Комплекс геофизических исследований скважин Самотлорского месторождения для оценки ФЕС и насыщения коллекторов
Характеристика района в географо-экономическом плане, геолого-геофизическая изученность района. Выбор участка работ и методов ГИС. Методика геофизических исследований скважин. Камеральная обработка и интерпретация материалов. Смета объемов работ.
Рубрика | Геология, гидрология и геодезия |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 04.02.2008 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Уплотненный малопроницаемый пласт, перекрытый глиной и подстилающим водонасыщенным коллектором. Здесь ВМ отложения отличаются по УС. Диаграммы аналогичны предыдущим, разница лишь в том, что под пластом их УСк выходят на сопротивления водонасыщенного коллектора. Уменьшение влияния ВМ пород по сравнению с предыдущими кривыми приводит к увеличению УСк для коротких зондов(рис.3.11.).
Рис. 3.10. Диаграммы для модели глина -- уплотненный пласт -- глина. Длина зонда, м: 0,5 -- красный, 0,7 -- зеленый, 1,0 -- коричневый, 1,4 -- синий, 2,0 -- черный.
Водонасышенный коллектор в глинистых отложениях. Диаграммы несимметричны относительно середины пласта. УСк для длинного зонда даже в маломощном пласте близко к его истинному сопротивлению. Наиболее близкие к УСп значения УСк наблюдаются в интервале над подошвой пласта. Это объясняется, что при таких положениях внутри зонда оказывается большая или весь исследуемый пласт. Положение кровли пластов хорошо оценивается точкой пересечения диаграмм всех зондов(рис.3.12).
Водонасыщенный коллектор, перекрытый глиной и подстилаемый уплотненными малопроницаемыми породами. Даже для маломощного пласта УСк для двух длинных зондов близки к УС пласта(рис.3.13.).
Кровля пласта отмечается пересечением кривых. Влияние хорошо проводящей верхней части верхней части распространяется в изолирующей среде примерно на длину зонда. Показания короткого зонда в пласте близки к УС зоны проникновения.
Рис. 3.11. Диаграммы для модели нефтенасыщенный пласт -уплотненный пласт -- водонасы-щенный пласт. Усл. обозн. см. рис. 3.10.
Рис. 3.12. Диаграммы для модели глина -- Водонасыщенный пласт -- глина.
Усл. обозн. см. рис. 3.10.
Нефтенасыщенный коллектор в глинистых отложениях. Диаграммы несимметричны относительно середины пласта. Интервал совпадений УСк и УС смещен к его подошве. В тонком слое показания УСк отличается от УСп примерно на 25%. Кровля пластов отмечается пересечением кривых. При переходе под подошву заметное влияние коллектора на сигнал наблюдается на интервале примерно равном длине зонда. Значительное влияние коллектора на показания зонда в покрышке проявляется на интервале, примерно равном базе зонда. Показания короткого зонда близки к УС зоны проникновения(рис.3.14).
Водоплавающей нефтенасыщенный коллектор, перекрытый глиной.
Диаграммы сильно асимметричны относительно середины пласта, длинных зондов в целом правильно отражают истинное распределение УС по разрезу. Диаграммы коротких зондов отражают распределение УС в прискважинной зоне. Интервал совпадений УСк и УСп примыкает к подошве. В маломощном пласте УСк для самого длинного зонда не более, чем на 25% отличается от значений УСп. Кровля отмечается совпадением кривых(рис.3.15).
Газонасыщенный коллектор, перекрытый глиной и подстилаемый нефтенасыщенным коллектором. Диаграммы с маломощным газовым пластом не выходят на значения, близкие к его сопротивлению. УСк для короткого зонда отличается от УСп примерно на 20%. Наиболее сложной является кривая профилирования длинного зонда в маломощном пласте, имеющая два экстремума на интервале коллектора(рис.3.16.).
Рис. 3.13. Диаграммы для модели глина -- водонасыщенный пласт -- уплотненный пласт. Усл. обозн. см. рис. 3.10.
Рис. 3.14. Диаграммы для модели глина -- нефтенасыщенный пласт -- глина. Усл. обозн. см. рис. 3.10.
Рис. 3.15. Диаграммы для модели глина -- нефтенасыщенный пласт -- водонасыщенный пласт.Усл. обозн. см. рис. 3.10.
Рис. 3.16. Диаграммы для модели глина -- газонасыщенный пласт -- нефтенасыщенный пласт.
Усл. обозн. см. рис. 3.10.
Рис. 3.17. Диаграммы для модели газонасыщенный пласт -- нефтенасыщенный пласт -- водона-сыщенный пласт. Усл. обозн. см. рис. 3.10.
Водоплавающий нефтенасыщенный коллектор, перекрытый газонасыщенными отложениями. Диаграммы длинных зондов правильно отражают истинное распределение УС по разрезу. На диаграммах двух коротких зондов видно распределение УС в зоне проникновения. Тонкий пласт практически не выделяется по показаниям трех длинных зондов, которые образуют «переходную зону», а на диаграммах коротких зондов заметен только по различиям в ЗП. Влияние хорошо проводящих коллектора и подошвенного слоя распространяется и в газоносном интервале на расстояние, примерно равное полутора длинам зонда(рис.3.17.).
Газонасыщенный коллектор в глинистых отложениях. Диаграммы несимметричны относительно середины пласта и правильно отражают истинное сопротивление по вертикали. УСк для всех зондов в маломощном пласте значительно отличаются от УСп. В то же время показания зонда 1,4 м в мощном пласте откланяются не более, чем на 10% от УСп. Положение кровли пласта совпадает с практической точностью с точками пересечения кривых. При выходе точки записи в подошву УСк для всех зондов практически сразу близки к УС подстилающей среды(рис.3.18.).
Рис. 3.18. Диаграммы для модели глина -- газонасыщенный пласт -- глина. Усл. обозн. см. рис. 3.10.
Общие ограничения электромагнитных методов каротажа
Применение методов индукционного и электромагнитного каротажа должно предваряться оценкой их возможностей в конкретных геоэлектрических ситуациях. Общей основой всех ограничений является несоответствие моделей реальному строе-нию и физическим характеристикам геологической среды, а также наличие погреш-ностей при реальных измерениях в скважинах. При использовании индукционного воз-буждения поля в среде и приема сигналов наибольшие ограничения связаны с изуче-нием плохопроводящих геологических отложений. Наличие высокоомных пород при-водит к уменьшению измеряемого сигнала, соответствующему возрастанию отношения шум/сигнал и относительной погрешности измерений. При инверсии таких данных от-носительные погрешности определения параметров возрастают настолько, что результат становится неопределенным.
