Автоматизированный априорный анализ статистической совокупности в среде MS Excel

Статистический анализ выборочной совокупности, генеральной совокупности. Экономическая интерпретация результатов статистического исследования предприятий. Нахождение наиболее адекватного нелинейного уравнения регрессии средств инструмента Мастер диаграмм.

Рубрика Экономико-математическое моделирование
Вид лабораторная работа
Язык русский
Дата добавления 20.02.2010
Размер файла 576,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вывод:

Коэффициент регрессии а1 =1,0894 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на 1,0894 млн руб.

6.2 Экономическая интерпретация коэффициента эластичности

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности , который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения и приведены в таблице описательных статистик (ЛР-1, Лист 1, табл.3).

Расчет коэффициента эластичности:

= =1,1667%

Вывод:

Значение коэффициента эластичности Кэ=1,1667% показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается (уменьшается) в среднем на 1,1667 %.

6.3 Экономическая интерпретация остаточных величин еi

Каждый их остатков характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения следует ожидать, когда фактор Х принимает значение xi.

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков i (таблица остатков из диапазона А98:С128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е.).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 20, 19, 29 а максимальные отрицательные отклонения - три предприятия с номерами 7, 15, 32. Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.

Задача 7

Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10

Регрессионные модели связи

Вид уравнения

Уравнение регрессии

Индекс

детерминации R2

Полином 2-го порядка

5Е-05х2+0,6х+201,7

0,8353

Полином 3-го порядка

8Е-08х3-0,001х2+5,1х-5982,3

0,8381

Степенная функция

0,2х1,1788

0,8371

Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Вывод:

Максимальное значение индекса детерминации R2 =0,8381. Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид 8Е-08х3-0,001х2+5,1х-5982,3.

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Таблица 2.1

Исходные данные

Номер предприятия

Среднегодовая стоимость основных производственных фондов, млн.руб.

Выпуск продукции, млн. руб.

5

2870,00

2240,00

23

3094,00

2976,00

27

3350,00

2560,00

1

3446,00

3296,00

8

3574,00

3520,00

32

3638,00

3712,00

22

3894,00

3168,00

19

3990,00

3040,00

2

4054,00

3616,00

3

4182,00

4032,00

13

4214,00

4288,00

26

4310,00

3936,00

9

4374,00

4128,00

4

4406,00

4480,00

28

4502,00

4000,00

17

4534,00

4096,00

6

4630,00

3840,00

14

4630,00

4672,00

25

4630,00

4160,00

7

4758,00

5184,00

31

4950,00

4160,00

18

5014,00

4864,00

10

5046,00

5152,00

20

5078,00

4160,00

24

5174,00

4768,00

29

5206,00

4384,00

15

5302,00

5664,00

12

5526,00

5440,00

21

5654,00

5600,00

16

6070,00

6080,00

Таблица 2.2

Зависимость выпуска продукции от среднегодовой стоимости основных фондов

Номер группы

Группы предприятий по стоимости основеных фондов

Число предприятий

Выпуск продукции

Всего

В среднем
на одно
предприятие

1

2870-3510

4

11072,00

2768,00

2

3510-4150

5

17056,00

3411,20

3

4150-4790

11

46816,00

4256,00

4

4790-5430

7

33152,00

4736,00

5

5430-6070

3

17120,00

5706,67

Итого

 

30

125216,00

4173,87

Таблица 2.3

Показатели внутригрупповой вариации

Номер группы

Группы предприятий по стоимости основеных фондов

Число предприятий

Внутригрупповая дисперсия

1

2870-3510

4

161024,00

2

3510-4150

5

68239,36

3

4150-4790

11

138891,64

4

4790-5430

7

262729,14

5

5430-6070

3

73955,56

Итого

 

30

 

Таблица 2.4

Показатели дисперсии и эмпирического корреляционного отношения

Общая дисперсия

Средняя из внутригрупповых дисперсия

Межгрупповая дисперсия

Эмпирическое корреляционное отношение

824093,5822

152469,0489

671624,5333

0,902765617

Выходные таблицы

Таблица 2.5

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0,9132

R-квадрат

0,833912798

Нормированный R-квадрат

0,827981112

Стандартная ошибка

382,9463742

Наблюдения

30

Таблица 2.6

Дисперсионный анализ

 

df

SS

MS

F

Значимость F

Регрессия

1

20616665,55

20616665,55

140,5861384

1,97601E-12

Остаток

28

4106141,913

146647,9255

Итого

29

24722807,47

 

 

 

Таблица 2.7

 

Коэффициенты

Стандартная ошибка

t-статистика

P-Значение

Y-пересечение

-695,5510

416,5909893

-1,669625628

0,106137752

Переменная X 1

1,0894

0,09187519

11,85690257

1,97601E-12

Нижние 95%

Верхние 95%

Нижние 68,3%

Верхние 68,3%

-1548,899908

157,7979239

-1119,992383

-271,1096012

0,901157173

1,277553188

0,995748659

1,182961703

Таблица 2.8

ВЫВОД ОСТАТКА

Наблюдение

Предсказанное Y

Остатки

1

2430,898377

-190,8983771

2

2674,913938

301,0860623

3

2953,788864

-393,788864

4

3058,366961

237,6330386

5

3197,804425

322,1955755

6

3267,523156

444,4768439

7

3546,398082

-378,3980824

8

3650,97618

-610,9761798

9

3720,694911

-104,6949114

10

3860,132375

171,8676254

11

3894,99174

393,0082597

12

3999,569838

-63,56983771

13

4069,288569

58,7114307

14

4104,147935

375,8520649

15

4208,726032

-208,7260325

16

4243,585398

-147,5853982

17

4348,163496

-508,1634956

18

4348,163496

323,8365044

19

4348,163496

-188,1634956

20

4487,600959

696,3990412

21

4696,757154

-536,7571535

22

4766,475885

97,5241149

23

4801,335251

350,6647491

24

4836,194617

-676,1946167

25

4940,772714

-172,7727141

26

4975,63208

-591,6320798

27

5080,210177

583,7898228

28

5324,225738

115,7742622

29

5463,663201

136,3367991

30

5916,834956

163,1650438

ПРИЛОЖЕНИЕ

Результативные таблицы и графики

Таблица 3.1

Исходные данные

Годы

Выпуск продукции, млн. руб.

