Углепетрографические методы диагностики катагенеза органического вещества
Катагенез органического вещества. Отражательная способность витринита органического вещества и других микрокомпонентов органического вещества. Показатель преломления микрокомпонентов органического вещества. Визуальная диагностика стадий катагенеза.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.04.2012 |
Размер файла | 35,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
- 15 -
Размещено на http://www.allbest.ru/
Курсовая работа
УГЛЕПЕТРОГРАФИЧЕСКИЕ МЕТОДЫ ДИАГНОСТИКИ КАТАГЕНЕЗА ОРГАНИЧЕСКОГО ВЕЩЕСТВА
ВВЕДЕНИЕ
Осадочные породы часто содержат органическое вещество (ОВ), которые при катагенетическом преобразовании и дает начало нефти и газу. И изучение процесса его преобразования в процессе седиментогенеза, и последующего катагенеза, является очень важной частью исследования процесса образования нефти. До 1960 года РОВ оставалось неизученным и регистрировалось и описывалось, как сплошная, гомогенная масса органического углерода в породе, Однако огромный опыт, накопленный в угольной геологии, позволил развить методы исследований и применить их для изучения РОВ.
Петрология углей, или, углепетрография - довольно молодая геологическая наука, и появилась она в связи необходимостью различать и описывать различные компоненты, углей, а так же по их составу судить о степени преобразованности, стадии катагенеза породы, содержащей ОВ. На начальных этапах своего развития, углепетрография использовала, методы исследования, применяемые в геологии. Так, например, для изучения непрозрачных органических остатков активно использовались полированные аншлифы, для прозрачных, же использовались шлифы. Специфичность физических свойств угля потребовала адаптировать методы исследования, в частности изменить технологию приготовлении аншлифов и др.
За короткое время углепетрография превратилась в самостоятельную науку. И стала использоваться для решения практических задач, таких как определение состава, а, как следствие, качества угля, а так же, для анализа и предсказания некоторых ценных свойств углей, таких как коксуемость. По мере развития науки, круг решаемых задач все расширялся, в сферу исследования попали такие вопросы, как генезис, разведка и оптимизация использования горючих полезных ископаемых. Кроме того методы углепетрографических исследований активно применяются для исследования РОВ пород. Изучение РОВ имеет огромное значение, т.к. оно очень широко распространено в осадочных горных породах и дает начало жидким и газообразным углеводородам, а так же может дать ученым ценную информацию о фациальной обстановке осадконакопления, степени катагенеза, а так же может служить максимальным геотермометром.
Определение при помощи углепетрографических показателей степени катагенетической преобразованности помогает в решении ряда теоретических и практических задач, например, в разведке и оценке перспективности поиска полезных ископаемых в данном регионе, так же определение направлений проведения геолого-поисковых мероприятий, а так же изучение процесса образования нефти и газа. Так же методы углепетрографии нашли применение и в других областях геологии, например они используются, для восстановления тектонических, климатических обстановок осадкообразования, а так же фациальной принадлежности данного осадка, и в стратиграфии для расчленения немых разрезов.
Благодаря применению методов углепетрографии была уточнена природа исходного материала сапропелевого ОВ. Так же было высказано предположение, что причиной накопления и сохранения больших масс сапропелевого ОВ с высоким нефтегазоносным потенциалом, является антибактериальная активность липидов водорослей. Была дополнена фациально-генетическая классификация РОВ. Была разработана шкала катагенеза РОВ по сапропелевым микрокомпонентам.
витринит катагенез микрокомпонент органический вещество
ГЛАВА 1. Катагенез органического вещества
Катагенез - наиболее длительная стадия преобразования ОВ, которая продолжает диагенез и предшествует метаморфическому преобразованию. То есть, когда в преобразовании пород начинает играть преимущественную роль барическое и термическое воздействие.
Катагенез - один из контролирующих факторов процесса образования нефти. Именно в катагенезе, находится, так называемая, главная зона газо- и нефтеобразования.
Поэтому, наверное, изучение процесса преобразования ОВ играет столь значительную роль в нефтяных исследованиях. Кроме того, изучение катагенеза, важно не только для нефтяной геологии, оно так же позволяет решать вопросы исторической геологии, структурной геологии, помогает при поиске и оценке рудных тел, скоплений твердых каустобиолитов.
Сейчас, принято выделять в катагенезе протокатагенез, мезокатагенез и апокатагенез.
Каждая из этих стадий делится на более мелкие фазы, различные исследователи пользуются различными шкалами самой распространенной является шкала, имеющая в основе своей буквенные индексы.
Эти индексы соответствуют маркам угля, которые как раз сменяются в процессе катагенетического преобразования.