Рассмотрим простой пример. Достигнутая в настоящее время в аппаратуре абсо-лютная точность измерения разности фаз составляет примерно 0,5°. Сигнал в однород-ной среде при УЭС, равном 300 Ом-м, составляет 0,77° (т.е. относительная погрешность равна примерно 0,65). Коэффициент усиления ошибки при пересчете в кажущееся со-противление в этом случае составляет 1,11. Следовательно, сопротивление однородной среды будет определяться с относительной погрешностью 0,72 и интервалом неопреде-ленности (300 ±216) Ом-м.
Неблагоприятным для применения ВИКИЗ является сочетание сильнопроводя-щего бурового раствора (менее 0,01 Ом-м), широкой зоны проникновения с низким УЭС и высокоомного пласта. Для примера оценим возможность определения сопротив-ления газового пласта (/?п=50 Ом-м) при наличии понижающего проникновения (/?зп=0,2 Ом-м, гзп=0,7 м) и при сопротивлении бурового раствора /т.= 0,005 Ом-м. Будем полагать, что относительные ошибки измерения составляют 0,03. Средний коэффици-ент усиления ошибки для инверсии составляет 22,1. Следовательно, относительная по-грешность определения УЭС пласта будет около 0,66, что соответствует интервалу не-определенности (17--83) Ом-м.
Аналогичные проблемы по достоверному определению УЭС пласта возникают при широких (сравнимых с длиной зонда) зонах проникновения пониженного сопро-тивления.
3.3. Аппаратура, её сертификация и метрологическая поверка
Аппаратура ВИКИЗ обеспечивает измерение разностей фаз между э.д.с., наве-денными в измерительных катушках пяти электродинамически подобных трехкатушеч-ных зондов, и потенциала самопроизвольной поляризации ПС.
Габаритные размеры скважинного прибора: диаметр -- 0,073 м, длина -- 4,0 м. Прибор состоит из зондового устройства, блока электроники и наземной панели.
Пространственная компоновка элементов зондового устройства
В аппаратуре ВИКИЗ используется набор из пяти трехкатушечных зондов. Кон-структивно зондовое устройство выполнено на едином стержне и все катушки размеще-ны соосно. Геометрические характеристики зондов представлены в табл. 3.1.
На рис. 3.19 показана схема размещения катушек на зондовом устройстве. Здесь приняты следующие обозначения: Г1, Г2, Г3, Г4, Г5 -- генераторные катушки; И1, И2, И3, И4, И5, И6 -- измерительные катушки.
Таблица 3.1 Геометрические характеристики зондов
Схема зонда |
Длина, м |
База, м |
Точка записи, м |
|
И6 0.40 И5 1.60 Г5 |
2,00 |
0,40 |
3,28 |
|
И50.28И4 1.13Г4 |
1,41 |
0,28 |
2,88 |
|
И4 0.20 ИЗ 0.80 ГЗ |
1,00 |
0,20 |
2,60 |
|
ИЗ 0.14 И2 0.57 Г2 |
0,71 |
0,14 |
2,40 |
|
И2 0.10 И1 0.40 П |
0,50 |
0,10 |
2,26 |
|
ПС |
3,72 |
Все генераторные и измерительные катушки зондов меньшей длины размещены между катушками двухметрового зонда.
Рис. 3.19. Пятизондовая система. Поясн. см. в тексте.
Структурная схема аппаратуры
Структурная схема скважинного прибора представлена на рис. 3.20. Блок элект-роники обеспечивает поочередную работу зондов. Первой включается генераторная катушка Г: и измеряется разность фаз между э.д.с., наведенными в измерительных ка-тушках Ир И2. Второй включается катушка Г2 и измеряется разность фаз между э.д.с., наведенными в измерительных катушках И2, И3. Далее поочередно включаются генера-торные катушки остальных зондов.
Рис. 3.20. Структурная схема скважинного прибора. Поясн. см. в тексте.
Электронная схема содержит: уси-лители мощности -- 1--5; смесители -- 6-- 11; аналоговый коммутатор -- 12; пере-страиваемый гетеродин -- 13; устройство управления скважинным прибором -- 14; усилители промежуточной частоты -- 15, 16; опорный кварцевый генератор --17; широкополосный фазометр -- 18; передат-чик телесистемы -- 19; выходное устрой-ство -- 20; блок питания -- 21.
Смесители расположены в зондовом устройстве рядом с измерительными катушками. Там же установлен аналого-вый коммутатор. Остальные элементы схемы расположены в блоке электроники.
Скважинный прибор подключается к наземной панели с помощью трехжильного кабеля. При регистрации на компью-теризированную каротажную станцию функции наземной панели может выпол-нять соответствующая программа.
Схема функционирования скважинного прибора и наземной панели
Скважинный прибор работает следующим образом (см. рис. 3.20). Сигнал, стаби-лизированный по частоте, с опорного генератора 17 поступает в устройство управления скважинным прибором 14, в котором вырабатываются сигналы, управляющие генера-торными частотами. По команде из того же устройства 14 через усилитель мощности 1 на катушку Г1 первого зонда подается рабочая частота. По команде из устройства 14 на-страивается частота гетеродина 20, смещенная относительно генераторной частоты на величину промежуточной частоты f. Переменный ток в генераторной катушке возбуж-дает в окружающей среде электромагнитное поле. Это поле наводит в измерительных катушках И1--И6 э.д.с., зависящие от электрофизических свойств горных пород. Эти э.д.с. передаются на входы смесителей 6--11, а на их вторые входы поступает сигнал ге-теродинной частоты. На выходе смесителей появляются сигналы промежуточной часто-ты с теми же фазами, что и у высокочастотных сигналов.
