Проектирование буровых работ с целью предварительной разведки месторождения Родниковое

Геологическое строение месторождения Родниковое: стратиграфия, магматизм, тектоника. Геофизические исследования в скважинах. Технологические условия и цель бурения. Выбор конструкции скважины. Предупреждение и ликвидации аварий на месторождении.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 24.11.2010
Размер файла 127,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

привод маслонасоса

тип электродвигателя

мощность, кВт

частоты вращения, об/мин

вместимость маслонасоса 1

8Г12-22А

12;18

64

АО2-32-4М201

3

1430

55

30

Лебедка для съемного керноприемника:

грузоподъемность, м

скорость навивки каната на барабан, м/с

диаметр барабана, мм

канатоемкость барабана, м

диаметр каната, мм

0,5

0,47-1,8

90

520

4,8

31

Привод бурового станка:

тип электродвигателя

мощность, кВт

частота вращения, об/мин

АО2-71-4

22

1500

Буровой насос НБЗ-120/40

Буровой насос НБЗ-120/40 предназначен для подачи под давлением промывочной жидкости в буровую скважину.

Таблица 6 - Техническая характеристика бурового насоса НБЗ-120/40

Показатели

Значение

Тип насоса

Горизонтальный, трехплунжерный одинарного действия

Производительность, л/мин

Максимальное давление, кгс/см2

Габаритные размеры, мм

длина

ширина

высота

Масса, кг

Приводная мощность, кВт

40

1970

990

980

680

7,5

Выбор буровой вышки и бурового здания

Буровая мачта БМТ-4

Буровое здание и мачта смонтирована на сварном металлическом основании, имеющим полозья для перевозки установки волоком на близкие расстояния и специальное устройство для соединения с транспортной базой при перевозке на конском ходу на большие расстояния. Смонтировано здание металлической конструкции панельного типа, установленную на общем с мачтой основании. Здание имеет 2 выхода: торцевой для выноса бурового снаряда и боковой - запасной выход.

Буровая мачта предназначена для ведения спускоподъемных операций в процессе бурения скважины. Мачта представляет собой одностержневую, трубчатую конструкцию, шарнирно-поддерживающаяся на подносе. Мачта снабжена кранблоком, рассчитанным на работу тракторной талевой оснасткой.

Таблица 7 - Техническая характеристика буровой мачты БМТ-4

Показатели

Значение

Буровая мачта:

тип

рабочая высота, м

Габаритные размеры мачты с основанием, м

в рабочем положении

высота

ширина

длина

Габаритные размеры мачты с основанием, м:

в транспортном положении (на полозьях основания)

высота

ширина

длина

Масса мачты, м:

в том числе металлоконструкции

основания

Способ подъема установки мачты

в рабочем положении

БМТ-4

13,7

15,2

4,5

11,5

3,9

3,25

11,2

6,8

3,3

3,5

Гидроподъемник

Транспортная база ТБ-15 и буровое здание ПБЗ-4

Буровое здание ПБЗ-4 защищает буровую бригаду и оборудование от воздействия атмосферных осадков и окружающей температуры воздуха, создает комфортные условия для обслуживающего персонала.

Транспортная база ТБ-15 позволяет быстро и мобильно перевозить буровое оборудование на новую точку.

Таблица 8 - Техническая характеристика ТБ-15 и ПБЗ-4

Показатели

Значение

1

Передвижное буровое здание:

Полезная площадь, м2

21

2

Объем помещения, м3

48

3

Габаритные размеры, м

длина

ширина

7,5

3,16

4

высота без основания

2,55

5

Масса, м

без оборудования

с оборудованием

2,9

4

6

Транспортная база:

7

тип

ТБ-15

8

грузоподъемность, м

12

9

максимальная скорость передвижения, км/ч

40

10

ширина колен, мм

1900

11

число колес

8

12

давление воздуха в шинах, кчс/см2

5,5ё

13

привод тормозов

Пневматическая

14

Габаритные размеры, мм

длина

ширина

высота

7412

2638

1250

15

масса, м

5,3

Выбор бурового инструмента

Колонковый набор при твердосплавном бурений состоит:

1. твердосплавная коронка М5-9, колонковая труба диаметром 89 мм и длиной 1,5 м, фрезерный переходник П150/89;

2. твердосплавная коронка СМ6 - 76, колонковая труба диаметром 73 мм и длиной 4-6 м, фрезерный переходник П150/73.

При бурении одинарным эжекторным снарядом набор состоит из таердоспланой коронки СА4-46 и одинарного эжекторного снаряда ОЭС-44

Колонковый набор при алмазном бурений состоит: алмазная коронка 01А3 - 46 и одинарного колонкового снаряда

Выбираем бурильные трубы ниппельного соединения ЛБТН - 42.

Техническая характеристика ЛБТН-42

Наружный диаметр труб D 42

Толщина стенки труб д 8

Наружный диаметр: ниппеля 42

Внутренний диаметр ниппеля 15

Масса 1 м трубы с ниппелями, кг 2,5

ЛБТН изготовляются прямостенными без высадки концов. Ниппели, замки изготовляют из стали 40ХН, а муфты из стали 36Г2С. Профили резьб ниппелей выполнен стабилизирующий хвостовик.

Для передачи вращения от шпинделя станка к буровому снаряду применяем ведущую трубу диаметром 54 мм.

Для подачи промывочной жидкости от насоса через нагнетательный рукав во вращающуюся колонку бурильных труб выбираем сальник типа СА. Сальник СА позволяет бурить на высоких частотах вращения бурильной колонны.

Техническая характеристика сальника СА

Давление промывочной жидкости, кгс/см2…………….……………….80

Максимальная частота

Вращение снаряда, об/мин…………………………………….…….1200-1500

Диаметр отверстия ствола, мм………………………….………….…….22

Присоединительная резьба переходника…………….….Замковое З-П-50

ГОСТ 79/8 - 75

Длина, мм………………………………………………………….….400

Масса, кг……………………………………………………………….9,8

Для крепления ствола скважины до глубины 4,5 м применяем обсадные трубы диаметром 89 мм и длиной 1,5 и 3 м соединенных между собой ниппелями.

Для дальнейшего крепления 25 м применяем обсадные трубы диаметром 73 мм и длиной 4 и 6 соединенных между собой ниппелями

Вспомогательный инструмент для СПО

Применяем следующий перечень ключей для свинчивания и развинчивания колонковых, обсадных и бурильных труб:

1.Шарнирные ключи для бурильных труб состоящие из двух скоб, соединенных между собой шарнирно на осях и рукоятки, размером 50 мм.