Они утверждены и используются как в угольной, так и в нефтяной геологии.
Иногда у органических остатков фиксируются промежуточное состояние, когда точное определение стадии катагенеза составляет некоторую сложность.
В этом случае используют двойной индекс, который представляет собой сочетание букв обозначающих ближайшие стадии катагенеза.
В разных источниках существуют разные варианты обозначения стадий для сравнения можно привести несколько из них.
Этап литогенеза |
Основная |
Неручев и др., 1976 |
Кноторович и др., 1976 |
|
Протокатагенез |
Б3 |
ПК3 |
ПК3 |
|
Мезокатагенез |
Д Г Ж К ОС |
МК1 МК2 МК3 МК4 МК5 |
МК11 МК12 МК2 МК31 МК32 |
|
Апокатагенез |
Т ПА А |
АК1 АК2 АК3 |
АК |
В процессе катагенеза происходит изменение ОВ, причем оно является результатом действия целого комплекса различных факторов, основные из них, это температура, давление и геологическое время. Рассмотрим влияние этих трех факторов более подробно. Главенствующую роль в процессе катагенеза, как считается, занимает температура, что объясняется, ролью температуры в химических процессах. Это подтверждается некоторыми практическими и экспериментальными данными [Парпарова Г.М., 1990 г.; 136]. Важнейшая роль температуры, отражает правило Хильта. Сущность которого заключается в том, что в угольных бассейнах, при увеличении глубины, угли объединяются летучими и обогащаются углеродом т.е. углефицируются.
Источниками тепла при катагенезе, можно назвать энергию, выделяемую, при радиоактивном распаде, магматических процессах, тектонических процессах, а так же общее повышение температуры при опускании толщ в процессе регионального метаморфизма. При магматических процессах происходит локальное интенсивное тепловое воздействие, при котором значительно меняется геотемпературный режим определенного участка земной коры. Тепловое воздействие при тектонических процессах носит так же локальный, но слабовыраженный характер, т.к. проявляется только при условии быстрого протекания самого процесса, и в отсутствие интенсивного отвода тепла от очага.
Спорным остается вопрос о реальных конкретных значениях температур, при процессе катагенеза и углеобразования.
Проблема осложняется отсутствием прямых методов определения палеотемператур, вследствие чего, все суждения о них основываются исключительно на косвенных данных и методах исследований. Мнения ученых в оценке реальных температур расходятся. Ранее считалось, что температура должна быть высокой: для каменных углей 300-350 єС, для антрацитов 500-550єС. Реально же эти температуры заметно ниже, чем предполагалось на основании моделирования и экспериментальных данных. Все угли, образовывались на глубине не превышающей 10 км, и температура, сопровождающая этот процесс не превышала 200-250єС, что подтверждается так же исследованиями в скважинах, пройденных в США, здесь интервалы температур на глубине 5-6 км не превышают 120-150єС.
Сейчас, по результатам изучения зон контактового изменения пород вблизи магматического очага, а так же по некоторым другим данным, можно говорить, что температура данного процесса колеблется от 90 до 350 єС. Максимальная температура достигается при максимальном опускании толщ, именно в этот период и происходит максимальный катагенез ОВ.
Давление наряду с температурой рассматривается как важнейший фактор изменения ОВ при катагенезе. Существуют различные спорные мнения по поводу роли давления в процессе катагенеза. Одни исследователи считают что давление - это один из важнейших факторов катагенеза. Другие считают, что давление оказывает отрицательное влияние на процесс углефикации. Так, например, считается, что давление способствует уплотнению вещества пород, и, как следствие, сближению его составных частей; это, как считается, способствует лучшему их взаимодействию и процессу преобразования. Об этом свидетельствует нарушение анизотропии витринита. Существует и другое мнение по данному вопросу, некоторые ученые считают не именно давление главным фактором преобразования, а сопровождающее тектонические подвижки выделение тепла и повышение температуры.
Поэтому в большинстве случаев в складчатых поясах, обстановках активного сжатия, степень преобразованности ОВ заметно выше чем в платформенных зонах [Фомин А.Н., 1987 г.; 98]. С другой стороны, процесс углефикации сопровождается обильным газовыделением, и, как следствие, повышение давления должно смещать равновесие данного процесса в обратную сторону, т.е. получается, что давление играет негативную роль в процессе преобразования ОВ. Хотя нельзя забывать, что давление и температура в природном процессе связанны. И характер преобразования ОВ при одной и той же температуре. Но разных давлениях будет различен. Итак, давление играет важную роль в процессе преобразования ОВ, но она, конечно, второстепенна и не сравнима с ролью температуры.
