Газонефтяные месторождения и их роль в развитии нефтедобычи

Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 14.07.2011
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В результате заводнения создается искусственный контур питания залежи водой, приближенный к зоне разработки пласта, что создает благоприятные условия для повышения отбора нефти из него и, следовательно, для интенсификации разработки залежи. В этом случае повышенное давление, создаваемое на линии нагнетательных скважин, активно воздействует только на 2--4 близлежащих ряда эксплуатационных скважин.

Практикой установлено, что для поддержания пластового давления на одном уровне при законтурном или внутриконтурном заводнении в пласт следует закачивать 1,6--2,0 м3 воды на каждую тонну извлекаемой нефти. При извлечении вместе с нефтью пластовой воды учитывается и ее объем. Если требуется повысить пластовое давление, объем нагнетаемой воды увеличивают.

Число нагнетательных скважин при заводнении пластов определяется давлением заданного объема закачиваемой воды на среднюю поглотительную способность одной скважины при оптимальном давлении нагнетания. Давление нагнетания определяется типом имеющегося насосного оборудования. Давление на забое нагнетательной скважины составляет:

где Рзаб -- давление на забое скважины; рнаг -- давление на вы-киде насоса; pCf -- давление на забой столба воды в скважине, ртр - потери давления на трение в трубах от насоса до забоя скважины (ртр определяются по известным формулам гидравлики).

Применение законтурного или внутриконтурного заводнения с целью восполнения пластовой энергии, расходуемой при отборах нефти из пласта, позволило в значительной степени интенсифицировать процессы разработки нефтяных залежей: стало возможным резко увеличить темпы отбора нефти из пластов и тем самым сократить сроки их разработки при обеспечении высоких конечных коэффициентов их нефтеотдачи. При этом нефтяные залежи стали разрабатывать по разреженным сеткам скважин, т. е. со значительно меньшим числом скважин на единицу площади, чем при системах разработки без применения законтурного заводнения. Если на старых бакинских, грозненских и других месторождениях ранее на одну скважину приходилось от 1 до 4 га, редко до 8 га нефтеносной площади, то сейчас на большинстве новых месторождений степень уплотнения составляет от 12 до 60 га и выше на одну скважину.

На месторождениях, разрабатываемых при помощи законтурного заводнения, высокий уровень текущей добычи нефти сохраняется длительное время и только на последних этапах разработки снижается до минимума.

При заводнении нефтяных пластов в качестве рабочего агента могут быть использованы воды как поверхностных водоемов (реки, моря, озера), так и глубинных водоносных горизонтов, а также пластовые воды, извлекаемые из недр вместе с нефтью. Так, на всех морских месторождениях и месторождениях, расположенных вблизи моря, для закачки в пласт используется морская вода. Для месторождений, расположенных в районах с хорошо развитой системой рек, для заводнения пластов обычно применяется речная вода, забираемая непосредственно из рек или из артезианских скважин, размещаемых в пойме этих рек.

Наряду с указанными источниками водоснабжения во всех случаях следует использовать пластовые воды, извлекаемые на поверхность из разрабатываемых залежей нефти. Такое использование пластовых вод позволяет решить другую важную задачу -- предотвращает загрязнение территории промыслов и водоемов сильно минерализованными водами. Однако количество добываемой вместе с нефтью воды обычно бывает недостаточным для полной компенсации отбора всей жидкости из залежи, особенно в первые периоды ее разработки, когда обводненность нефти еще небольшая. Пластовые воды в большинстве случаев является лишь дополнительным источником водоснабжения для заводнения нефтяных пластов.

Вода, предназначенная для закачки в пласт, должна быть по возможности чистой, не содержать больших количеств механических примесей и соединений железа, сероводорода, углекислоты, нефти, а также органических примесей (бактерий и водорослей).

Для очистки воды в системах заводнения пластов сооружают водоочистные установки.