2. Шарнирные ключи для обсадных и колонковых труб принципиально на отличаются от шарнирных ключей для бурильных труб и состоящий из трех скоб и рукоятки, двух съемных сухарей. Шарнирный ключ имеет размер 73/89 мм.

3. Ключи короночные типа КК предназначенные для навинчивания и развинчивания твердосплавных и алмазных коронок, колонковых труб и других деталей колонковых наборов. Применяемые короночные ключи имеют следующие размеры: 59 76, 93 мм.

4. Универсальные шарнирные ключи типа КШ предназначены для твердосплавных, алмазных коронок, корпусов кернорвателей, переходников, колонковых, обсадных и бурильных труб. Применяемые ключи типа КШ имеют следующие размеры: 59 76, 93 мм.

5. Отбойные ключи для замков и ниппельной служат для захвата деталей замков и ниппелей за прорезы. Применяем отбойные ключи М3-50.

При спуске колонны обсадных труб в скважину применяем хомуты размером 73 и 89 мм.

Для механизации спуско-подъемных операций применяем следующие инструменты:

1. Элеватор, МЗ-50-80-1 разработанная на базе элеватора ЭШ- СКБ «Геотехника» и предназначен для проведения спускоподъемных операций в комплексе с наголовниками стержневого типа.

Техническая характеристика элеватора МЗ 50-80-1

Бурильные трубы муфтово-замкового соединения диаметром, мм….50

Размеры, мм:

высота.….….……………….540 ширина…………….……….………214

Грузоподъемность(номинальная), m…………….…………….….…….10

Массаё кг:

элеватора……………………………………………25,6

наголовника……………………………………………….4

2. Труборазворот РТ-1200 предназначена для свинчивания и развинчивания бурильных труб.

При спускоподъемных операциях применяем стальной канат диаметром 15 мм типа 15,0 ГЛ - 1 - ЖС - И - 180.

Выбор средств механизации и контрольно- измерительной аппаратуры

В процессе бурения параметры режима бурения должны быть взаимосвязаны, чтобы обеспечить оптимальную механическую скорость бурения и минимальный расход алмазов. Достижение оптимального сочетания режимных условий бурения - сложная задача, решение которой зависит от состояния и технического уровня бурового оборудования и показания контрольно-измерительных приборов.

Мною было выбрано контрольно-измерительная аппаратура «Курс 411».

Контрольно-измерительная аппаратура «Курс-411», комплектующая буровую установку УКБ-4П, предназначена для измерения регистрации параметров бурения геологоразведочных скважин. Она разработана СКБ «Геотехника» и изготавливается опытным заводом «Геоприбор» и «Геотехника».

Техническая характеристика «Курс-411»

Диапазоны измерения:

массы бурового снаряда, кг………………………………….……0-5000

усилия на крюке, кгс……………………………………….0-8000

осевой нагрузки на породоразрущающий инструмент, кгс….….0-3000

давления промывочной жидкости, кгс/см2………………….0-100

расхода промывочной жидкости, л/мин……. … …… ….0-150;

0-300

механической скорости бурения, м/ч……………………………….0-15

Основная приведенная погрешность измерения, %.4,0

Напряжении питания, В…………………………… ………………….380

Частота питающего тока, гц….……………………………………….50

Потребляемая мощность, В*А………………………………….150

Температура, 0С:

Окружающего воздуха………….….….от-10до+40 промывочной жидкости………………………………….от 0 до + 40

Относительная влажность при температуре окружающего воздуха +25 0С, %.До 95

Размеры пульта показывающих приборов, мм……………700х650х300

Масса пульта, кг……………………

4.6. Проверочные расчеты

Проверочный расчет двигателя

Мощность двигателя, необходимая для бурения складывается из следующих условий

Nдв, (10)

где Nxв - мощность затрачиваемая на холостое вращение двигателя

- мощность затрачиваемая на разрушение горной породы

- мощность затрачиваемая на преодоление сил трения

- к.п.д.

= 0,8.

Мощность Nxв на холостом вращении двигателя рассчитывается по формуле:

Nxв = (6,17 *10- 72 - 1,25*10-4-4*10-2)l, кВт (11)

где - частота вращения двигателя = 1100 об/мин

L - длина скважины L = 430 м

Nxв = (6,17 *10- 7* 11002 - 1,25*10-4* 1100 - 4*10-2)* 40 = 6,5 квт

Мощность затрачиваемой на разрушение горной породы на забое рассчитывается по формуле:

= 0,6 * 10-6 МРn (R + R1) кВт (12)

где М - коэффициент трения (0,25 - 0,3)

R и R1 - наружный и внутренний радиусы коронки, м

Р - осевая нагрузка, Н

N - частота вращения двигателя, об/мин

= 0,6 * 10-6 *0,3*10800* 1100 (2,3+ 1,6) = 8,3 квт

Мощность затрачиваемая на дополнительные нагрузки Nдоп рассчитывается по формуле:

Nдоп = 3,4 *10-6 * f nР, кВт (13)

где, f - стрела прогиба

f = 0,31

=,4 *10-6 * 0,31 * 1100 * 10800 = 1,25 квт

=

Исходя из вышеприведенных расчетов, делаем вывод:

Расчетная мощность двигателя не превращает паспортную мощность двигателя, так как 20,1>40 квт. Следовательно двигатель обеспечит нормальный процесс бурения. Проверочный расчет насоса

Мощность на привод бурового насоса рассчитывается по формуле:

Гидравлическая мощность

N = Pg QH/1000 з (14)

где Р - плотность жидкости, кг/м3

Q - подача насоса, м3

Н - напор насоса, м Н = 120 м

З - коэффициент наполнения (0,8 - 0,9)

g - 9,8 м/с2

Для того чтобы рассчитать мощность бурового насоса необходимо определить подачу насоса, которая определяется по формуле:

Q = П D2 Snm/4000 (4.22)

где, D - диаметр плунжера, см

S - длина хода плунжера, см

n- число ходов плунжера в 1 мин

m - число плунжеров

Q = 3,14 * 6,32 * 6 * 146 * 3/4000 = 1,36 л/с = 0,00136 м3

= 1000 * 9,8 * 0,00136 * 120/1000 * 0,8 = 1,9 квт

Мощность с учетом потерь

= К * /h (15)

где, К- коэффициент запаса мощности

= 1,1 * 1,9/0,8 = 2,6 квт

Исходя из вышеприведенных расчетов, делаем вывод:

Расчетная мощность двигателя насоса НБ3-120/НО ТК 2,6 < 7,5 квт

Следовательно, насос обеспечит процесс промывки скважины.