Еще одним фактором процесса катагенетического преобразования является геологическое время его роль, самая сложная для изучения, вследствие отсутствия возможности прямого наблюдения и изучения влияния времени на процесс катагенеза. Существуют различные мнения ученых по этому вопросу. Некоторые ученые считают, что геологическое время не оказывает значительного влияния на процесс преобразования ОВ, ссылаясь на нахождение древнего, но тем не менее, малопреобразованного ОВ. Другие утверждают что время может компенсировать недостаток температуры, это утверждение основано на принципе Ле-Шателье, который говорит, что увеличение температуры примерно на 10 градусов влечет за собой увеличение скорости реакции в два раза. Используя этот закон некоторые ученые утверждают что при большом промежутке времени реакция может протекать при сколь угодно малой температуре процесса. Но не следует забывать что процесс углефикации идет с поглощением тепла, и, как следствие, чтобы реакция пошла, необходимо довести систему до состояния, когда она преодолеет необходимый энергетический барьер активации. Предполагается, что значение температуры, необходимое для начала процесса преобразования ОВ, это 50єC [Фомин А.Н., 1987 г.; 100]. Поэтому время, видимо может компенсировать температуру только в определенных пределах.
Так же следует упомянуть такой фактор, как литологичесий состав пород, подвергающихся катагенезу. Влияние этого фактора подтверждается экспериментальными данными. Так, например П. П. Тимофеевым было впервые обращено внимание на тот факт, что содержание углерода в витрене закономерно увеличивается, а содержание кислорода уменьшается в ряду песчаник-аргиллит-уголь. Так же Г. М. Парпаровой было показано, что в мезозойских отложениях Сургутского района Западной Сибири было показано, что в песчаниках и алевритах показатели преломления витрена большей частью на 00,1 - 00,2 ниже, чем в аргиллитах и углистых породах.
Возможно это влияние связано с различной способностью пород к прогреву, так, например, аномально низкий катагенез ОВ на больших глубинах в районе Прикаспийской впадины объясняется теплопроводящим влиянием соляных куполов, играющих роль естественных природных холодильников. Роль литологического состава до конца не установлена достоверно. Эту неопределенность авторы объясняют различными причинами, такими как тип растительной ассоциации, степень гелификации и биохимического изменения пород в процессе катагенеза. Кроме того, существуют данные, которые говорят об отсутствии зависимости между литологическим составом и показателями катагенеза, в сходных условиях [Фомин А.Н., 1987 г.; 115]. Эти данные позволяют унифицировать данные об изменении оптических свойств ОВ при его преобразовании.
В общем процесс катагенеза в основном зависит от температуры, в меньшей степени от ряда других факторов.
При изучении катагенеза пользуются различными методами. Самыми надежными и точными являются углепетрографические методы исследований. В частности диагностика стадии катагенеза по отражательной способности распространенных микрокомпонентов пород. Эти методы просты по своей сути, не требуют сложного оборудования, а главное отличаются надежностью. Помимо углепетрографических методов используется целый ряд других признаков, они, по большей части, основаны на химическом составе. Это такие показатели как: элементный состав керогена, выход летучих компонентов, ИК-спектроскопия битумоидов и многие другие, они не такие точные но в совокупности могут давать точные оценки, особенно если речь идет об апокатагенезе, так как здесь уже не сказываются первичные генетические особенности ОВ.
Измерение углепетрографических показателей, с точи зрения рациональности технологии проведения исследований имеет ряд преимуществ: можно быстро и четко проводить измерения показателей отражения и преломления на образце небольшого размера, часто недостаточного для проведения химического анализа; можно проводить исследования на микроскопических включениях в породу; в результате анализа получаем параметры не комплекса микрокомпонентов, а конкретного, что позволяет применять данный метод ко всем осадочным бассейнам, так как определенные микрокомпоненты распространены повсеместно и могут служить надежным диагностическим признаком для стадий катагенеза. Таким распространенным микрокомпонентом является витринит, в основном измеряется его отражательная способность. Витринит удобен еще и тем, что он обладает закономерным изменением своих оптических свойств в процессе преобразования. Именно поэтому отражательная способность витринита принята за эталон диагностики стадий катагенеза.
ГЛАВА 2 Отражательная способность мацералов органического вещества
Отражательная способность витринита
Из всех микрокомпонентов ОВ самым лучшим с точки зрения показательности при изучении степени катагенетического преобразования является витринит. Дело в том что, для надежной диагностики необходим микрокомпонент, который должен иметь закономерное изменение свойств в процессе преобразования, в то же время он должен быть широко распространен в ОВ. Витринит отвечает всем вышеуказанным требованиям, в отличие от остальных микрокомпонентов углей и РОВ. Которые либо сливаются с общей органической массой углей уже на средних стадиях катагенеза (лейптинит), либо слабо и неравномерно реагирующими на изменение параметров окружающей среды(фюзинит). И только витринит меняет свои свойства закономерно постепенно и очень легок в диагностике.