Для повышения текущей добычи нефти из таких «истощенных» залежей и увеличения суммарной нефтеотдачи применяют вторичные методы добычи нефти -- те же методы нагнетания в пласт воды воздуха или газа, но в меньших объемах и при меньших давлениях, чем при процессах поддержания пластовых давлений. Нагнетание в пласт воды или газа при этом осуществляется чаще всего по всей площади нефтяной залежи (площадное заводнение, площадная закачка газа или воздуха в пласт).

Способы эксплуатации скважин

Все известные способы эксплуатации скважин подразделяются на следующие группы:

1) фонтанный, когда нефть извлекается из скважин самоиз-ливом;

2) с помощью энергии сжатого газа, вводимого в скважину извне;

3) насосный - извлечение нефти с помощью насосов различных типов.

Выбор способа эксплуатации нефтяных скважин зависит от величины пластового давления и глубины залегания пласта.

Фонтанный способ применяется если пластовое давление велико. В этом случае нефть фонтанирует, поднимаясь на поверхность по насосно-компрессорным трубам за счет пластовой энергии. Условием фонтанирования является превышение пластового давления над гидростатическим давлением столба жидкости, заполняющей скважину.

Нефть поступает в нее из пласта через отверстия в колонне эксплуатационных труб. Внутри эксплуатационной колонны находятся насосно-компрессорные трубы. Нефть поступает в них через башмак. Верхний конец насосно-компрессорных труб через фланец соединяется с фонтанной арматурой. Фонтанная арматура представляет собой систему труб с задвижками.

Фонтанный способ эксплуатации нефтяных скважин применяется на начальном этапе разработки месторождений.

Все газовые скважины эксплуатируются фонтанным способом. Газ поступает на поверхность за счет пластового давления.

Способ эксплуатации скважин, при котором подъем нефти или смеси нефти с газом от забоя на поверхность осуществляется за счет природной энергии, называется фонтанным.

Если давление столба жидкости, заполняющей скважину, меньше пластового давления и призабойная зона не загрязнена (ствол скважины сообщается с пластом), то жидкость будет переливаться через устье скважины, т. е. скважина будет фонтанировать. Фонтанирование может происходить под влиянием гидростатического напора или энергии расширяющегося газа, или того и другого вместе.

Фонтанирование только за счет гидростатического давления пласта -- явление довольно редкое в практике эксплуатации нефтяных скважин. Это происходит тогда, когда в пластовой нефти содержится небольшое количество газа. При этом пластовое давление выше давления столба нефти, заполняющей скважину.

Компрессорным называется способ эксплуатации нефтяных скважин, при котором подъем жидкости из пласта на поверхность осуществляется сжатым газом, нагнетаемым в колонну подъемных труб.

Для закачки газа в скважину сооружают специальные газлиф-тные компрессорные станции.

Достоинствами компрессорного способа эксплуатации нефтяных скважин являются:

1) отсутствие подвижных и быстроизнашивающихся деталей (что позволяет эксплуатировать скважины с высоким содержанием песка);

2) доступность оборудования для обслуживания и ремонта (поскольку все оно размещается на поверхности земли);

3) простота регулирования дебита скважин. Однако у способа имеются и недостатки:

1) высокие капитальные вложения на строительство мощных компрессорных станций и разветвленной сети газопроводов;

2) низкий к.п.д. газлифтного подъемника и системы «компрессор-скважина».

Для уменьшения капиталовложений там, где возможно, в нефтяную скважину подают под давлением без дополнительной компрессии газ из газовых пластов. Такой способ называют бескомпрессорным лифтом.

Эксплуатация нефтяных скважин штанговыми насосами -- один из основных способов механизированной добычи нефти. . Штанговый насос представляет собой плунжерный насос специальной конструкции, привод которого осуществляется с поверхности через колонну штанг.