Процесс измерения происходит в два этапа. На первом этапе по команде из уст-ройства 14 аналоговый коммутатор 12 подключает сигнал от смесителя 6 к усилителю промежуточной частоты 15, а сигнал от смесителя 7 -- к усилителю промежуточной час-тоты 16. Усиленные и сформированные сигналы подаются на входы фазометра 18. После окончания переходных процессов в генераторных, гетеродинных цепях и усилителях 15, 16 по команде из устройства 14 фазометр 18 начинает первое измерение, в конце которого данные сохраняются. Затем начинается второй этап работы. По команде из устройства 14 аналоговый коммутатор 12 подключает сигнал от смесителя 6 к усилителю промежуточ-ной частоты 16, а сигнал от смесителя 7 -- к усилителю промежуточной частоты 15. Уси-ленные и сформированные сигналы подаются на входы фазометра 18. После окончания переходных процессов по команде из устройства 14 фазометр 18 начинает второе из-мерение. Измеренные данные суммируются с результатом первого измерения, при этом полезное значение разности фаз удваивается, а паразитное, возникающее из-за вли-яния на каналы усиления дестабилизирующих факторов, вычитается. Таким образом, пе-рекрестная коммутация позволяет увеличить точность измерения. В фазометре происхо-дит измерение разности фаз А<р между входными сигналами и их периода Т, усредненного по двум измерениям. Величины А.<р и Т с помощью передатчика ТЛС 19 по линии связи передаются на регистрацию через выходное устройство 20. Это устрой-ство выделяет передаваемую информацию на фоне тока, поступающего по кабелю к блоку питания 21. Блок 21 преобразует постоянный ток в напряжения питания узлов прибора.
После этого из устройства 14 поступает новая команда, обеспечивающая прекра-щение работы первой генераторной катушки Г: и включение в работу второй генератор-ной катушки Г2, работающей на другой частоте. Одновременно на выходе гетеродина 13 появляется сигнал новой гетеродинной частоты, которая отличается от новой генера-торной частоты на ту же самую величину А/ Аналоговый коммутатор 12 выбирает но-вую пару измерительных катушек И2, И3, и процесс измерения повторяется. Далее по очереди работают все остальные генераторные катушки Г3, Г4, Г5, каждая на своей часто-те. Соответствующие подключения осуществляются в гетеродине 13 и в аналоговом коммутаторе 12. После окончания всего цикла вновь работает первая генераторная ка-тушка Г1 и весь цикл повторяется.
Метрологическое обеспечение
Основным методом контроля метрологических характеристик является измерение в однородной среде с известным УЭС. Однородная среда может быть заменена водоемом с минерализованной водой. Для достижения допустимых погрешностей, обусловленных конечными размерами водоема, его глубина и поперечные размеры должны превышать 6 м. При этом необходимо обеспечить одинаковые значения УЭС во всем объеме раствора с погрешностью не более 1 %. Из-за нелинейности зависимости разности фаз ? от ве-личины УЭС необходимо проводить измерения по крайней мере в пяти точках рабочего диапазона измерений. Это можно реализовать путем изменения минерализации воды.
Другим способом метрологического контроля является использование физической модели, имитирующей сигналы, как в однородной среде. К такой модели предъявляют два основных требования: параметры должны поддаваться измерению с необходимой точно-стью; математическая модель, описывающая физическую, должна обеспечивать требуе-мую точность расчета. Для этих целей было выбрано проволочное кольцо, соосное с ка-тушками зонда. Оно представляет собой замкнутый одновитковый контур, состоящий из последовательно включенных индуктивности L, сопротивления R и емкости конденсато-ра С. Схема расположения кольца приве-дена на рис. 3.21.
Рис. 3.21. Схема положения кольца. Поясн. см. в тексте
Здесь L1 и L2 -- расстояния от из- мерительных катушек И1и И2 до генера-торной катушки Г, b -- радиус кольца, Z -- расстояние от плоскости кольца до измерительной катушки И1 ток в генера-торной катушке изменяется по закону
J=J0•ei?t. Рабочая частота зонда f=?/2?. Комплексное сопротивление цепи коль-ца на рабочей частоте R+iX. Активное сопротивление R складывается из потерь в высокоомном проводе и в конденсато-ре, включенном в разрыв цепи. Реактив-ное сопротивление Х= l/?C-?L. В этом случае э.д.с., наводимая в j-й измери-тельной катушке, равна
где N=J*S*n -- момент генераторной катушки; S, n -- ее площадь и число витков; k = ?/c-- волновое число; с = 3*108 м/с -- электродинамическая постоянная; ?0=4*?*10-7 Гн/м -- магнитная проницаемость воздуха. Остальные геометрические обо-значения даны на рис. 3.21. Расчет э.д.с. для многовитковых генераторной и измеритель-ных катушек выполняется на основе принципа суперпозиции.
3.4. Качественная оценка геологического разреза
Качественная и количественная интерпретация материалов каротажа имеет ограни-чения. Возможности того и другого подхода в интерпретации становятся более опреде-ленными и однозначными при наличии достоверной информации о разрезе. Во многом правильность выводов о геологических объектах основана на достоверности полученных данных. Вопросам оценки достоверности и контроля исходных данных посвящена пре-дыдущая глава. Это позволяет рассматривать приводимые ниже материалы, не сомнева-ясь в их качестве.
Некоторые вопросы качественной экспресс-интерпретации могут решаться на основе визуального анализа диаграмм ВИКИЗ, ПС и других методов. По его результа-там можно выделять коллекторы с оценкой их вертикальной неоднородности. При бла-гоприятных условиях возможна качественная оценка характера флюидонасыщения. При этом данные о граничных значениях удельного сопротивления продуктивных плас-тов в конкретной залежи сужают неопределенность качественного заключения.
Наиболее часто пласты-коллекторы в терригенном разрезе выделяются по ради-альному градиенту удельного сопротивления. Это характерно при наличии зоны про-никновения фильтрата бурового раствора, отличающейся по удельному сопротивлению от незатронутой части пласта. Изменения кажущихся сопротивлений от зонда к зонду могут быть прямым показателем проницаемости мощного пласта.
Эффективность качественной интерпретации и достоверность заключения осно-ваны на:
слабой зависимости измерений от параметров скважины и примыкающей к ней области;
высокой разрешающей способности как в радиальном направлении, так и вдоль скважины;
хорошей точности измерений и их стабильности.
Оценка значений удельного сопротивления пластов-коллекторов и зон проник-новения выполняется в программе МФС ВИКИЗ. Вместе с тем, практические диаграм-мы могут дать достаточно полную информацию и без количественной обработки. Так при относительно неглубоком проникновении фильтрата достаточно просто устанавли-вается соответствие кажущихся УЭС истинным значениям. Анализ данных по комплек-су методов повышает достоверность выводов о разрезе. Рассматриваемые далее материа-лы подробно обсуждаются именно с этих позиций.
Как уже отмечалось, некоторые вопросы геологической интерпретации данных могут решаться на основе визуального анализа диаграмм ВИКИЗ и ПС. В комплексе с радиоактивными методами достоверность выводов возрастает. По результатам зонди-рования можно с высокой достоверностью выделять коллекторы, располагая мини-мальной априорной информацией о технологии вскрытия разреза. Так, признаки на-личия окаймляющей зоны отражаются инверсией (появлением экстремума) кривых зондирования, а безошибочность ее диагностики опирается на оценки пространствен-ной разрешающей способности.