Именно на основании отражательной способности витринита построено большинство шкал для определения степени катагенеза. Кроме него используются и другие микрокомпоненты РОВ, но в меньшей степени. В основе метода лежит закономерность повышения блеска в процессе катагенеза. Это легко можно увидеть визуально, если рассмотреть изменение блеска углей в процессе их изменение. Не требуется особых приборов, чтобы заметить, что блеск антрацита, например, намного выше блеска, бурого угля. Отражательная способность тесно связана с внутренним строением вещества, а именно со степенью упаковки частиц в веществе. От этого как раз она и зависит. Конечно, изучение степени катагенеза по отражательной способности проводится с использованием специального оборудования, например, установка ПООС-I прибор состоит из поляризационного микроскопа, оптической насадки, фотоэлектронного умножителя (ФЭУ) и регистрирующего устройства. При проведении исследования сравниваются фототоки, вызванные светом, отраженным от поверхности образца и эталона.
Итак, за эталон при проведении исследований принят витринит, точнее его отражательная способность. Она измеряется при помощи различных фотометров и эталонов в воздухе и иммерсионной среде при строго перпендикулярном падении света на хорошо отполированную поверхность образца. Измерения проводятся лишь в узком диапазоне длин волн: от 525 до 552 нм. Это ограничение связано с техническими характеристиками прибора. За эталон принята длинна волны 546,1 нм, но небольшие колебание вокруг этого значения, практически не оказывает заметного влияния на значение измерения. Образец закрепляется на столике микроскопа и останавливается так, чтобы его поверхность была перпендикулярна оси оптической насадки. Как было сказано выше, мы измеряем интенсивность отраженного света поочередно у образца и эталона при помощи ФЭУ. По определению, отражательная способность - способность отражать часть света падающего на поверхность. Если перевести это на числовой язык, то это отношение отраженного света к падающему.
Что можно записать, как:
R=I1/I2
Где I1 - это интенсивность отраженного света, а I2 - это интенсивность падающего света. Практически же при проведении измерений используется формула
R=dR1/d1
Здесь R - искомый показатель отражения, d - показания прибора при измерении исследуемого вещества, а R1, соответственно, - показатель отражения эталона и d1- показания прибора при измерении эталона. Если настроить прибор-приемник на нулевое значение для эталона, тогда формула упрощается до R=d.
Кроме витринита, для проведения измерений используются и другие микрокомпоненты ОВ. Некоторые из них обладают свойством анизотропии отражательной способности. Обычно применяется три параметра измерения: Rmax Rmin Rcp. Повышение анизотропии витринита в процессе катагенеза связано в основном с процессом постепенного упорядочивания ароматических гуминовых мицелл, связанного с повышением давления с увеличением глубины погружения. Измерения в случае анизотропного препарата идейно ничем не отличаются от измерения однородного образца, но проводится несколько измерений. При этом столик микроскопа вращается на 360є с промежутками по90є. Всегда детектируется два положения с максимальным показателем отражательной способности и два с минимальной. Угол между каждыми из них составляет 180є. Измерения проводятся для нескольких фрагментов породы, и позже вычисляется среднее значение. Как среднее арифметическое средних значений максимального и минимального измерения:
Rcp=
Можно сразу определять среднее значение, выбирая угол поворота 45є от максимального или минимального значения, но это измерение верно только при изучении слабо преобразованного ОВ.
При проведении исследований, возникает несколько проблем, связанных с технологией. Например, если мы имеем породу, с низким общим содержанием ОВ то появляется необходимость специальной обработки образца и перевода его в форму концентрированных аншлифов-брикетов. Но в процессе получения концентратов исходное органическое вещество подвергается химической обработке, что не может не сказаться на оптических свойствах вещества. Кроме того теряется информация о структуре органического вещества породы. Искажения в измерениях может внести и то, что технология процесса приготовления препарата не стандартизировано и готовность образца обычно определяется визуально. Проблему представляет так же физические свойства пород, такие например как сильная минерализация или хрупкость угля, в этом случае приходится изучать отражательную способность на той площади поверхности, которую удалось получить. Если правильно выбрать участок, то окружающие дефекты практически не влияют на измерения. Но принципиально количественные величины ошибок, практически не влияют на определение стадии катагенеза.