Буровые установки комплектуются буровыми насосами. При бурении разведочных скважин используется поршневые и плунжерные насосы, последнее время преимущественно плунжерный. Производительность и давления нагнетания выбранного типа насоса должны обеспечивать необходимый расход промывочной жидкости и преодоление гидравлических сопротивлении, особенно при узких кольцевых пространствах, характерных для колонкового бурения, что является обязательным условием для успешного бурения скважин. В связи с громоздкостью расчетов расчет расхода и давления промывочной жидкости в скважине предлагается проводить по программе «QPN», разработанный на кафедре «Технология и техника бурения скважин» Казахского Национального Технического университета.

Ниже приведен порядок расчета и расчетные формулы:

А. расход промывочной жидкости

Необходимый расход определяется из условия полного выноса шлама с забоя скважины:

Q = р/4(D2-d2)х, (16)

где D - наибольший диаметр скважины (принимается по внутреннему диаметру обсадной трубы у устья скважины);

d - наружный диаметр бурильных труб;

х - необходимая скорость восходящего потока.

Необходимая скорость восходящего потока определяется по формуле:

х = U+C, (17)

где U - скорость падения частиц шлама расчетного размера промывочной жидкости;

С - необходимая скорость выноса шлама из забоя;

Скорость падения частиц:

U = а * К v dр(д/с-1)1 sin б (18)

где б - коэффициент учитывающий вязкость жидкости принимается:

б=3vм/з (19)

где м - коэффициент вязкости воды;

з - коэффициент вязкости бурового раствора;

К - коэффициент формы частиц принимается равным 2,5;

Д - плотность частиц породы;

dр - расчетный размер частиц;

б - угол наклона скважины к горизонту.

Чем больше рассчитаны диаметр частицы и чем более изометричную форму она принимает, тем труднее такая частица уносится с забоя. Чтобы подаваемый расход полностью уносил шлам с забоя, необходимо, чтобы скорость потока жидкости была не меньше, чем скорость падении в этой жидкости наиболее крупных частиц попадающих на забой. Такими частицами являются частицы, смываемые потоком жидкости с керна (по сравнению с которыми частицы, образующиеся при бурении, ничтожно малы). Частицы керна попадают на забой лишь в том случае когда они проходят сквозь зазор между керном и короночным кольцом. Величина этого зазора равна:

Dзв= (Dкн - Dв)/2 (20)

где Dкн - внутренний диаметр короночного кольца;

Dв - внутренний диаметр коронки.

Однако попавшая на забой частица будет выносится потоком жидкости только в том случае, если она проходит через наружный кольцевой зазор, т.е. между стенками скважины и короночным кольцом. Величина этого зазора равна:

dзв= (Dн - Dкн)/2, (21)

где Dн и Dкн - соответственно наружные диаметры коронки и короночного кольца.

Таким образом чтобы выполнить поставленные условия, необходимо за расчетный размер частицы dр принять dз, если dзв< dзн или dзн если dзв ? dзн.

Необходимая скорость выноса частиц определяется, исходя из условий недопущения создания слишком большой концентрации шлама в восходящем потоке жидкости, так как при остановке насоса шлам может осесть и прихватить колонковую трубу. За счет шлама плотность жидкости в восходящем потоке больше, чем в нисходящем. Максимально допустимое увеличение плотности Др принимают равным 10кг/м3 для воды и 30 кг/м3 для глинистого раствора (глинистому раствору соответствует большое значение, так как принимается в расчет его способность образовывать структуру, препятствующую падению частиц на забой).

Исходя их упомянутых условий скорость выноса определяется так:

С=((D2H - b*D2B)(д-с) V)/((D2H-d2H) Дс*1.25) (22)

где b- коэффициент выхода керна (b = 0,7ч0,8);

V - скорость бурения;

Дс - разность плотности восходящего и нисходящего потоков;

dH - наружный диаметр бурильных труб;

1,25 - коэффициент, учитывающий вращение бурильной колонны.

Б. Потери давления в циркулярной системе.

Суммарные потери давления складываются из составляющих, образующихся на следующих участках:

- в гладкой части бурильных труб - Р1;

- между колонковой трубой и керном - Р2;

- между колонковой трубой и скважиной -Р3;

- между бурильными трубами и скважиной в ее нижней самой узкой части - Р4;

- между соединениями бурильных труб и стенками скважин в ее наиболее узкой (нижней) части - Р5 (в остальных частях потерями давления между соединениями и стенкой скважины пренебрегаем вследствие малой величины этих потерь);

- между бурильными трубами и стенкой скважины на втором снизу участке -Р6;

- между бурильными трубами и стенкой скважины на третьем снизу участке - Р7;

К потеря давления на участках 1-7 необходимо еще добавит потери внутри соединений бурильных труб Рс, также потери давления, возникающие за счет разности удельных весов нисходящего и восходящего потоков промывочной жидкости -РД.

Таким образом суммарные потери давления составят:

Рi=i=i7?Pi+Pc+PД. (23)

где i - номер участка (i = 1ч7).

Для нахождения потерь давления на участках 1-7 пользуются формулой Дарси-Вейсбаха:

Рii*(сх2iLi/2(Di-di)) (24)

где хi - скорость жидкости на данном участке;

Li - длина канала на этом участке;

Di - наружный диаметр кольцевого канала прохода жидкости;

di - внутренний диаметр;

лi - коэффициент гидравлических сопротивлений.

Скорость потока жидкости:

хi = Q/Fi (25)

Fi - площадь канала, которая определяется по формуле:

F1 = р/4(D12 - d12) (26)

На различных участках D1 и d1 различны. На первом участке D1 есть внутренний диаметр бурильных труб - dв, а d1.

В этом случае:

F1 = р/4D12 (27)

На втором участке:

D2 - внутренний диаметр колонковой трубы,

d 2 - диаметр керна.

На третьем участке:

D3- диаметр скважины на нижнем участке

d Н- наружный диаметр колонковой трубы.

На четвертом участке: (28)

d 4 - наружный диаметр бурильных труб.

На пятом участке D3 определяется с учетом увеличения диаметра ствола скважины в ходе бурения:

D5 = DН + + V/0.5 (29)

где V - скорость бурения.