Насосная установка состоит из насоса , находящегося в скважине, и станка-качалки, установленного на поверхности у устья. Цилиндр насоса укреплен на конце спущенных в скважину насосно-компрессорных (подъемных) труб , а плунжер подвешен на колонне штанг. Верхняя штанга (сальниковый шток) соединена с головкой балансира станка-качалки канатной или цепной подвеской. В верхней части цилиндра установлен нагнетательный клапан, а в нижней -- всасывающий клапан.

Принцип действия насоса следующий. При движении плунжера вверх всасывающий клапан под давлением жидкости открывается, в результате чего жидкость поступает в цилиндр насоса. Нагнетательный клапан в это время закрыт, так как на него действует давление столба жидкости, заполнившей насосные трубы.

При движении плунжера вниз всасывающий клапан под давлением жидкости, находящейся под плунжером, закрывается, а нагнетательный клапан открывается и жидкость из цилиндра переходит в пространство над плунжером.

Станок-качалка состоит из следующих основных узлов: рамы со стойкой, балансира с головкой и в некоторых станках с противовесами, редуктора с двумя кривошипами, на которых закрепляются противовесы и траверсы с двумя шатунами.

Методы увеличения производительности скважин

Производительность нефтяных и газовых скважин и поглотительная способность нагнетательных зависят главным образом от проницаемости пород, складывающих продуктивный пласт. Чем выше проницаемость пород в зоне действия той или иной скважины, тем больше производительность или приемистость ее, и наоборот.

Проницаемость пород одного и того же пласта может резко изменяться в различных его зонах или участках. Иногда при общей хорошей проницаемости пород пласта отдельные скважины вскрывают зоны с пониженной проницаемостью, в результате чего ухудшается приток нефти и газа к ним.

Естественная проницаемость пород под влиянием тех или иных причин также может с течением времени ухудшаться. Так, при заканчивании скважин бурением призабойные зоны их часто загрязняются отфильтровавшимся глинистым раствором, что приводит к закупорке пор пласта и снижению естественной проницаемости пород. При эксплуатации нефтяных и газовых скважин проницаемость пород в призабойной зоне может резко ухудшиться из-за закупорки пор парафинистыми и смолистыми отложениями, а также глинистыми частицами.

Призабойная зона нагнетательных скважин загрязняется различными механическими примесями, имеющимися в закачиваемой воде (ил, глина, окислы железа и т. п.). Проницаемость пород призабойной зоны скважин улучшают путем искусственного увеличения числа и размеров дренажных каналов, увеличения трещиноватости пород, а также путем удаления парафина, смол и грязи, осевших на стенках поровых каналов.

Методы увеличения проницаемости пород призабойных зон скважин можно условно разделить на химические, механические, тепловые и физические. Часто для получения лучших результатов эти методы применяют в счетании друг с другом или последовательно.

Механические методы обработки применяют обычно в пластах, сложенных плотными породами, с целью увеличения их трещиноватости.

Тепловые методы воздействия применяют для удаления со стенок поровых каналов парафина и смол, а также для интенсификации химических методов обработки призабойных зон.

Физические методы предназначены для удаления из призабойной зоны скважины остаточной воды и твердых мелкодисперсных частиц, что в конечном итоге увеличивает проницаемость пород для нефти.

Кислотные обработки скважин основаны на способности кислот растворять некоторые виды горных пород, что приводит к очистке и расширению их поровых каналов, увеличению проницаемости и, как следствие, -- к повышению производительности скважин.

При обработке пласта соляной кислотой последняя реагирует с породой как на стенках скважины, так и в поровых каналах, причем диаметр скважины практически не увеличивается. Больший эффект дает расширение поровых каналов и очистка их от илистых и карбонатных материалов, растворимых в кислоте. Опыты показывают также, что под действием кислоты иногда образуются узкие кавернообразные каналы, в результате чего заметно увеличиваются область дренирования скважин и их дебиты. Поэтому _ солянокислотные обработки в основном предназначены для ввода кислоты в пласт по возможности на значительные от скважины расстояния с целью расширения каналов и улучшения их сообщаемости, а также для очистки порового пространства от илистых образований.