Месяцы

Выпуск продукции, млн. руб.

1

12320,00

январь

1105,00

2

12560,00

февраль

1171,00

3

12950,00

март

1230,00

4

12830,00

апрель

1200,00

5

13065,00

май

1260,00

6

15237,00

июнь

1240,00

июль

1296,00

август

1271,00

сентябрь

1350,00

октябрь

1371,00

ноябрь

1383,00

декабрь

1360,00

Итого

15237,00

Таблица 3.2

Показатели динамики выпуска продукции

Годы

Выпуск продукции, млн. руб.

Абсолютный прирост, млн. руб.

Темп роста, %

Темп прироста, %

Абсолютное
значение
1% прироста

цепной

базисный

цепной

базисный

цепной

базисный

1-й

12320,00

 

 

 

 

 

 

 

2-й

12560,00

240,00

240,00

101,9

101,9

1,9

1,9

123,2

3-й

12950,00

390,00

630,00

103,1

105,1

3,1

5,1

125,6

4-й

12830,00

-120,00

510,00

99,1

104,1

-0,9

4,1

129,5

5-й

13065,00

235,00

745,00

101,8

106,0

1,8

6,0

128,3

6-й

15237,00

2 172,00

2 917,00

116,6

123,7

16,6

23,7

130,65

Таблица 3.3

Средние показатели ряда динамики

Средний уровень ряда динамики, млн. руб.,

13160,33

Средний абсолютный прирост, млн. руб.,

583,40

Средний темп роста, %,

104,3

Средний темп прироста, %,

4,3

Таблица 3.4

Прогноз выпуска продукции на 7-ой год

По среднему абсолютному приросту, млн. руб.,

15820,40

По среднему темпу роста, %,

15892,19

Таблица 3.5

Выпуск продукции за 6-ой год

Месяцы

Выпуск продукции, млн. руб.

Скользящее
среднее

январь

1105,00

 

февраль

1171,00

1168,67

март

1230,00

1200,33

апрель

1200,00

1230,00

май

1260,00

1233,33

июнь

1240,00

1265,33

июль

1296,00

1269,00

август

1271,00

1305,67

сентябрь

1350,00

1330,67

октябрь

1371,00

1368,00

ноябрь

1383,00

1371,33

декабрь

1360,00

 


Подобные документы

  • Проведение статистического наблюдения за деятельностью предприятий корпорации. Выборочные данные по предприятиям, выпускающим однородную продукцию. Статистический анализ выборочной и генеральной совокупности. Экономическая интерпретация результатов.

    лабораторная работа [1,1 M], добавлен 29.12.2008

  • Статистический анализ выборочной и генеральной совокупности. Степень колеблемости и однородности признака. Применение правила "трех сигм". Прогнозная оценка размаха вариации признака в генеральной совокупности. Нахождение показателя коэффициента эксцесса.

    лабораторная работа [260,5 K], добавлен 01.02.2011

  • Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат [57,4 K], добавлен 25.01.2009

  • Построение ранжированного и интервального рядов распределения по одному факторному признаку. Анализ типических групп по показателям. Статистико-экономический анализ основных показателей выборочной совокупности. Анализ и выравнивание рядов динамики.

    курсовая работа [115,2 K], добавлен 06.03.2009

  • Производственно-экономическая характеристика выборочной совокупности и типизация сельскохозяйственных организаций. Оценка производства молочной продукции на 100 га с/х. угодий. Динамический анализ показателей производства продукции отрасли животноводства.

    курсовая работа [1,1 M], добавлен 10.06.2014

  • Экономическая интерпретация коэффициента регрессии. Нахождение статочной суммы квадратов и оценка дисперсии остатков. Проверка значимости параметров уравнения регрессии с помощью t-критерия Стьюдента. Расчет средней относительной ошибки аппроксимации.

    контрольная работа [261,1 K], добавлен 23.03.2010

  • Расчет параметров парной линейной регрессии. Оценка статистической значимости уравнения регрессии и его параметров с помощью критериев Фишера и Стьюдента. Построение матрицы парных коэффициентов корреляции. Статистический анализ с помощью ППП MS EXCEL.

    контрольная работа [1,6 M], добавлен 14.05.2008

  • Примеры решения задач линейного программирования в Mathcad и Excel. Нахождение минимума функции f(x1, x2) при помощи метода деформируемого многогранника. Построение многофакторного уравнения регрессии для решения экономико-статистической задачи.

    курсовая работа [1,3 M], добавлен 17.12.2011

  • Сущность, цели и задачи выборочного обследования. Описание и особенности использования типического способа отбора выборочной совокупности. Формы статистических показателей выборочного наблюдения. Виды и методика расчета оценок статистических показателей.

    курсовая работа [124,1 K], добавлен 13.03.2010

  • Природно-экономическая характеристика СПК "Тепличный" Омского района, динамику себестоимости картофеля. Анализ себестоимости картофеля в совокупности 10 хозяйств, лежащих в одной природно-климатической зоне, формирование результатов исследования.

    курсовая работа [63,7 K], добавлен 08.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.