Данная формула учитывает что чем больше скорость бурения (мягкие породы), тем больше разработка. При V = 0,0005 м/с (1,8 м/ч) разработка принята равной 0,0001 т.е. 1 мм.

В качестве d 5 - в данном участке принимается наружный диаметр соединении d сн.

На участках 6 и 7, D6 и D7 равны диаметрам скважины на втором и в третьем с низу интервалов, а d 6 и d 7 равны d н.

Чтобы найти коэффициент гидравлического сопротивления лi, определяют число Рейнольдса:

Rei=(хi с(Di-di))/(з[1+ф0(Di+di)/узхi]), (30)

где з - коэффициент динамической (для воды) или структурной (для глинистых растворов) вязкости;

ф0 - динамическое сопротивление сдвига (для воды ф0 = 0).

При течении воды по канала круглого сечения, если:

a) Rei <2300, то лi = 64/ Rei (31)

б) 2300 ? Rei ?105, то лi =0,23((1,9*10-6/ Di)+(1/ Rei)0,226 (32)

в) Rei <105, то лi =0,0121/ Di0,226 (33)

При течении воды по каналу кольцевого сечения, если:

a) Rei <2300, то лi = 64(1-аi)2/ Rei 1+ аi + (1- аi2)/1 n аi (34)

где аi = di/Di (35)

б) 2300 ? Rei ?105, то лi =0,02+1.7/v Rei (36)

в) Rei <105, то лi =0,024 (37)

При течении глинистого раствора по каналу круглого сечения, если:

a) Rei <2300, то лi определяется по формуле (61)

б) 2300 ? Rei ?1500, то лi =0,08/7 vRei (38)

в) Rei <1500, то лi =0,021 (39)

При течении глинистого раствора по каналу кольцевого сечения, если:

a) Rei <1100, то лi = 34,5/ Rei

б) 110 ? Rei ?8000, то лi =0,12/7 vRei (40)

в) Rei <1500, то лi =0,021 (41)

Расчет бурильной колонны

Бурильная колонна во время работы, как уже отмечалось, испытывает значительные нагрузки, что может вызвать их отказ. Поэтому выбранная колонна труб проверяется расчетами, при которых учитываются различные условия работы труб. Наиболее тяжелые условия при сооружений глубоких скважин, когда осевая нагрузка создается весом нижний сжатой части бурильной колонны, а верхняя часть колонны растянута под действием ее собственного веса.

Сущность расчета заключается в определении запаса прочности бурильной колонны в трех характерных сечениях:

- сечение I-I - у устья скважины, где максимальные величины могут достигает напряжения и кручения.

- сечение II-II - «нулевое сечение»ё где имеет место смена сжимающих напряжений на растягивающие, и поэтому расчет должен производиться на усталость материала бурильных труб.

- сечение III-III - у забоя, где достигают максимум напряжения сжатия и изгиба.

При этом сечения I-I и III-III запас прочности не должен быть меньше 1,7, а в сечении II-II - 1,3.

В связи с большим числом факторов, влияющих на работу бурильной колонны и объема расчетов, проверочный расчет бурильной колонны на прочность предлагается проводить с помощью ЭВМ по программе «RBT» разработанной на кафедре «Технологии и техники бурения скважин» Казахского Национального Технического университета.

Порядок расчета и расчетные формулы:

А. Геометрические параметры бурильных труб и скважин.

Площадь сечения бурильных труб:

Fт = р/4(d2н - d2в), (42)

где dн и dв соответственно наружный и внутренний диаметр бурильных труб.

Момент инерции сечения бурильных труб:

Iт = р/64(d4н - d4в), (43)

Полярный момент сопротивления сечения бурильных труб:

Wр = р/16 * dн (d4н - d4в), (44)

Площадь забоя:

F3 = р/4 (d23 - d2к), (45)

где d3 - диаметр скважины у забоя

dк - диаметр керна

В. Длина сжатой части буровой колонны и расстояния от трех характерных сечений до «нулевого» сечения.

Длина сжатой части колонны:

Х = С/бq (1-г ж/гм) cos (90 - ц), (46)

где С - осевая нагрузка;

q - вес одного метра бурильной трубы;

б - коэффициент учитывающий увеличение веса бурильных труб за счет соединения;

г ж и гм - плотности, соответственно бурового раствора и бурильных труб;

ц - угол наклона скважины к горизонту.

Расстояние до «нулевого» сечения (продольные напряжения равны нулю).

от сечения I: Z1= H - X, (47)

где Н - расстояние от забоя до сечения I (глубина скважины)

от сечения I I: Z11= 0 (48)

(от нулевого сечения до него же);

от сечения I I I: Z111= -Х (49)

В. Мощность на буровом валу.

Забойная мощность

N3= fK1K2Cn*((d3-dk)/2), (50)

где f - коэффициент трения коронки о забой

K1 - учитываемая мощность, расходуемую на разрушение забоя;

K2 - учитываемая мощность на преодоления трения боковой поверхности коронки о стенки скважины;

N - частота вращения;

C - осевая нагрузка.

«Дополнительная» мощность (из за трения сжатой части бурильной колонны о стенки скважины):

Nд= 8 * 10-4 Cn. (51)

Мощность на холостое вращение бурильной колонны:

Nx=2.5*10-11 б2 б3 (0.0009+0.2дc)бqdIIn1.88(z+x)0.75(1+мcosц), (52)

где б1, б2, б3 и м (см. таб. 1,2,3), причем б1, - учитывает вид соединении; б2 - вид контактной среды; б3 - сложность разреза скважины;

м - увеличение затрат мощности при бурении горизонтальных скважин (м=0,44)

дc- Средний зазор между скважиной и бурильной колонной.

Таблица 9 - Коэффициент б1, зависящий от типа соединений

Тип соединения

Коэффициент б1

Муфто-замковые

1,3

Ниппельные

1,0

Таблица 10 - Коэффициент, зависящий от трения бурильной колонны о стенки скважины в различных средах

Вид контактной среды

Коэффициент б2

Вода

1,0

Глинистый раствор

1,1

Связывающая эмульсия или консистентная смазка

0,6

Таблица 11 - Коэффициент, зависящий от сложности разреза скважин (б3)

Степень сложности разреза

Коэффициент б3

Нормальный

1,0

Сложный (искривления, каверны, зоны неустойчивости)

1,5

Мощность на холостое вращение Nx считается для каждого из трех характерных сечений (с учетом значений дc и Z).