Обычно все пять измерений располагаются на одном поле каротажных диаг-рамм. Связь разности фаз с удельным сопротивлением является нелинейной. По раз-ным соображениям шкала для данных может быть представлена в значениях либо раз-ностей фаз (линейная шкала), либо кажущегося сопротивления (логарифмическая или линейная шкала). Отметим основные изменения вида каротажных диаграмм, обуслов-ленные использованием различных масштабных шкал.
Линейная шкала разностей фаз. В этом случае каротажные диаграммы прямо отображают измерения. Чем выше электропроводность среды, тем сильнее изменяют-ся диаграммы. Такое представление данных создает определенные методические удоб-ства. Так, низкоомные отложения (глины, насыщенные солеными водами коллекторы и т.п.) легко распознаются за счет больших значений разности фаз, соответствующих этим интервалам.
Логарифмическая шкала кажущихся сопротивлений. Логарифмическая шкала «сжимает» диаграммы кажущихся сопротивлений в диапазоне малых значений (до 10 Ом-м) и «растягивает» в интервале больших удельных сопротивлений. Это приводит к хорошему визуальному выделению пластов высокого сопротивления.
Линейная шкала кажущихся сопротивлений. Такая трансформация приводит к сильным изменениям вида диаграмм: кривые сжаты в самом информативном для ин-дукционных методов каротажа низкоомном диапазоне. Такой способ представления данных снижает визуальное разрешение в породах с низкими удельными сопротивлени-ями (песчанистые глины, алевролиты и т.п.). В то же время высокоомные интервалы хо-рошо дифференцируются по сопротивлению.
3.5.Основы количественной интерпретации
В основу количественной интерпретации диаграмм ВИКИЗ положено представ-ление о среде как наборе согласно залегающих слоев. Ее результатом является геоэлект-рический разрез, включающий последовательность пластов, вскрытых скважиной. Поло-жение каждого из них по стволу определяется глубинами кровли и подошвы. Отдельный пласт характеризуется удельными электрическими сопротивлениями прискважинной об-ласти проникновения (с возможной окаймляющей зоной) и незатронутой части пласта, а также положением коаксиальных скважине цилиндрических границ между ними.
Общая схема интерпретации состоит из следующей последовательности дей-ствий:
попластовая разбивка (выделение границ пластов);
осреднение диаграмм на интервале пласта (снятие существенных значений);
внесение поправок, снижающих влияние вмещающих пород, эксцентриситета зонда и его корпуса, отклонения ствола от вертикали и т.д.;
формирование кривой зондирования для каждого из пластов;
построение стартовой модели (экспресс-инверсия);
инверсия кривых зондирования с использованием методов целенаправленного подбора модельных параметров;
построение интервалов неопределенности для каждого из оцениваемых пара- метров;
оценка качества интерпретации путем вычисления синтетических диаграмм для всего разреза и их сравнения с исходными данными.
Результаты интерпретации считаются удовлетворительными, если расхождение между синтетическими и экспериментальными диаграммами на том или ином интерва-ле не превосходит погрешностей измерения.
Вся приведенная схема лежит в основе системы компьютерной интерпретации МФС ВИКИЗ-98 (см. Приложение). Подавляющее большинство ее функций выполня-ется автоматически, однако, всегда имеется возможность внести коррективы в проме-жуточные результаты.
Как известно, в основу ВИКИЗ положен принцип радиальных (от скважины к неизмененной части пласта) зондирований. В силу изопараметричности зондов их по-казания в однородной среде совпадают между собой (с учетом погрешности измере-ний). Расхождение показаний для различных зондов в достаточно мощных пластах, вскрытых на обычном глинистом растворе (УЭС более 0,5 Ом-м), свидетельствует о наличии прискважинной неоднородности из-за проникновения бурового раствора в пласт. В маломощных (менее 1,5 м) пластах расхождение показаний разных зондов мо-жет быть обусловлено влиянием не только зоны проникновения (радиальной неодно-родности), но и влиянием вмещающих пород (вертикальной неоднородности разреза). На сигналы двух коротких зондов может влиять буровой раствор очень низкого УЭС (р <0,05 Ом-м).
СИСТЕМА ОБРАБОТКИ И КОЛИЧЕСТВЕННОЙ И ИТЕРПРETAЦИИ И MCDC ВИКИЗ-98
Обработка, визуализация и инверсия диаграмм ВИКИЗ выполняется в много-функциональной системе МФС ВИКИЗ-98. Система МФС ВИКИЗ-98 -- программ-ное обеспечение, в котором достигнута высокая скорость инверсии, основанная на применении эффективных алгоритмов нейросетевого моделирования. На этом уровне развития интерпретационной базы оказалось возможным перейти от индивидуальной обработки отдельных интервалов к массовой автоматической интерпретации данных, полученных на всем интервале вскрытия разреза. Достигнутые ресурсные характерис-тики приближают систему интерпретации МФС ВИКИЗ-98 к работе в реальном вре-мени. В этих условиях интерпретатор освобождается от рутинной работы по подбору параметров модели и может уделять основное внимание оценке достоверности и каче-ства выполненной интерпретации.
Для этой цели в системе реализованы специальные функции оценки результа-тов. Помимо вычисляемых средних отклонений, которые отражают качество подбора, оцениваются доверительные интервалы определения сопротивлений пласта и зоны проникновения, а также ее радиуса.
Метод ВИКИЗ, направленный на определение сопротивлений пласта и зоны проникновения, становится более информативным при дополнении другими метода-ми. В системе предусмотрена панель, которая позволяет визуализировать любую диаг-рамму, содержащуюся в исходном LAS-файле.
Общее описание
Система обработки, визуализации и интерпретации данных высокочастотного ин-дукционного каротажного изопараметрического зондирования МФС ВИКИЗ-98 явля-ется развитием программного обеспечения ряда МФС ВИКИЗ. Основные отличия программы от более ранних версий: реализация в среде Windows 95 или Windows NT, значительное увеличение быстродействия функциональных модулей и расширение функций оперативного анализа. Комплекс МФС ВИКИЗ-98 является системой интер-претации в реальном времени. Исходные данные содержатся в LAS-файлах, включаю-щих диаграммы ВИКИЗ и других методов. В системе принят стандарт LAS версии 2.0.
Помимо автономного режима предусмотрена работа МФС ВИКИЗ-98 совместно с комплексом СИАЛ ГИС, который контролирует входные и выходные потоки данных.