Образцы изучаются обычно в условиях обычной воздушной среды, это легко, быстро. Но если необходимо детальное изучение под большим увеличением, применяют иммерсионные среды, обычно это кедровое масло. Оба измерения верны и каждый из них используется, но каждый в своем определенном случае. Преимущества измерений в иммерсионной среде заключаются в том, что они позволяют изучать частицы с малой размерностью, кроме того, повышается резкость, что позволяет более детально диагностировать степень катагенеза.
Дополнительной трудностью при исследованиях является диагностика микрокомпонентов ОВ так как они обычно определяются в проходящем свете. В то время как отражательная способность, очевидно в отраженном. Поэтому. Обычно в процессе исследований комбинируют два метода. То есть попеременно используют проходящий и отраженный свет для изучения одного и того же фрагмента РОВ. Для этого обычно используются двусторонне полированные шлифы. В них после просмотра и определения микрокомпонента в проходящем свете освещение переключается и проводятся замеры в отраженном свете.
Витринит может использоваться не только для определения степени преобразованности органического вещества, но и для определения его отношения к породе. У сингенетичного витринита форма фрагментов обычно удлиненная, расположены частицы параллельно плоскостям напластования и, обычно обладают клеточной структурой. Если же мы имеем дело с частицами витринита округлой, окатанной формы, то скорее всего это переотложенное вещество.
Отражательная способность других микрокомпонентов ОВ
Безусловно, витринит - это наиболее удобный для определения степени катагенеза микрокомпонент ОВ, но не всегда его удается обнаружить в породе, и не всегда он имеет хорошую сохранность. В таком случае изучают другие микрокомпоненты угля для изучения стадий кататгенеза, например, семивитринит SVt, cемифюзинитF1, фюзинит F3, лейптинит L. Поданным исследований этих компонентов уже составлены шкалы катагенеза. Они позволяют использовать для диагностики стадий результаты, полученные при изучении семивитринита, семифюзинита и фюзинита. Точность определения ограничивается стадией, вследствие нелинейности изменения оптических свойств данных микрокомпонентов. Нелинейность характерна для начальных стадий преобразования, что связывается с первичными генетическими особенностями ОВ. На поздних стадиях отражательная способность всех микрокомпонентов равномерно нарастает.
Некоторыми учеными сделана попытка использовать отражательную способность для определения преобразованности ОВ. Правда он применим только в узком интервале, ограничение связано с проблемой диагностики самого лейптинита. Его отражательная способность изменяется от 0, 04 % Rє на стадии Б до 5,5 % Rє на антрацитовой стадии. Общий характер закономерности изменения отражательной способности сходен с витринитом, но отличается от последнего по абсолютным значениям.
Выше рассмотрены способы определения степени преобразованности ОВ по гумусовым микрокомпонентом, и этот метод может быть применен для нефтематеринских отложений, если в них присутствуют остатки высшей наземной растительности. Зачастую же ситуация иная, и в породе присутствуют только сапропелевые разности ОВ. Тогда встает вопрос, возможна ли диагностика стадий катагенеза по определенным составляющим сапропелевого ОВ. Некоторыми исследователями широко применяется показатель преломления коллоальгинита, колохитинита, псевдовитринита, и некоторых других остатков морских отложений[ Фомин А.Н., 1987 г.; 121]. Но при этом приходится применять концентраты керогена, что не может не повлиять на характеристики вещества. Гораздо точнее показатели тек микрокомпонентов ОВ, которые имеют закономерный характер изменения свойств в процессе преобразования, и которые можно изучать в аншлифах - штуфах, без изменения характера нахождения ОВ в породе. Кроме того, псевдовитринит имеет повсеместное распространение в нефтематеринских породах, что позволяет унифицировать шкалу.
Был изучено поведение псевдовитринита на основе проб, содержащих одновременно гумусовые и сапропелевые составляющие ОВ, была выведена закономерность в изменении отражательной способности. Оказалось, что во всем диапазоне шкалы катагенеза отражательная способность псевдовитринита меньше, чем у витринита. На поздних стадиях происходит замедление темпов роста отражательной способности у псевдовитринита, в то время как, у витринита темпы роста наоборот увеличиваются [Фомин А.Н., 1987 г.; 123].
Кроме всех вышеперечисленных микрокомпонентов РОВ в осадочных толщах часто обнаруживается органическое включение битуминит. Битуминит залегает в порах, трещинах и по периферии пустот. Исходным материалом для него послужили жидкие или пластичные нафтиды, которые мигрировали и остались в породе. Позже они преобразовывались вместе с ней, подвергались воздействию давлений, температур, закалялись и стали твердыми. По характеристикам битуминита можно судить о степени преобразованности породы после миграции. Но стоит учитывать, что миграция УВ - это длительный процесс и, как следствие, можно столкнуться с ситуацией расхождения данных в одном образце. Выделяются несколько разновидностей битуинита: диабитуминит, катабитуминит и метабитуминит.