дc = (((b1d2+b2d3)-dH)*0.5, (53)

где дробь в скобке означает собой средний диаметр скважины ниже рассматриваемого сечения;

b1 b2 b3 - длина участков скважины, имеющих разные диаметры (d2 d3)

Для сечения I - I:

- участок большего диаметра:

b 11 = Н-h (54)

где h- длина нижней части скважины с диаметром d3.

- участок меньшего диаметра:

b 21 = h (55)

Сумма обоих участков

b 31 = Н (56)

Для сечения I I - I I:

- если Х> h, то

b III = h -Н (57)

b 2 II = h (58)

b 3 II = Х (59)

- если Х< h, то

b III = 0 (60)

b 2 II = b 3 II = Х (61)

Для сечения I I I - I I I условно (с учетом особенностей программы) применяется:

B1 III = b 2 III=1 (62)

b 3 III = 2 (63)

Суммарная мощность:

Nc=N3в+Nx+Nдд (64)

где в и вд учитывают боковое трение нижней части о стенки скважины.

Для сечения I и II это трение приводит к проявлению «дополнительной» мощности, тогда как для сечения III - III Nд не рассчитывают и поэтому в сечении I и II в = вд=1. Для сечения III вд=0. однако, чтобы учесть трение колонкового снаряда, принимается в=1,5.

Г. Осевое усилие в колонне бурильных труб (в характерных сечениях) и длина полуволны изгиба

Осевое усилие:

С =б qz(1-гж/гм)cos(90 -ц), (65)

Длина полуволны изгиба бурильной колонны:

I=рvg/щv(0.5z+v0.52z2+Elщ2/qg), (66)

где g - ускорение свободного падения;

Е - модуль продольной упругости материала бурильной колонны;

щ - угловая скорость вращения, щ = рn/30.

Д. Напряжение в бурильной колонне

Осевое напряжение:

у =G/Fт (67)

Касательная напряжения:

ф = Nc/ щWт (68)

Изгибающее напряжение:

у и=(Ееdc/2)*(р/1)2 (69)

где у - стрела прогиба бурильной колонны в характерном сечении скважины с диаметром dм, у = dм- dн)/2.

Суммарное напряжение (рассчитывается для сечения I и I I):

у?=v(уи+Ру Р)2+4ф2 (70)

где РуР - абсолютное значение осевого напряжения.

Е. Запас прочности

- для труб замкового соединения:

m=ут? (71)

где ут - предел текучести материала бурильных труб продольной деформации.

- для труб ниппельного соединения:

m = ут/ 1,5у?, (72)

где коэффициент 1,5 учитывает концентрацию местных напряжений в резьбах, которые могут оказаться на гребне полуволны.

При замковых (муфтово-замковых) соединениях в случае расположения соединения на гребне полуволны резко уменьшается стрела прогиба, так как наружный диаметр замка больше, чем бурильной трубы. Таким образом, в рассматриваемом случае уменьшение у компенсирует концентрацию местных напряжений.

Запас прочности в сечении II - II («нулевом») равен:

- для труб муфтово - замкового соединения запас прочности по напряжению изгиба:

m = ув/ уи (73)

где ув - предел выносливости материала бурильных труб.

- для труб этого же типа запас прочности по напряжению кручения:

mфТ/ф (74)

где фТ предел текучести материала бурильных труб при кручении.

- для труб ниппельного соединения, исходя из соображении рассмотренных выше,

mу = ув /1,5 уи (75)

mфТ/1,5ф (76)

Итоговое значение запаса прочности в сечении II-II

m=mу*mф/v m2у+m2ф (77)

Как было уже отмечено, в сечении I-I и III-III запас не должен быть меньше 1,7, а в сечении II-II - 1,3. При не соблюдении этих условий исходные данные необходимо изменить. При этом надо посмотреть какие из напряжений (растяжение, изгиб и кручение в сечении I-I, изгиб и кручение в сечении II-II, сжатие, изгиб и кручение в сечение III-III) имеют повышенное значение.

Для уменьшения растягивающих напряжений уменьшают диаметр бурильных труб, либо стальные заменяют на легкосплавные (уменьшается вес колонны труб).

Для уменьшения колонны кручения снижают осевую нагрузку, частоту вращения, вес бурильной колонны и зазор между бурильной колонны и стенкой скважины, а так же используют промывочные жидкости обладающими смазочными свойствами.

Для уменьшения напряжения изгиба необходимо снизить частоту вращения и стрелу прогиба.

Ниже приведен прочностной расчет бурильной колонны с применением ЭВМ.

Расчет грузоподъемных систем

В начале рассчитываем нагрузку на крюк при подъеме бурильных труб из скважины по формуле:

Gкр = Ккр д Lq (1- Ржм), Н (78)

где Ккр коэффициент кривизны колонны бурильных труб

д - ускорение свободного падения, д - 9,8 р

L - глубина скважины, м L = 230

q - масса 1 м труб, кг q = 6,04

Рж - плотность промывочной жидкости Рж = 1000

Рм плотность материала труб Рм = 7850

Gкр = 1,2 * 9,8 * 230 * 6,4/1-1000/7850) = 28253,3 Н

Gкр < Рл, т.е. применяем оснастку талевой системы, равной 1х1

Рациональные глубины подъема снаряда на различных скоростях с учетом перегрузки двигателя можно определить по формуле:

L= (79)

где паспортная мощность двигателя станка, кВт

- коэффициент перегрузки = 1,5-2,0 для электродвигателей.

- зенитный угол скважины, градус = 800

f- коэффициент трения бурильных труб о породу, f = 0,3

Для упрощения определяем постоянную величину

А= (80)

тогда L= (81)

Расчет рациональных глубин должен вестись при скорости подъема

Vкр - V0/m < 1.5 м/с (82)

А=

V прI =

V прII = согласно по ТБ подъем запрещен

L=.

Исходя из выше перечисленных расчетов делаем следующий вывод:

С проектной глубины до глубины 255 подъем будет осуществляться на I скорости. С глубины 255 м до устья скважины подъем осуществляется на II скорости лебедки.

4.7 Предупреждение и ликвидации аварий

Анализ причин аварийности на данном месторождении.

В бурении могут быть выделены 5 основных групп аварий:

· обрывы и поломки технологических инструментов бурового снаряда и обсадных труб;

· развенчивание резьбовых соединений частей бурового снаряда и обсадных труб;

· прихваты бурового снаряда;

· обрывы канатов и каротажного кабеля;

· падение бурового снаряда и посторонних предметов в скважину.