В системе сохранен подход, основанный на попластовой обработке и интерпре-тации. На диаграмме выделяются пласты, после этого снимаются существенные значе-ния, вносятся необходимые поправки, строится начальное приближение и выполняет-ся инверсия. Результаты интерпретации сопровождаются оценкой доверительных интервалов, которые зависят как от геоэлектрической модели, так и от погрешностей измерений.
Для расстановки границ пластов реализован алгоритм автоматической поплас-товой разбивки с возможностью ручной корректировки их положения, удаления и до-бавления. Система может получать данные о попластовой разбивке из системы СИАЛ ГИС через импорт файлов формата SII.
После расстановки границ необходимо активизировать пласты, на интервале которых будет производиться интерпретация. В момент активизации пласта автомати-чески снимаются существенные значения. Предусмотрена их ручная корректировка. Далее производится интерпретация в одном из режимов:
экспресс-инверсия;
автоматический подбор;
подбор на отдельном интервале.
При интерпретации автоматически выполняется оценка точности определения параметров (доверительных интервалов), при «ручном» подборе есть возможность ра-ботать отдельно с кривой зондирований и детально оценивать качество интерпретации по каждому пласту.
4. Технико-экономическая часть
4.1 Организационно-экономический раздел
Геофизические работы в скважинах будут выполняться комплексным отрядом геофизических исследований в скважинах, действующим в составе Нижневартовской геофизической экспедиции.
Нижневартовская экспедиция геофизических исследований скважин обеспечивает организацию работ входящих в ее состав отрядов, осуществляет руководство ими и контроль за их работой.
При экспедиции ГИС созданы следующие службы, необходимые для обеспечения бесперебойной работы главных производственных единиц (каротажных отрядов):
· диспетчерская служба, которая регистрирует заявки заказчиков на выполнение работ и на основе этих заявок выдает отрядам наряды на работу и контролирует выполнение их;
· контрольно-интерпретационная партия (КИП), которая принимает от отрядов первичные материалы (диаграммы, записи), обрабатывает их, интерпретирует и передает заказчику;
· аппаратурный цех, который производит профилактический осмотр, ремонт, регулирование и эталонирование, скважинных приборов и аппаратуры, лабораторий и подъемников и ведет учет их работы;
· ремонтный цех, который обеспечивает ремонт механизмов, оборудования подъемников и лабораторий и ходовых частей автомашин, а также геофизического кабеля.
Экспедиция ГИС входит в состав производственного геофизического объединения „Нижневартовскнефтегеофизика”.
Производственная деятельность геофизического предприятия организуется следующим образом. Геофизическая экспедиция заключает договор на выполнение исследований в скважинах с заказчиками, выступая при этом в роли подрядчиков. Взаимоотношения сторон определяются „Основными условиями на производство геофизических исследований в скважинах” и „Технической инструкцией по проведению геофизических исследований”. Договорный объем работ в течение планируемого периода выполняется на основе периодического поступления заявок со стороны заказчиков.
Весь комплекс, работ, проводящихся геофизическими отрядами, состоит из последовательных этапов: 1) подготовительные и заключительные работы на базе; 2) подготовительные и заключительные работы на скважине; 3) собственно геофизические исследования; 4) спуско-подъемные операции; 5) пересоединение скважинных приборов; 6) переезды на скважину и обратно.
Перед выездом на скважину начальник отряда получает заявку на выполнение комплекса ГИС, в которой указывается общий объем работ, в том числе по видам исследований и интервалам, данные о времени начала производства работ, конструкции скважины и т.п. Ознакомившись с заявкой, начальник отряда проводит подготовительные работы к выезду: информирует персонал о характере предстоящих работ, проверяет готовность аппаратуры и оборудования. Данные об объекте исследования, записанные в заявке, уточняются по прибытию отряда на скважину. Начальник отряда может преступить к производству ГИС при наличии акта о подготовленности скважины, подписанного буровым мастером и геологом.
Учет и оплата выполненных работ производятся на основании „Акта о выполнении геофизических работ”.
После предварительной обработки материалы ГИС передаются в интерпретационную партию. Копии геофизических диаграмм и результаты интерпретации выдаются заказчику. Объем и сроки представления результатов исследований заказчику устанавливаются договорами.
Для решения поставленных геологических задач предусматривается выполнение ГИС в два этапа: первый - в открытом стволе скважины, до спуска эксплуатационной колонны; второй - в эксплуатационной колонне.
Работы на первом этапе производства ГИС проводятся через буровой инструмент с муфтовым переходником типа „воронки” на нижней части бурового инструмента („воронка” позволяет беспрепятственно выходить и входить прибору в буровой инструмент). Инструмент (после промывочного цикла) поднимается и устанавливается в определенный интервал, оставляющий открытым интересующий интервал исследования, реперные пласты, а также обеспечивающий беспрепятственное прохождение аппаратурного комплекса до забоя скважины и проведения ГИС.
Запись геофизических параметров происходит в следующей последовательности:
· первый измерительный цикл: одновременная запись стандартных зондов, зондов БКЗ, резистивиметрии, ПС, микрозондов, микробокового каротажа и двух радиусов прижимного устройства;
· второй измерительный цикл: одновременная запись бокового каротажа и кривой индукционного каротажа.
Работы на втором этапе производства ГИС проводятся в эксплуатационной колонне. Производится повторный выезд на скважину геофизического отряда, после ожидания затвердевания цемента, с целью регистрации нейтрон-нейтронного каротажа, АКЦ и локатора муфт.
4.2. Производственная и экологическая безопасность при производстве геофизических работ
Данный проект предусматривает выполнение работ на Самотлорском нефтяном месторождении в полевых и камеральных условиях.
В административном отношении Самотлорское нефтяное месторождение находится в Нижневартовском районе Ханты-Мансийского автономного округа Тюменской области, в 750 км к северо-востоку от г. Тюмени и в 15 км от г. Нижневартовска. Район представляет собой заболоченную и слабовсхолмленную равнину с а.о. 100-125м. Климат района континентальный с коротким прохладным летом и продолжительной холодной зимой. Наиболее холодным месяцем года является январь(-50°), самым теплым - июль (+30°). Местность частично заболочена, леса большей частью смешанные.
В целом району работ присваивается категория работ в условиях крайнего севера.
Работы на Самотлорском месторождении будут проводиться с января по июль 2005 года.