В соляной кислоте иногда содержится значительное количество окислов железа, которые при обработке скважин могут выпадать из раствора в виде хлопьев и закупоривать поры пласта. Для удержания окислов железа в кислоте в растворенном состоянии применяют стабилизаторы. В качестве стабилизатора служит уксусная кислота.

Продукты взаимодействия кислоты с породой при освоении скважины должны быть удалены из пласта. Для облегчения этого процесса в кислоту при ее подготовке добавляют вещества, которые называются интенсификаторами. Это поверхностно-активные вещества, снижающие поверхностное натяжение продуктов реакции. Адсорбируясь на стенках поровых каналов, внтенсификаторы облегчают отделение от породы воды и улучшают условия смачивания пород нефтью, что облегчает удаление продуктов реакции из пласта.

В скважинах, в которых снижается производительность из-за отложений в призабойной зоне парафиновых или асфальто-смо-листых веществ, кислотная обработка будет более эффективной, если забой предварительно подогреть, чтобы расплавить эти вещества..

Термокислотная обработка -- процесс комбинированный: в первой фазе его осуществляется тепловая (термохимическая) обработка забоя скважины раствором горячей соляной кислоты, при котором нагревание этого раствора производится за счет теплового эффекта экзотермической реакции между кислотой и каким-либо веществом; во второй фазе термокислотной обработки, следующей без перерыва за первой, производится обычная кислотная обработка.

Сущность гидравлического разрыва пласта состоит в образовании и расширении в пласте трещин при создании высоких давлений на забое скважин жидкостью, закачиваемой в скважину. В образовавшиеся трещины нагнетают отсортированный крупнозернистый песок для того, чтобы не дать трещине сомкнуться после снятия давления.

Образованные в пласте трещины или открывающиеся и расширившиеся, соединяясь с другими, становятся проводниками нефти и газа, связывающими скважину с удаленными от забоя продуктивными зонами пласта. Протяженность трещин в глубь пласта может достигать нескольких десятков метров.

Образовавшиеся в породе трещины шириной 1--2 мм, заполненные крупнозернистым песком, обладают значительной проницаемостью.

Дебиты скважин после гидроразрыва пласта (ГРП) часто увеличиваются в несколько раз. Операция ГРП состоит из следующих последовательно проводимых этапов: 1) закачка в пласт жидкости разрыва для образования трещин; 2) закачка жидкости-песконосителя; 3) закачка жидкости для продав-ливания песка в трещины.

Обычно при ГРП в качестве жидкости разрыва и жидкости-песконосителя применяют одну и ту же жидкость. Поэтому для упрощения терминологии обычно эти жидкости называются жидкостями разрыва.

Жидкости разрыва в основном применяют двух видов: 1) углеводородные жидкости и 2) водные растворы. Иногда используют водонефтяные и нефтекислотные эмульсии.

Углеводородные жидкости применяют в нефтяных скважинах. К ним относятся сырая нефть повышенной вязкости; мазут или его смесь с нефтями; дизельное топливо или сырая нефть, загущенные нефтяными мылами.

Водные растворы применяют в нагнетательных скважинах. К ним относятся вода; водный раствор сульфит-спиртовой барды; растворы соляной кислоты; вода, загущенная различными реагентами; загущенные растворы соляной кислоты.

При выборе жидкости разрыва в основном учитывают такие параметры, как вязкость, фильтруемость и способность удерживать зерна песка во взвешенном состоянии.