Аварии происходят по следующим причинам:

· субъективным;

· геологическим;

· технологическим;

· техническим;

· организационным.

Аварии могут быть предупреждены устранением их причин, внедрением профилактических мероприятий, совершенствованием бурового оборудования и ловильных инструментов и методов ликвидации аварии.

Для предупреждения обрывов и развинчивания бурильных труб необходимо:

· подвергать их периодически дефектоскопии;

· использовать смазку для резьбовых соединений;

· применять контрольно-измерительные приборы и ОМ-40;

· периодически опрессовывать колонку под водой и т.д.

Для предупреждения прихватов снаряда требуется:

· поддержание в скважине постоянного гидростатического давления;

· соблюдение технологии бурения;

· предупреждение прижогов путем контроля за расходом промывочной жидкости.

Если авария произошла, то необходимо определить ее тип и вид, точное место, вероятную причину, положение верхнего конца оставленной трубы и т.д. Для ликвидации аварий существует набор специальных инструментов: ловильные метчики и колокола, труболовка, овершот, паук, вибраторы, труборезы и т.д.

· ликвидация прихвата выбивными приспособлениями;

· вибрационный метод;

· извлечение снаряда по частям;

· освобождение бурового снаряда домкратами;

· взрывание или торпедирование;

· химический метод;

· гидравлический метод;

· электрический метод.

Каждый метод имеет свои особенности, выбор которых зависит от типа вида аварий. На месторождении проходят все аварии указанные выше и их ливидация показана в разделе ТБ.

5. СПЕЦИФИКАЦИЯ ПОТРЕБНОГО ОБОРУДОВАНИЯ, ИНСТРУМЕНТА И МАТЕРИАЛОВ

№ п\п

Наименование и марка

Ед. измерения

Кол-во

1

Буровой станок СКБ-4П

шт.

1

2

Буровой насос НБЗ 120/40

шт.

1

3

Мачта МР6

шт.

1

Буровая мачта

шт.

1

5

Твердосплавные коронки М5-93

СМ6-76

СА4-59

шт.

шт.

шт.

1

1

4

6

Алмазные коронки О1А3-59

шт.

2

7

Кернорватели

шт.

2

8

Расширители

шт.

1

9

Трубы обсадные диаметром, мм: 89,

73

п.м

п.м

5

25

10

Трубы колонковые диаметром, мм: 89

73

57

п.м

п.м

п.м

1,5

4,6

1,5

11

Ниппели к трубам диаметром: 89

73

шт.

шт.

2

5

12

Трубы бурильные ЛБТН-42 мм

п.м

430

13

Хомут для обсадных труб диаметром, мм: 89

73

шт.

шт.

2

2

14

Вилки подкладные и ведущие к труборазвороту

комплект

1

15

Сальник СА

шт.

1

16

Ключи для бурильных труб типа КБ

шт.

2

17

Ключи для обсадных и колонковых труб размером 73/89 мм

шт.

2

18

Ключи короночные типа КК диаметром, мм: 59

76

93

шт.

шт.

шт.

2

2

2

19

Ключи типа КШ

шт.

4

20

Переходники П1 50/89

П1 50/73

ПК-59

шт.

шт.

шт.

2

2

2

21

Гидравлическая труболовка

шт.

1

22

Метчик

шт.

2

23

Колокол

шт.

1

24

Контрольно- измерительная аппаратура « КУРС-411»

шт.

1

6. ПРОЕКТ ВСПОМОГАТЕЛЬНЫХ И ПОДСОБНЫХ ЦЕХОВ И ЭНЕРОГОСНАБЖЕНИЯ

6.1 Механические мастерские

Для ремонта бурового оборудования на базе партии организуется мастерская, которая будет заниматься ремонтом бурового оборудования.

Капитальный ремонт бурового оборудования будет производиться в механической мастерской экспедиции.

Определение количества ремонтов.

Для станка СКБ-4П:

,(83)

где О - среднее число единиц оборудования, находящееся в работе, 2

Км - коэффициент использования оборудования по машинному времени для одной единицы оборудования

Ф - общий фонд рабочего времени для одной единицы оборудования, ч

Л- число капитальных, средних и малых ремонтов в структуре межремонтного цикла

Ф=АЧСЧВ, час(84)

где А - количество месяцев в планируемом периоде

С - количество рабочих часов в смену

В - количество смен в месяц

Ф=12Ч8Ч21=2016час

,

где Тм - машинной время

Тр - время нахождения на рабочем месте

Тм =5,6; Тр = 7

Л=2

.

Количество капитальных ремонтов.

Для насоса НБЗ-120/40 число капитальных ремонтов равняется тоже 1.

Режим работы мастерской определяется продолжительностью рабочей смены в часах и количеством смен в сутки. Обычно мастерская работает в одну смену с двумя выходными днями в неделю с продолжительностью смены 8 часов. в праздничные дни мастерская не работает, а в предпраздничные дни продолжительность смены сокращается до 6 часов. при большей загруженности мастерская может работать в две или три смены, иногда и без выходных дней, при этом ремонтным рабочим выходной день предоставляется по скользящему графику. В субботние и воскресные дни разрешается работать по согласованию с профсоюзной организацией, но только в том случае, если в каждом цехе работают не менее двух рабочих.

Как правило, в субботние и воскресные дни не разрешается заниматься со сложными сборочными и испытательными работами, так как эти работы должны выполняться под руководством главного механика. Поэтому в указанные дни ремонтные рабочие занимаются изготовлением запасных частей или мелким ремонтом.

Кузнечно-сварочные и жестяно-медницкие цеха относятся к вредным цехам. Продолжительность смен в этих цехах 6 часов. всем ремонтным рабочим ежегодно предоставляется оплачиваемый отпуск. Для рабочих невредных цехов обычно длительность отпуска - 18 дней, а для рабочих вредных цехов - 24 дня.

Для ремонтных работ рекомендуется следующие типы металлообрабатывающих станков:

· токарно-винторезные марки 1К62

· трубонарезнае марки 914М

· широкоуниверсальные фрезерные марки 679

· сверлильные марки 2179

· шлифовальные марки 3Г12М

· зубофрезерные марки 5К328А

В механическом цехе производится ремонт изношенных и изготовление новых деталей для ремонтируемого оборудования, изготавливаются запасные части, ремонтируется буровой инструмент, оказываются услуги, то есть вспомогательные заказы других предприятий, нарезаются бурильные, обсадные и колонковые трубы, изготавливаются ниппели, замки, ремонтируются другие технологические, вспомогательные и специальные инструменты.