ГЛАВА 3 Показатель преломления микрокомпонентов ОВ
Помимо отражательной способности в практике исследований широко используется такой параметр, как показатель преломления. Показатель преломления служит признаком вторичных изменений молекулярной структуры микрокомпонентов ОВ в ходе катагенеза. И как следствие, измеряя показатель преломления определенных микрокомпонентов, можно с достаточной точностью диагностировать степень преобразованности данного осадка, содержащего ОВ. Наиболее плавное изменение показателя преломления происходит у витринита, для него составлена шкала показалей преломления для всего катагенеза. Используются так же и другие микрокомпоненты, но в меньшей степени.
Точность метода обеспечивается таким свойством органического вещества, как прозрачность. Так, например, точно определяется степень преобразованности у стадий Б-Т, когда ОВ прозрачно в проходящем свете. Показатель преломления, конечно можно использовать и при изучении ОВ антрацитовой стадии, правда возникает проблема в диагностике микрокомпонентов, так как на высокой стадии преобразованности оптические свойства микрокомпонентов заметно сближаются. Интервал возможности определения оптических параметром зависит от используемой жидкости, так, например при использовании обычных иммерсионных жидкостей возможно определение стадий Б и Д. При использовании же высокопреломляющих иммерсионных жидкостей возможно диагностировать стадии Б - А включительно. Если же использовать сплавы йодидов мышьяка, сурьмы с пиперином, можно проводить определение стадий Г - Т.
Измерения проводятся на тонко измельченной крошке образца. Получают его простым механическим извлечением из породы с последующим измельчением, или же путем химической экстракции.
Изучение проводится образом, сходным с измерением отражающей способности, то есть сравнительным методом. Для этого на предметное стекло микроскопа помещается несколько углистых частиц и плавно распределяется по площади стекла так, чтобы частицы не соприкасались и не накладывались; а сверху накрывается другим стеклом. В полость между стеклами помещается жидкость с предполагаемым показателем преломления образца. Если визуальное определение не уверенное, то целесообразно приготовление нескольких препаратов с разными жидкостями.
Для определения высоких степеней преобразованности используются сплавы, для приготовления препаратов необходимо расплавить вещество и поместить в полученный расплав частицы вещества. Собственно определение аналогично определению в иммерсионных жидкостях. Оно основано на таком явлении, как полоска Беке, это тонкая светлая каемка, вокруг исследуемого препарата, появляется она на границе двух сред с разными показателями преломления. Для проведения измерения необходимо настроить резкость микроскопа и найти полоску Бекке, а после этого плавно отодвигать тубус микроскопа при этом полоска будет перемещаться в сторону той среды, которая имеет больший показатель преломления. Если полоска перемещается в сторону жидкости от образца, тогда он имеет больший показатель преломления, и наоборот. Так, поочередно сравнивая показатель преломления образца с показателями известных жидкостей, можно добиться полного исчезновения полоски, тогда можно сказать, что показатель преломления равен эталонному.
ГЛАВА 4. Визуальная диагностика стадий катагенеза
Для более качественной и быстрой оценки стадии катагенеза, необходимо перед количественной точной оценкой проводить качественную приблизительную оценку преобразованности ОВ. Обычно это проводится по визуальным признакам, таким, как цвет в проходящем и отраженном свете, сохранность анатомического строения, рельеф а так же цвет и интенсивность свечения в ультрафиолетовых лучах. Несмотря на сохранение особенностей исходного растительного материала микрокомпонентов, каждый из них в ходе карбонизации изменяет свои оптические, химические и физические свойства. Но происходит это с различной скоростью, некоторые реагируют очень сильно. Поэтому для визуально диагностики необходимо использовать в основном липоидные компоненты, которые очень чувствительны к изменению условий среды. Что очень сказывается на их цвете, и как следствие, можно судить о степени преобразованности по цвету микрокомпонентов.
