контрольная работа [1,1 M], добавлен 18.05.2015

  • Описание графического способа решения задачи распределения ресурсов. Определение экономического смысла двойственной задачи. Нахождение предельных полезностей товаров и их приближенного изменения. Применение модели Стоуна для расчета равновесного спроса.

    контрольная работа [345,7 K], добавлен 24.03.2011

  • Изучение порядка постановки задач и общая характеристика методов решения задач по календарному планированию: модель с дефицитом и без дефицита. Анализ решения задачи календарного планирования с помощью транспортной модели линейного программирования.

    курсовая работа [154,0 K], добавлен 13.01.2012

  • Графический метод решения задачи оптимизации производственных процессов. Применение симплекс-алгоритма для решения экономической оптимизированной задачи управления производством. Метод динамического программирования для выбора оптимального профиля пути.

    контрольная работа [158,7 K], добавлен 15.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.