Расстановка оборудования в цехах механических мастерских

Станки устанавливаются на бетонные фундаменты.

Одноименные станки по возможности устанавливаются группами. Токарно-винторезные и трубонарезные станки располагают на наиболее хорошо освещенных площадях. Сверлильные станки должны иметь вокруг достаточно места для обработки громоздких деталей. Расстановку станков и другого оборудования необходимо производить с учетом последовательности обработки и минимального транспортирования обрабатываемых деталей.

6.2 Лаборатории

Лабораторные исследования являются обязательной и весьма важной частью комплекса геологоразведочных работ на весь период их проведения. При проведении предварительной разведки на месторождении Родниковое предусматривается химические и спектральные исследования, пробирный анализ, флюоронисцентный - рентгено-радиометрический метод.

В состав этих работ входят: прием проб и заказов, выполнение химических и спектральных анализов по указанию руководства экспедиции, внутрилабораторный контроль, оформление и выдача результатов анализов, хранение результатов анализов и возвращение проб для хранения, в соответствующее подразделение экспедиции. При укомплектовании лабораторий учитываются следующие оборудования:

· для химической лаборатории, микроскопы, центрифуги, вытяжной шкаж, холодильник, химическая мешалка, комплекты химических реактивов

· комплекты химической посуды для спктральной лаборатории: спектрамотометр, микроскоп и специфическое электрооборудование.

6.3 Вспомогательные цеха

Водоснабжение

Для обеспечения буровых бригад технической водой проектом предусматривается устройство водопровода в траншеях (в зимний период), общей протяженностью 1 км, в летний период устройство водопровода протяженностью 49 км.

Проектом предусматривается строительство насосной передвижной станции и 2 водозаборов в местах их установки.

Энергоснабжение.

Энергоснабжение буровых агрегатов, насосной станции, базы партии будет осуществляться от госсети напр. 6КВА общей протяженностью 6,5 км.

Транспорт

К поселку имеется автомобильная дорога из Алматы через которую осуществляется отправления и получения грузов для перевозки персонала будем использовать автомобили грузоподъемностью до 2 тонн типа ГАЗ-66, на которой за 1 рейс перевозится до 16 человек.

Связь

Для связи между буровыми бригадами, диспетчерской службой, базами партии и экспедиции, а также с вспомогательным и специальным службами осуществляется с помощью телефонной и радиосвязи.

Связь дежурного диспетчера с буровыми вышками, вспомогательными цехами и администраций ведется с помощью радиостанций типа РС-25 и «Олень», а на буровых вышках радиостанциями типа «Недра - 1» и «Недра - 2».

Кроме того, будет использована телефонная связь, для вышек расположенных на близком расстоянии друг к другу. Связь будет осуществляться телефонным коммутатором типа МБ - ЦБ на несколько точек.

Энергоснабжение

Энергоснабжение буровых агрегатов, насосной станции, базы предриятия будет осуществляться от ГОСсети напряжением 6КВА, общей протяженностью 6,5 км.

7. ОХРАНА ТРУДА

7.1 Анализ опасных и вредных производственных факторов

Под охраной труда понимается система законодательных актов и соответствующих им социально - экономических, технических и санитарно - гигиенических и организационных мероприятий, обеспечивающих безопасность сохранения здоровья человека, работоспособность в процессе труда. Условия труда работников, занятых в геологоразведочном бурении, определяются спецификой геологоразведочных работ - большой работоспособностью, удаленностью от населенных пунктов, широким диапазоном природно-климатических условий. Поэтому это создает значительные трудности в организации труда и быта буровых рабочих. Здоровые и безопасные условия труда являются одним из главных средств решения проблем социально - экономического развития любого общества.

Поэтому проектируемые работы должны быть безопасными и безвредными для рабочих. Однако, как показывает практика, безопасность и безвредность условий труда в геологоразведочной работе определяется в основном следующими факторами:

· Физико-географические условия работы

· Месторасположение месторождения

· Климатические условия

· Физико-механические условия бурения

Как указано в разделе I рельеф района ровный с небольшими наклонами. Абсолютные отметки колеблется от 840 - 860 м до 910 м. Климат района резко континентальный с колебаниями среднемесячной температуры от -22,4оС зимой, до +17,4оС летом. Глубина промерзания почвы достигает 1,5 м при мощности снежного покрова до 2 м.

Чтобы исключить возможность воздействия этих факторов на организм человека предусматриваются следующие меры:

Для предохранения от укусов клещей, комаров предусматривается выдача специальных костюмов.

Для ограждения работающих от неблагоприятных воздействий климатических факторов, предусматривается устройство навесов, выдача спецодежды.

Анализ потенциальных опасных и вредных факторов при выполнении буровых работ приведены в таблице (см. табл.).

Общеизвестно, что условия труда, следовательно состояние охраны труда в определенной степени зависят от условий быта и досуга работающих. В связи с тем, что участок находится вдали от населенных пунктов, выбираю вахтовый метод работы.

Для улучшения отдыха рабочего персонала в летнее время года, проектом предусматривается использование кондиционеров в количестве 2 шт в вагончике. Вентиляцию в бане использовать естественную, через фрамугу и форточки.

В таблице приведены способы вентиляции помещений. Если удельный объем меньше 6 м3, то вентиляция искусственная.

Таблица 12 - Способы вентиляции помещений

№ п/п

Наименование

Объем помещений

Макс. кол-во одновременного

прибытия людей

Удельный

объем

Способ

вентиляции

Тип

вентиляции

1

Жилая комн.

60

5

12

Искусст.

2 кон-ра

2

Комната отдыха

50

17

2,9

Искуст.

2 кон-ра

3

Столовая

160

30

5,3

Искуст.

2 кон-ра

4

Баня, душ

20

10

2

ест.

фрамуги

5

Сан. узел

3

1

3

ест.

форточки

7.2 Защитные мероприятия

Одним из средств решения проблем "Охраны труда" является механизация и автоматизация выполняемых работ, что облегчает условие труда, снижает затраты умственной и физической энергии.

Для предотвращения неблагоприятных условий вредных климатических факторов на организм человека, мною предусматриваются следующие мероприятия:

1. В целях избежание теплового удара, использовать теплопоглощающую подкладку под каской.