Так как при незначительной вязкости для достижения давления разрыва требуется закачка в пласт большого объема жидкости, необходимо использовать несколько одновременно работающих насосных агрегатовПесок для заполнения трещин при ГРП должен удовлетворять следующим требованиям: 1) иметь высокую механическую прочность, чтобы образовывать надежные песчаные подушки в трещинах, и не разрушаться под действием веса пород; 2) сохранять высокую проницаемость. Таким является крупнозернистый, хорошо окатанный и однородный по гранулометрическому составу кварцевый песок с размером зерен от 0,5 до 1,0 мм.

Технология гидроразрыва пласта состоит в следующем. Вначале забой скважины очищают от песка и глины и отмывают стенки от загрязняющих отложений. Иногда перед ГРП целесообразно проводить соляно-кислот-ную обработку или дополнительную перфорацию. В таких случаях снижается давление разрыва и повышается его эффективность.

Метод гидропескоструйной перфорации основан на использовании кинетической энергии и абразивных свойств струи жидкости с песком, истекающей с большой скоростью из насадок перфоратора и направленной на стенку скважины. За короткое время струя жидкости с песком образует отверстие или прорезь в обсадной колонне и канал или щель в цементном камне и породе пласта . При гидропескоструйной перфорации применяют то же наземное оборудование, что и для гидравлического разрыва пласта: насосные агрегаты, пескосмесительные машины и др.

Промысловый сбор и подготовка нефти и газа

Поступающая из нефтяных и газовых скважин продукция не представляет собой соответственно чистые нефть и газ. Из скважин вместе с нефтью поступают пластовая вода, попутный (нефтяной) газ, твердые частицы механических примесей (горных пород, затвердевшего цемента).

Технически и экономически целесообразно нефть перед подачей в магистральный нефтепровод подвергать специальной подготовке с целью ее обессоливания, обезвоживания, дегазации, удаления твердых частиц.

На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти. Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться

комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН - установка по комплексной подготовке нефти.

Обезвоженная, обессоленная и дегазированная нефть после завершения окончательного контроля поступает в резервуары товарной нефти и затем на головную насосную станцию магистрального нефтепровода.

Однако гравитационный процесс отстоя холодной нефти - малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда за счет предварительного нагрева нефти до температуры 50 -70°С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является его малая эффективность.

Более эффективны методы химические, термохимические, а также электрообезвоживание и обессоливание. При химических методах в обводненную нефть вводят специальные вещества, называемые деэмульгаторами. В качестве деэмульгаторов используют ПАВ. Их вводят в состав нефти в небольших количествах от 5-10 до 50-60 г на 1 т нефти. Наилучшие результаты показывают так называемые неионогенные ПАВ, которые в нефти не распадаются на анионы и катионы. Это такие вещества, как дисолваны, сепаролы, дипроксилины и др. Деэмульгаторы адсорбируются на поверхности раздела фаз “нефть-вода” и вытесняют или заменяют менее поверхностно-активные природные эмульгаторы, содержащиеся в жидкости. Причем пленка, образующаяся на поверхности капель воды, непрочная, что отмечает слияние мелких капель в крупные, т.е. процесс коалесценции. Крупные капли влаги легко оседают на днорезервуара. Эффективность и скорость химического обезвоживания значительно повышается за счет нагрева нефти, т.е. при термохимических методах, за счет снижения вязкости нефти при нагреве и облегчения процесса коалесценции капель воды.

Вода, отделенная от нефти на УКПН, поступает на УПВ, расположенную также на ЦПС. Особенно большое количество воды отделяют от нефти на завершающей стадии эксплуатации нефтяных месторождений, когда содержание воды в нефти может достигать до 80%, т.е. с каждым кубометром нефти извлекается 4 м3 воды. Пластовая вода, отделенная от нефти, содержит механические примеси, капли нефти, гидраты закиси и окиси железа и большое количество солей. Механические примеси забивают поры в продуктивных пластах и препятствуют проникновению воды в капиллярные каналы пластов, а следовательно, приводят к нарушению контакта “вода-нефть” в пласте и снижению эффективности поддержания пластового давления. Этому же способствуют и гидраты окиси железа, выпадающие в осадок. Соли, содержащиеся в воде, способствуют коррозии трубопроводов и оборудования. Поэтому сточные воды, отделенные от нефти на УКПН, необходимо очистить от механических примесей, капель нефти, гидратов окиси железа и солей, и только после этого закачивать в продуктивные пласты. Допустимые содержания в закачиваемой воде механических примесей, нефти, соединений железа устанавливают конкретно для каждого нефтяного месторождения