4.2.1. Производственная безопасность
Вредные и опасные факторы, воздействующие на человека, в полевых условиях, связаны с особенностями методики измерений (ненормированный рабочий день, всепогодные и всесезонные условия проведения работ, утомительные переезды к месту исследований и т.д.), конструктивными особенностями исследовательской аппаратуры (работа с электрическим током, радиоактивными веществами, громоздкими механическими приборами). Вредные и опасные факторы, угрожающие человеку при данных видах работ представлены в таблице 4.1..
Таблица 4.1.
Этапы работ |
Наименование видов работ |
Группы |
Факторы (ГОСТ 12.0.003-74) |
Нормативные документы |
||
опасные |
вредные |
|||||
1 |
2 |
3 |
4 |
5 |
6 |
|
Полевой |
Методы электрического каротажа (КС, БКЗ, БК, МБК, СП, ИК). |
физические |
1. Электрический ток. |
ГОСТ 12.1.019-79 [28] |
||
Методы акустического каротажа (АК, АКШ). |
1. Отклонения показателей микроклимата на открытом воздухе. |
ГОСТ 12.1.005-88 [25] |
||||
Кавернометрия и профилеметрия. |
||||||
Резистивиметрия. |
||||||
Локация муфт. |
||||||
Методы радиоактивного каротажа (ГГК, НК, ГГКп). |
2. Воздействие радиации. |
ГОСТ 12.1.007-76 [27] |
||||
Работа с лебедкой каротажного подъемника. |
3 Движущиеся машины и механизмы производственного оборудования. |
ГОСТ 12.2.007.3-75 [30] |
||||
Спускоподъемные операции. |
||||||
Весь цикл исследований (включая подготовительно-заключительные работы на базе и переезды к месту исследований). |
психофюиол огические |
2. Тяжесть и напряженность физического труда. |
ГОСТ 12.3.009 -76 [31] |
|||
Весь цикл исследований. |
биологиче ские |
3. Повреждения в результате контакта с животными, насекомыми, пресмыкающимися. |
||||
Камеральный |
Обработка и интерпретация полевого материала. |
физические |
1. Электрический ток, статическое электричество. |
ГОСТ 12.1.019-79 [28] |
||
1. Отклонения показаний микроклимата в помещении. |
ГОСТ 12.1.005-88 [25] |
|||||
2. Превышение уровней шума |
ГОСТ 12.1.003-83 [23] |
|||||
3. Превышение уровня электромагнитных и ионизирующих излучений. |
ГОСТ 12.1.006-84 [26] |
|||||
4. Недостаточная освещенность рабочей зоны. |
СНиП 23.05.95 [31] |
|||||
Психо физиол огичес |
5.Монотонный режим работы. |
Основные элементы производственного процесса, формирующие опасные и вредные факторы
4.2.1.1.Анализ опасных факторов и мероприятий по их устранению
Полевой этап
1. Электрический ток. Опасностями поражения током при проведении полевых работ являются поражения от токонесущих элементов каротажной станции (подъемника, лаборатории и скважинных приборов), поэтому требования безопасности сводятся, в основном, к мерам электробезопасности.
Причинами поражения электрическим током могут быть: повреждение изоляции электропроводки, неисправное состояние электроустановок, случайное прикосновение к токоведущим частям (находящимся под напряжением), отсутствие заземления и др. Поэтому работа на каротажных станциях требует помимо соответствующей квалификации персонала большого внимания и строгого соблюдения правил электробезопасности.
Соединительные провода, применяемые для сборки электросетей, не должны иметь обнаженных жил, ненадежную изоляцию, концы их должны быть снабжены изолирующими вилками, муфтами или колодками.
При работах на буровой запрещается пользоваться напряжением более 380 V.
Корпуса всех агрегатов должны быть надежно заземлены. Заземление выполняется на контур буровой, имеющий металлическую связь с устьем скважины, или на устье скважины, на которой проводятся работы.
Подключать кабель к источнику питания разрешается только по окончании сборки всех коммуникаций каротажной станции. Кабель, соединяющий оборудование станции с электросетью подвешивается на высоте не менее 0.5 м и располагается в стороне от проходов и дорог.
Сборку и разборку электрических схем, ремонт проводов (изолирование оголенных участков, сращивание), а также проверку исправности цепей следует выполнять при выключенном источнике тока.
Проверку работы или поиск неисправностей в каротажной станции, находящейся под напряжением, должны производить на менее чем два исполнителя.
Если необходимо проверить на поверхности исправность скважинного прибора, разрешается подавать напряжение в схему только после предупреждения об этом работников партии.
Помощь пораженному электротоком необходимо оказывать немедленно, не теряя ни минуты. Прежде всего, добиться прекращения действия тока на пострадавшего, для чего любым способом изолировать его от источника тока. Следует помнить, что электроток вызывает сокращение мышц пальцев, и пострадавший не может самостоятельно разжать их.
Оказывающий помощь должен знать, что пораженный электротоком сам является проводником, и поэтому надо охранять себя от действия тока. Для защиты надо встать на резиновый коврик, деревянную доску, сверток сухой одежды, надеть калоши. Руки надо обмотать сухой шерстяной и прорезиненной материей (шинель, прорезиненный плащ).
Приняв эти меры предосторожности, необходимо отбросить провод от пострадавшего багром, деревянной палкой или другим плохо проводящим электроток предметом, или не касаясь тела пострадавшего, оттащить его от провода.
Если для оказания помощи необходимо перерезать провода, то инструмент для этого должен иметь изолированные ручки. Прервать ток можно также, набросив на провод (обе фазы) металлическую цепочку, кусок неизолированного провода, второй конец которых «, предварительно укреплен в земле.
После освобождения пострадавшего от действия тока нужно вызвать скорую помощь и немедленно начать искусственное дыхание, его необходимо делать даже в тех случаях, когда исчезли видимые признаки жизни (нет дыхания, отсутствует пульс). Искусственное дыхание производится в течение нескольких часов и прекращается только в случаях
появления безусловных признаков смерти (трупных пятен, окоченения) или приезда медработников.
Одновременно принимают другие меры для возбуждения дыхания и работы сердца: массаж сердца, обрызгивание лица водой, растирание тела, дается вдыхать нашатырный спирт. После того, как пострадавший придут в себя, его надо укутать одеялом, напоить горячим чаем и доставить к врачу.
2. Радиационная опасность. При исследовании скважин применяются радиоактивные вещества (РВ) применяемые в радиоактивных методах. Источниками ионизирующего излучения служат плутоний-берилливые сплавы и сплавы, содержащие радиоактивный изотоп цезия.