2. В целях избежание воздействия ветра, использовать брезентовое

укрытие для буровой площадки высотой 6м.

3. В целях избежание обморожения работающего персонала, в зимнее время работ обеспечить их соответствующей спецодеждой.

Для предотвращения неблагоприятных последствий связанные с географическими факторами, мною предусматриваются следующие мероприятия:

В процессе бурения персоналу буровой бригады приходиться перемещать большое количество тяжестей. Как правило, эти предметы имеют большой вес и в случае падения могут причинять тяжёлые травмы работающим. Для предупреждения этих случайностей необходимо соблюдать технику безопасности и проверять надёжность оборудования.

Для предотвращения этих факторов проектом предусматривается вести тщательный контроль за параметрами раствора

Бурение скважины роторным способом, промывка скважины при помощи насосов, нагрузка УБТ, приготовление растворов механическими мешалками, крепление скважин машинами ЦА и СМН. Эти оборудования должны быть ограждены и проверены на давление. Сильно вибрирующие машины необходимо звукоизолировать. При работе с химреагентами соблюдать осторожность. Работать в респираторах, защитных очках, фартуках. Соблюдать параметры режима бурения.

Степень механизации и автоматизации выполняемых работ определяется по формуле:

(85)

где: М - количество механизированных операций

Р - количество операций выполняемых в ручную

Данные расчёта сводим в таблицу 6.2

Таблица 13 - Данные расчёта степени механизации

п/п

Наименование выполненных работ

Общее кол-во выполненных операций при данной работе

В том числе

Сm, %

М

Р

Транспортировка

3

3

-

100

Монтаж

6

5

1

83

Бурение

12

9

3

75

Крепление

6

5

1

83

Демонтаж

5

3

2

60

Итого по циклу:

32

25

7

78

Как указано в таблице 6.2 выбранное мной оборудование и механизмы обеспечат механизацию выполнения работ по практической реализации проекта степень механизации от 60-100%, а производственную 78%, что выше от среднего достигнутого в настоящее время по отрасли.

Буровая установка должна быть обеспечена механизмами и приспособлениями, повышающими безопасность работ. Члены буровой бригады должны периодически, проходить освидетельствование в знании техники безопасности.

Мероприятия по технике безопасности, промышленной санитарии и противопожарной безопасности на время всего цикла строительства скважин должны выполняться в строгом соответствии с правилами безопасности в геологоразведочной промышленности.

Меры безопасности при спуско-подъемных операциях

При колонковом бурении спуско-подъемные операции требуют повышенного внимания и осторожности. Наибольшую опасность представляют работы с подкладной вилкой при установке на нее колонны бурильных труб, а также установка и перенос свечей с устья на подсвечник и обратно, снятие и закрепление элеватора, развенчивание бурильных труб.

Подготовка к подъему инструмента

Перед подъемом ведущей трубы шпиндель станка необходимо поднять в крайнее верхнее положение. Запрещается поднимать и опускать, а также отвинчивать и навинчивать ведущую трубу во время вращения шпинделя. Прежде чем отвинтить ведущую трубу, необходимо остановить буровой насос и уменьшить давление в нагнетательной линии.

Отсоединив ведущую трубу от бурильной колонны, станок отводят в крайнее заднее положение, освобождая устье скважины на время спускоподъемных операций.

Ведущую трубу извлекают из шпинделя и опускают в шурф, заранее пробуренный вблизи устья сановной скважины. При отсутствии приемной скважины ведущую трубу оставляют в шпинделе вместе с сальником и закрепляют так, чтобы исключить возможность захвата ее талевым блоком.

Работа с элеваторами

В настоящее время в большинстве организаций применяют полуавтоматические элеваторы МЗ-50-80 или Э-18/50.

Перед работой с элеваторами необходимо проверить их исправность. Муфты замков всех свечей необходимо замерить, чтобы верхняя прорезь муфт отстояла от торца не менее чем на 80 мм для надежной фиксации наголовников центральным стержнем.

Элеватор должен подвешиваться к талевому блоку или канату через вертлюжную скобу, упорный подшипник которой исключает возможность закручивания каната при свинчивании и развенчивании бурильных свечей.

При работе с полуавтоматическими элеваторами необходимо соблюдать следующие меры предосторожности.

1. При рассаживании и перемещении бурового снаряда, при замене бурильных труб затвор элеватора должен быть закрыт и зафиксирован защелкой.

2. При навинчивании очередной свечи ослабить талевый канат.

3. Надежно закрепить наголовники на муфтах свечей.

4. При подъеме элеватора по свече (при спуске снаряда) помощнику бурильщика следует находиться от подсвечника на расстоянии не менее 1,5 м (несмотря на то что подсвечник должен ограждаться по периметру металлическими бортами высотой не менее 0,35 м). При использовании полуавтоматических элеваторов запрещается:

закреплять на свечах наголовники во время опускания незагруженного элеватора;

применять нестандартные и неисправные наголовники;

при случайных остановках бурового снаряда при спуске направлять, снимать и надевать элеватор и наголовник до подвешивания снаряда на подкладной вилке или шарнирном хомуте.

Практика производства спускоподъемных операций свидетельствует о том, что многие несчастные случаи происходят из-за нарушений безопасных приемов работы. Некоторые бурильщики вырабатывают свои, парой опасные методы и приемы работы со щелью ускорения спускоподъемных операций. Помощники бурильщиков устанавливают или извлекают ведущие и подкладные вилки при движении бурового снаряда, совмещают операции по надеванию наголовников и спуску незагруженных элеваторов. "Иногда бурильщики и их помощники создают опасные ситуации, которые приводят к несчастным случаям.

Выявление и ликвидация неправильных приемов работы при спуско-подъемных операциях - важная задача службы техники «безопасности, общественных инспекторов по охране труда и всех работающих.

Свинчивание и развинчивание бурильных труб

Свинчивание и развинчивание бурильных труб выполняют вручную с помощью труборазворота РТ-1200. Наиболее часто помощники бурильщика травмируются при развенчивании туго затянутых труб вручную шарнирными ключами или подкладными вилками, нарушая при этом правила удлинения рукояток ключей патрубками. Причины травм: проскальзывание ключа на трубе, соскальзывание патрубка с рукоятки ключа или вилки, неожиданный разворот труб, обрыв звеньев ключа, облитый промывочной жидкостью и поэтому скользкий пол у устья скважины.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.