В герметизированной системе в основном используют три метода: отстой, фильтрования и флотацию. Метод отстоя основан на гравитационном разделении твердых частиц механических примесей, капель нефти и воды. Процесс отстоя проводят в горизонтальных аппаратах - отстойниках или вертикальных резервуарах-отстойниках. Гранулы полиэтилена «захватывают» капельки нефти и частицы механических примесей и свободно пропускают воду. Метод флотации основан на одноименном явлении, когда пузырьки воздуха или газа, проходя через слой загрязненной воды снизу вверх, осаждаются на поверхности твердых частиц, капель нефти и способствуют их всплытию на поверхность.

Вместе с очищенной пластовой водой в продуктивные пласты для поддержания пластового давления закачивают пресную воду, полученную из двух источников: подземных (артезианских скважин) и открытых водоемов (рек). Грунтовые воды, добываемые из артезианских скважин, отличаются высокой степенью чистоты и во многих случаях не требуют глубокой очистки перед закачкой в пласты. В то же время вода открытых водоемов значительно загрязнена глинистыми частицами, соединениями железа, микроорганизмами и требует дополнительной очистки. В настоящее время применяют два вида забора воды из открытых водоемов: подрусловый и открытый. При подрусловом методе воду забирают ниже дна реки - “под руслом”. Для Вода из реки профильтровывается через песок и накапливается в скважине. Приток воды из скважины форсируется вакуум-насосом или водоподъемным насосом и подается на кустовую насосную станцию (КНС).

Окончательная очистка воды происходит в фильтрах, где в качестве фильтрирующих материалов используют чистый песок или мелкий уголь.

Транпорт и хранение нефти, нефтепродуктов и газа

К основным видам транспорта нефти и нефтепродуктов на дальние расстояния относятся железнодорожный, водный, трубопроводный и автомобильный. В ряде случаев нефтепродукты доставляются потребителям самолетами и вертолетами.

При водном транспорте. (морском и речном) сырая нефть и многие нефтепродукты (бензин, керосин, дизельное топливо, мазут и др.) перевозятся в наливных судах самоходного (танкеры) и несамоходного (Лихтеры, баржи) типов.

При автомобильных перевозках нефтепродукты с крупных нефтебаз доставляются на мелкие нефтебазы и далее к потребителям. В этом случае нефтепродукты перевозятся в автоцистернах, а также в мелкой таре.

Трубопроводный транспорт нефти и нефтепродуктов обеспечивает транспорт больших количеств нефти и нефтепродуктов на любые расстояния.

Нефть и нефтепродукты перевозят по железным дорогам, как правило, в вагонах-цистернах. Только небольшая часть этой продукции (около 2%) транспортируется в мелкой таре (бочках, контейнерах, бидонах и баллонах).

Нефть и нефтепродукты водным транспортом перевозят в нефтеналивных судах -- морских и речных танкерах и баржах (самоходных и несамоходных). Морское самоходное нефтеналивное судно называется танкером (грузоподъемность его достигает 50 тыс. т и более), несамоходное -- морской баржей или лихтером.

Автомобильный транспорт широко используется при перевозках нефтепродуктов с распределительных нефтебаз непосредственно потребителю. Этот вид транспорта наиболее эффективно используется в районах, в которые невозможно доставить нефтепродукты железнодорожным или водным путями сообщения.