За единицу радиоактивности принят Беккерель (Бк), означающий одно ядерное превращение в секунду. Энергия радиоактивного излучения характеризуется дозой излучения. Различают поглощенную, экспозиционную, эквивалентную и интегральную дозы.
Облучение источниками ионизирующего излучения может быть внешним и внутренним. Внутреннее облучение более опасно, чем внешнее, т.к. попавшие внутрь организма радиоактивные вещества повергают непрерывному облучению незащищенные роговьм слоем внутренние органы до тех пор, пока они не выведутся из организма.
Для уменьшения воздействия источников ионизирующего излучения на персонал каротажной партии необходимо придерживаться следующих правил:
Использовать источники излучения минимальной активности, необходимые для данного вида исследований;
Выполнять все операции с источниками излучений в течение максимально короткого времени (т.н. защита времени);
Производить работы (спускоподъемные, погрузочно-разгрузочные работы) на максимально возможном расстоянии от источника (т.н. защита расстоянием);
Применять защитные средства в виде контейнеров, экранов, спецодежды;
Осуществлять радиометрический и дозиметрический контроль.
Расчет защиты от ионизирующих излучений производят в соответствии с требованиями действующих «Санитарных правил работы с радиоактивными веществами и источниками ионизирующих излучений» [24].
Для защиты от гамма излучения применяют свинец. Дозу гамма излучений за рабочий день определяют с помощью карманных дозиметров путём пересчета показаний радиометров, отградуированных в единицах мощности дозы (мкР/ч). В любом случае мощность поглощенной дозы для каждого работника не должна превышать 5 бэр/г (0.02 Зв).
Для защиты от нейтронного излучения используют материалы, содержащие водород (вода, парафин) с добавками бора. Дозу нейтронного излучения определяют пересчетом мощности доз, отсчитанных по показаниям радиометра, снабжённого датчиком тепловых или быстрых нейтронов, путём пересчёта. Суммарная доза за рабочий день определяется как сумма доз, полученных при каждой операции - получении источника излучения, его переноски, установки в скважинный прибор и т.д.
Не в коем случае нельзя касаться и брать капсулу с источником ионизирующего излучения руками, для этого необходимо использовать специальный дистанционный манипулятор.
Радиоактивные вещества хранят в специальных хранилищах, в переносных контейнерах, которые находятся, в зависимости от активности радиоактивного вещества, в специальных колодцах. Внутри хранилища, а также снаружи излучение не должно превышать предельно допустимых величин.
Транспортирование источников ионизирующих излучений производится только в специальных контейнерах в зависимости от вида излучения. Контейнеры жёстко крепятся в задней части подъёмника.
Если в пути следования произойдёт потеря источника излучения, работник, ответственный за транспортирование немедленно должен сообщить об этом в милицию, органам санитарного надзора и руководству своего предприятия.
Для обозначения объектов, помещений, оборудования, устройств и материалов, внутри или на поверхности которых возможна радиационная опасность, ставится специальный знак с надписью «Осторожно радиоактивность!».
3. Движущиеся машины и механизмы производственного оборудования. Возникает на всех этапах полевых работ, но возрастание риска подвергнуться механическому воздействию, а в следствии, получить травму можно при погрузочно-разгрузочных работах, монтаже-демонтаже оборудования на скважине и др.
Меры безопасности, в большинстве, сводятся к неукоснительному соблюдению техники безопасности на буровой.
Все рабочие во избежание травм снабжаются спецодеждой [21].
Запрещается проводить ГИС при неисправном спускоподъемном оборудовании буровой установки или каротажного подъёмника.
При работе на скважине каротажные автомашины следует устанавливать так, чтобы были обеспечены хорошая видимость и сигнализационная связь между подъёмником, станцией и устьем скважины. Каротажный подъёмник необходимо закрепить с помощью специальных упоров.
Направляющий блок необходимо надежно закрепить на основании буровой. Прочность узла крепления должна не менее чем в два с половиной раза превышать вес каротажного кабеля.
Подвесной блок нужно надёжно закрепить на талевой системе буровой установки. После подсоединения к нему кабеля от барабана лебёдки он должен быть поднят над устьем скважины не менее чем на 15 метров и укреплён растяжкой.
Между каротажным подъёмником и устьем скважины не должны находиться предметы, препятствующие движению кабеля, запрещается прикасаться к кабелю при движении, наклоняться над ним, а также останавливать его руками при отказе тормозной системы лебедки подъемника.
Устье скважины и мостки должны быть очищены от промывочной жидкости, грязи, нефти, снега и льда во избежание падений.
Грузы, скважинные приборы, блоки и прочее оборудование следует выгружать (погружать) из каротажной станции под наблюдением ответственного лица каротажной партии.
Грузы и скважинные приборы массой более 40 кг или длиной более 2м любого веса нужно поднимать с помощью подъёмных механизмов.
Во избежание наиболее типичной аварийной ситуации - обрыв кабеля у головки аппарата, необходимо соблюдать следующие условия:
строго контролировать движение поднимаемого кабеля по счетчику оборотов и предупредительным меткам, чтобы не пропустить приближение скважинного прибора к устью скважины и своевременно подать соответствующие сигналы машинисту подъёмной установки;
машинист подъёмной установки при управлении лебёдкой должен внимательно следить за движущимся кабелем, выходом предупредительных меток и сигналами, подаваемыми с устья скважины.
Большую опасность представляет перепуск кабеля, возникающий при спуске кабеля в не обсаженной части скважины из-за глинистых пробок, осадков раствора, уступов и обвалов. Перепущенный кабель часто приводит к завязыванию узлов и возможным прихватам.
Камеральный этап
1. Электрический ток, статическое электричество. При работе с компьютером существует опасность поражения электрическим током. Условия электробезопасности зависят и от параметров окружающей среды производственных помещений (влажность, температура, наличие токопроводящей пыли, материала пола и др.). Тяжесть поражения электрическим током зависит от плотности и площади контакта человека с частями, находящимися под напряжением. Во влажных помещения или наружных электроустановках складываются неблагоприятные условия, при которых улучшается контакт человека с токоведущими частями.
Для профилактики поражения электрическим током в помещении, где проводятся камеральные работы необходимо проводить следующие мероприятия по обеспечению электробезопасности: изоляция всех токопроводящих частей и электрокоммуникаций, защитное заземление распределительных щитов.
Запрещается располагать электроприборы в местах, где работник может одновременно касаться прибора и заземленного провода, оставлять оголенными токоведущие части схем и установок, доступных для случайного прикосновения; сборка схем с открытыми токоведущими частями на расстоянии менее одного метра от водопроводных и отопительных труб, радиаторов; использование стационарных установок и приборов, имеющих напряжение 36 V переменного тока и 110 V постоянного тока относительно земли, без заземления токоведущих частей.
