Эконометрика
Исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР) методом наименьших квадратов. Исследование зависимости производительности труда от уровня механизации. Анализ развития товарооборота по данным о розничном товарообороте региона.
Рубрика | Экономико-математическое моделирование |
Предмет | Эконометрика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 08.12.2008 |
Размер файла | 23,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ метода наименьших квадратов для парной регрессии, как метода оценивания параметров линейной регрессии. Рассмотрение линейного уравнения парной регрессии. Исследование множественной линейной регрессии. Изучение ошибок коэффициентов регрессии.
контрольная работа [108,5 K], добавлен 28.03.2018Исследование зависимости производительности труда от уровня механизации работ по данным 14 промышленных предприятий. Критическое значение статистики Фишера. Оценка параметров множественной линейной регрессии. Построение кривой и диаграммы рассеяния.
контрольная работа [308,0 K], добавлен 17.05.2015Расчет зависимости товарооборота за месяц. Параметры уравнения множественной регрессии, их оценка методом наименьших квадратов. Получение системы нормальных уравнений, ее решение по методу Крамера. Экономическая интерпретация параметров уравнения.
контрольная работа [45,6 K], добавлен 13.04.2014Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.
курсовая работа [449,1 K], добавлен 22.01.2015Понятие взаимосвязи между случайными величинами. Ковариация и коэффициент корреляции. Модель парной линейной регрессии. Метод наименьших квадратов, теорема Гаусса-Маркова. Сравнение регрессионных моделей. Коррекция гетероскедастичности, логарифмирование.
курс лекций [485,1 K], добавлен 02.06.2011Моделирование экономических процессов с помощью однофакторной регрессии. Оценка параметров проекта методом наименьших квадратов. Расчет коэффициента линейной корреляции. Исследование множественной эконометрической линейной схемы на мультиколлинеарность.
курсовая работа [326,5 K], добавлен 19.01.2011Выбор факторных признаков для двухфакторной модели с помощью корреляционного анализа. Расчет коэффициентов регрессии, корреляции и эластичности. Построение модели линейной регрессии производительности труда от факторов фондо- и энерговооруженности.
задача [142,0 K], добавлен 20.03.2010Оценка коэффициентов парной линейной регрессии, авторегрессионное преобразование. Трехшаговый и двухшаговый метод наименьших квадратов, его гипотеза и предпосылки. Системы одновременных уравнений в статистическом моделировании экономических ситуаций.
курсовая работа [477,2 K], добавлен 05.12.2009Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.
курсовая работа [3,4 M], добавлен 10.02.2014Расчет линейного коэффициента парной и частной корреляции. Статистическая значимость параметров регрессии и корреляции. Анализ корреляционного поля данных. Точность прогноза, расчет ошибки и доверительный интервал. Коэффициент множественной детерминации.
контрольная работа [155,8 K], добавлен 11.12.2010