Разные параметры микрокомпонентов по разному реагируют на процесс преобразования, так, например, анатомическая структура микрокомпонентов постепенно теряется. На стадиях Б - Ж она отчетлива, позже постепенно затушевывается. В ВТО же время, в процессе увеличения стадии катагенеза, растет рельеф микрокомпонентов. Так же по ходу катагенеза у микрокомпонентов растет анизотропия. В общем, анизотропия некоторых микрокомпонентов нарастает в процессе преобразования. Анизотропия, вообще - это свойство каких-либо веществ обладать различными значениями некоторых свойств в различных направлениях, кристаллографических, либо же просто связанных со структурой вещества, это проявляется прежде всего в цвете вещества. Цвет изменяется в зависимости от направления колебаний поляризованного света, проходящего через вещество. Это явление названо плеохроизмом. Наблюдается оно в проходящем свете при одном николе. При использовании отраженного света анизотропия образца проявляется в его поляризации.
Для каждой стадии преобразования ОВ существует определенный набор визуальных признаков и по ним можно довольно легко диагностировать стадии катагенеза. Рассмотрим их подробнее.
Для стадии Б характерно то, что липоидные компоненты при одном николе почти белые, с легким желтоватым оттенком. Витринит оранжево-красный или коричневый с красным оттенком, с трещинами усыхания и хорошо сохранившейся структурой, по которым можно определить принадлежность вещества к определенному типу растительной ткани. В скрещенных николях липоидные компоненты практически однородны или дают слабое просветление. Отдельные частицы практически не упорядочены, споры слабо сплющены. В отраженном свете витринит серый, лейптинит имеет коричневато-серые тона, споры хорошо видны и окружены характерным ободком.
Для стадии Д характерна большая упорядоченность в расположении растительных остатков. Лейптинит светло-желтый, анизотропный. Легко различаются гелифицированные компоненты, их цвет изменяется от красновато-желтого до коричневато-красного. На этой стадии отчетливо начинает проявляться анизотропия ОВ В структурных витринитах проявляется тканевая анизотропия. Часто в скрещенных николях можно проследить структуру тканей исходного вещества. Если наблюдать образцы в отраженном свете, то ОВ в целом изотропно, при одном николе состав и структура его четко различимы. Кутинит коричневато - серый и хорошо различим. Витринит имеет серые тона различной интенсивности.
На стадии Г увеличивается степень упорядоченности, ориентировка микрокомпонентов параллельно напластованию. Хорошо различимы компоненты с тканевой структурой, сеточное строение. Наиболее важным диагностическим признаком является цвет оболочек спор, по этому признаку удается разделить данную стадию не подстадии. На подстадии Г1 они золотисто - желтые и реже соломенно - желтые, на Г2 желтые, на Г3 темно-желтые. Для витринита характерна красновато-желтая окраска. В отраженном свете Лейптинит коричневато-серый или серый, споры рельефны, витринит серый.
Стадия Ж характеризуется оранжевым цветом спор как в проходящее, так и в отраженном свете. По оттенкам оранжевого цвета, стадию Ж можно разделить на три подстадии: Ж1 характеризуется желтым оттенком в цвете, на Ж2 они оранжевые и темно-оранжевые, на Ж3 с красноватым оттенком. В отраженном свете для спор характерны бежево-серые тона на стадии Ж1, песочно-серые на стадии Ж2 и светло-серые на Ж3.
В стадии К выделяют две подстадии К1 И К2. На стадии К1 лейптинит имеет красноватые тона в проходящем свете, в отраженном он серовато-белый. На подстадии К2 при проходящем свете видны лишь единичные коричневые фрагменты споринита или кутинита. Структура гелифицирванного вещества в основном монолитна без отчетливого проявления структуры исходного вещества.
Стадия ОС по количественным показателям разделяется на две подстадии: ОС1 и ОС2, но они практически неразличимы по петрографическим признакам. В общей массе удается различить отдельные остатки кутинита или спор. Все детали строения ОВ хорошо видны в основном в проходящем свете. При скрещенных николях хорошо видна структура вторичная, иногда первичная различных видов витринита.
Стадия Т так же как и ОС разделяется на две подстадии. На стадии Т видны редкие липоидные компоненты, имеющие коричневатую окраску. Наблюдается отчетливый плеохроизм, который лучше заметен на подстадии Т2, чем на подстадии Т3. В органической массе наблюдаются лишь единичные светлые штрихи и нитевидные обрывки.
На стадии ПА в тонких шлифах при одном николе гелифицированные компонеты красновато-коричневые, бурые, реже черные. Лейптинит имеет слегка коричневатые тона. Споринит и кутинит в скрещенных николях розовато-желтые. Наиболее анизотропны фрагменты витринита и некоторые образования белого цвета, по форме напоминающие лейптинит. На стадии А в тонких полированных шлифах органическое вещество просвечивает лишь местами. В отраженном свете благодаря отчетливой анизотропии многие детали в строении отдельных микрокомпонентов сравнительно хорошо различимы как при одном, так и при двух николях. В ходе катагенеза изменяется также окраска микрокомпонентов группы альгинита. Наиболее закономерно это происходит у талламоальгинита, сохранившихся остатков водорослей. Так, например, в интервале стадий катагенеза от Б до Ж его цвет в проходящем свете. Далее с ростом катагенеза у него появляется сероватый оттенок. На стадии Б у талламоальгинита отмечается яркая люминисценция зеленовато-желтого, реже голубого цвета. На стадиях Д и Г ее интенсивность заметно ослабевает и на стадии Ж уже не фиксируется. В отраженном свете окраска талламоальгинита изменяется от темной на начальных этапах катагенеза, до серо-белой в антрацитах.