Электризация (статическое электричество) возникает при трении диэлектрических тел друг о друга. Электрические заряды могут накапливаться на поверхности металлических предметов.
Статическое электричество отрицательно действует на организм человека. Длительное воздействие обуславливает профессиональные заболевания, особенно нервной системы. Кроме того, статическое электричество - одна из причин возникновения взрывов и пожаров.
Основные направления защиты от статического электричества предусматривают предотвращение возникновения электрических зарядов или ускорение стекания зарядов с наэлектризованной поверхности. Ускорению снятия зарядов способствует заземление оборудования, увеличение относительной влажности воздуха и электропроводности материалов с помощью антистатических добавок и присадок.
4.2.1.2.Анализ вредных факторов и мероприятий по их устранению
Полевой этап
Отклонения показателей микроклимата на открытом воздухе. Климатические условия проведения работ можно охарактеризовать как суровые, до - 35°С зимой. Основным вредным фактором является воздействие низкой температуры, главным образом воздействие атмосферного воздуха, что может привести к обморожениям. Обморожению способствуют неблагоприятные физические факторы: ветер, влажны воздух, длительность воздействия холода, плохая защита тела одеждой, сдавливание конечностей тесной обувью. Для предотвращения обморожений весь персонал должен быть экипирован удобной, теплой одеждой, а также пребывание персонала на открытых площадях должно быть сокращено до минимума.
Тяжесть и напряженность физического труда. Эмоциональные стрессы. Работы, предусматриваемые данным проектом, будут выполняться полевой каротажной партией, состоящей из шести человек. Специфика ГИС в том, что производственный процесс каротажа - процесс непрерывный, длительный и утомительный. Кроме этого, персонал, занятый на данном виде исследований, работает вахтовым методом с ненормированным рабочим днем. Кроме того, и бытовые и природные полевые условия отражаются на
физическом и нервно-эмоциональном состоянии рабочего персонала, приводит к нервному и физическому истощению, что в конечном итоге сказывается на результате работы и качестве полевого материала.
Для профилактики утомления предусмотрены технические, медико-биологические и организационные мероприятия: механизация и автоматизация трудоемких работ, своевременное прохождение профилактических медицинских осмотров, применение рациональных режимов труда и отдыха и т.п.
Начальник каротажного отряда должен своевременно организовывать пересмены внутри отряда, во время непрерывного процесса исследований.
Для полноценного отдыха после каротажа геофизическая база должна располагать необходимыми удобствами: баней, по возможности бытовой и электротехникой.
3. Биологически опасные факторы. К ним можно отнести повреждения в результате контакта с животными, насекомыми, пресмыкающимися, а также воздействие болезнетворных вирусов.
Профилактика природно-очаговых заболеваний имеет особое значение в полевых условиях. Разносят их насекомые, дикие звери, птицы и рыбы. Наиболее распространенные природно-очаговые заболевания - весенне-летний клещевой энцефалит, туляремия, гельминтоз.
При заболевании энцефалитом происходит тяжелое поражение центральной нервной системы. Заболевание начинается через две недели после занесения инфекции в организм. Наиболее активны клещи в конце мая - середине июня, но их укусы могут быть опасны и в июле и в августе.
Присосавшегося клеща удаляют вместе с хоботком. Чтобы клещ вышел сам, место укуса необходимо смазать керосином или растительным маслом. Основное профилактическое мероприятие - противоэнцефалитные прививки, которые создают у человека устойчивый иммунитет к вирусу на весь год.
Подобные документы
Географическое положение, климатические особенности Томского района, его характеристика, геологическое строение. Методика и техника проведения геофизических исследований в скважинах. Проведение геофизических работ, расчет и обоснование стоимости проекта.
дипломная работа [5,3 M], добавлен 19.05.2014Физические свойства горных пород и петрофизические характеристики Мыльджинского месторождения. Геологическая интерпретация геофизических данных. Физико-геологические основы и спектрометрическая аппаратура литолого-плотностного гамма-гамма-каротажа.
дипломная работа [4,0 M], добавлен 22.03.2014Местоположение и техногенные условия района работ. Тектоническое строение района работ. Результативность геофизических исследований участка Джубгинской ТЭС. Комплекс геофизических методов изучения инженерно-геологических и сейсмогеологических условий.
дипломная работа [4,6 M], добавлен 09.10.2013Общая геологическая характеристика Биттемского месторождения. Геолого-петрофизическая характеристика продуктивных пластов месторождения. Комплекс, техника и методика геофизических исследований скважин. Методики выделения пластов-коллекторов пласта АС10.
курсовая работа [2,9 M], добавлен 25.01.2014Геолого-геофизическая изученность района. Тектоническое строение и стратиграфия участка исследований. Методика и техника полевых работ, обработка и интерпретация данных. Стратиграфическая привязка и корреляция отражающих границ. Построение карт.
курсовая работа [2,5 M], добавлен 10.11.2012Геофизическая изученность и описание геологического строения Соанваарской площади. Аппаратурное обеспечение и методика работ: магниторазведка, электроразведка, топографические разбивочно-привязочные работы. Методика интерпретации геофизических данных.
курсовая работа [1,7 M], добавлен 16.02.2015Выбор и обоснование комплекса геофизических методов для выделения пластов-коллекторов. Анализ условий вскрытия, обоснование метода вскрытия пластов. Выбор метода вскрытия пласта и типоразмера перфоратора в зависимости от геолого-технических условий.
курсовая работа [489,6 K], добавлен 16.11.2022Характеристика промыслово-геофизической аппаратуры и оборудования. Технология проведения промыслово-геофизических исследований скважин. Подготовительные работы для проведения геофизических работ. Способы измерения и регистрации геофизических параметров.
лабораторная работа [725,9 K], добавлен 24.03.2011Геолого-геофизическая характеристика Ромашкинского месторождения Республики Татарстан: стратиграфия, тектоника, нефтеносность, гидрогеология. Методика исследований и контроля за техническим состоянием ствола скважины; интерпретация геофизических данных.
дипломная работа [4,6 M], добавлен 17.05.2014Анализ компьютерных технологий геолого-технологических исследований бурящихся нефтяных и газовых скважин. Роль геофизической информации в построении информационных и управляющих систем. Перспективы российской службы геофизических исследований скважин.
практическая работа [32,1 K], добавлен 27.03.2010