В общем наиболее четко реагируют на изменение термобарических условий липоидные компоненты. Окраска гелифицированных и водорослевых компонентов - мне показательный признак. В процессе катагенеза. Каждый из микрокомпонентов остается индивидуальным сохраняет определенные особенности. Но физические свойства и другие характеристики претерпевают существенные изменения. Общая последовательность изменения углепетрографических показателей отражена в табл 1.
Стадия катагенеза |
Цвет |
Анизотропия |
|||
При одном николе |
При скрещенных николях |
||||
витринит |
лейптинит |
витринит |
лейптинит |
||
Б |
Темный, темно-серый |
||||
Д |
Темно-серый, разных оттенков |
||||
Г |
Серый, разных оттенков |
||||
Ж |
Светло серый |
||||
К |
Очень светло серый |
||||
ОС |
Очень светло серый, серовато-белый |
||||
Т |
Слабо двуотражает от светло-серого до серовато-белого |
||||
ПА |
Двуотражает от светло-серого до белого |
||||
А |
Сильно двуотражает от белого до ярко белого. |
Размещено на Allbest.ru
Подобные документы
Параметры спектра электронного парамагнитного резонанса (ЭПР). Сверхтонкая структура спектров ЭПР. Факторы, влияющие на целесообразность использования метода, особенности его применения. Определение генезиса рассеянного органического вещества и нефти.
реферат [5,1 M], добавлен 02.01.2015Схема образования битумов по Успенскому, Радченко, Козлову, Карцеву. Средний элементарный состав живых организмов и каустобиолитов разной степени преобразования. Транспортировка и накопление органического вещества. Диаграмма типов керогена Д. Кревелена.
реферат [125,4 K], добавлен 02.06.2012Тектонические элементы поверхности фундамента и нижнего структурного яруса осадочного чехла. Литолого-стратиграфическое распределение запасов нефти. Нефтегазоносность Припятского прогиба. Геохимические особенности органического вещества, нефтей и газов.
курсовая работа [1,5 M], добавлен 27.12.2013Оптические свойства вод озер. Влияние прозрачности на световой режим. Краткая характеристика основных мест обитания организмов в озере. Круговорот органического вещества и биологические типы озер. Биомасса, продуктивность и схема зарастания водоема.
курсовая работа [474,9 K], добавлен 20.03.2015Оптические свойства вод озер. Влияние прозрачности на световой режим. Краткая характеристика основных мест обитания организмов в озере. Круговорот органического вещества. Биомасса и продуктивность озера. Схема его зарастания. Биологические типы озер.
курсовая работа [583,9 K], добавлен 24.03.2015Определение роли, которую играют живые вещества в формировании коры выветривания - рыхлого продукта изменения горных пород, образующегося под почвой, в том числе, и за счет поступающих из нее растворов. Функции живого вещества в процессе выветривания.
доклад [30,9 K], добавлен 02.10.2011Тектоническое районирование и литолого-стратиграфическая характеристика фундамента и осадочного чехла Баренцевоморского региона. Факторы и шкала катагенеза, используемые при оценке катагенетических изменений исследуемых отложений Адмиралтейского мегавала.
дипломная работа [4,8 M], добавлен 04.10.2013Классификация органических вяжущих веществ: битум природный, нефтяной; дегти каменноугольные, сланцевые, торфяные, древесные; полимеры полимеризационные, поликонденсационные. Особенности их состава, структуры, свойств. Компаундированные вяжущие вещества.
реферат [31,9 K], добавлен 31.01.2010Моделирование массопереноса вещества в условиях, близких к природным, для объяснения некоторых геологических процессов. Изготовление лабораторного оборудования для проведения экспериментов по изучению особенностей массопереноса в вязких жидкостях.
презентация [1,2 M], добавлен 25.06.2011История практического получения органического ила растительной природы. Содержание вулканической и космической гипотез абиогенной теории происхождения нефти. Описание стадий осадконакопления и преобразования органических остатков в горное масло.
реферат [21,7 K], добавлен 15.01.2011