Автоцистерны, в которых перевозят нефтепродукты, оснащены комплектом следующего оборудования: патрубка для налива нефтепродукта, дыхательного клапана, стержневым указателем уровня, клиновой быстродействующей задвижкой для слива топлива, двух шлангов с наконечниками и насосы с механическим приводом. Бидоны применяют двух типов: металлические и металло-фанерные. Наиболее экономичный вид транспорта нефти и нефтепродуктов -- трубопроводный.

Преимущества этого вида транспорта:

1) низкая себестоимость транспорта продукции на значительные расстояния;

2) непрерывность подачи продукции;

3) широкая возможность для автоматизации;

4) уменьшение потерь нефти и нефтепродуктов при их транспортировании;

5) возможность прокладки трубопроводов по кратчайшему расстоянию, если это экономически целесообразно.

Трубопроводы, перекачивающие продукцию на значительные расстояния, называются магистральными.

Магистральные трубопроводы в зависимости от перекачиваемой жидкости соответственно называются: нефтепроводами -- при перекачке нефти; нефтепродуктопроводами -- при перекачке жидких нефтепродуктов, например, бензина, керосина, дизельного топлива, мазута. При использовании нефтепродук-топровода для транспортирования нефтепродукта одного сорта употребляется термин бензинопровод, керосинопровод, мазуто-провод и т. д. (соответственно наименованию перекачиваемого продукта).

Магистральный трубопровод состоит из следующих звеньев: 1) трубопровода; 2) одной или нескольких насосных станций; 3) средств связи.

При транспорте нефти и нефтепродуктов на большие расстояния приходится преодолевать значительные гидравлические сопротивления в трубопроводе. Поэтому, если одна перекачивающая насосная станция не может обеспечить нормальный режим перекачки при заданном давлении, то строят несколько· станций по длине трубопровода

Трубопроводный транспорт, наряду с экономичностью, обеспечивает круглогодичную работу и почти не зависит от природных условий, чем выгодно отличается от других видов транспорта. В связи с этим с каждым годом увеличивается протяженность магистральных трубопроводов.

По назначению эти сосуды подразделяются на резервуары для хранения нефти, светлых и темных нефтепродуктов.

По материалу -- на металлические и неметаллические. Металлические резервуары сооружают преимущественно из стали.. К неметаллическим резервуарам относятся в основном железобетонные резервуары.

Резервуары каждой группы различают по форме: вертикальные цилиндрические, горизонтальные цилиндрические, каплевидные и других форм.

Для хранения светлых нефтепродуктов применяют преимущественно стальные резервуары, а также железобетонные с внутренним покрытием -- листовой стальной облицовкой или неметаллическими изоляциями, стойкими к воздействию нефтепродуктов.

Для хранения больших количеств нефти и темных нефтепродуктов рекомендуется применять в основном железобетонные резервуары. Смазочные масла, как правило, хранят в стальных резервуарах.

Для хранения газа используются:

1) цилиндрические (вертикальные и горизонтальные) или сферические газгольдеры постоянного объема и переменного давления;

2) газгольдеры переменного объема и постоянного давления;

3) естественные подземные хранилища.

Газгольдеры постоянного объема характеризуются неполным использованием их геометрической емкости. Например, если газгольдер рассчитан на максимальное давление 0,8 МПа, а давление в городском коллекторе составляет 0,2 МПа, то полезная емкость газгольдера составит шесть геометрических объемов вместо восьми, т. е. коэффициент использования составит 75%.

Хранение нефти и нефтепродуктов - содержание резервных запасов нефти и нефтепродуктов в условиях, обеспечивающих их количественную и качественную сохранность в течение установленного времени. Предусматривается при необходимости компенсации неравномерности потребления, оперативного и нар.-хоз. резервирования. Иногда X. н. и н. совмещается c др. технол. операциями (обезвоживание, обессоливание нефти, смешение, подогрев и т.д.). Oсуществляется в ёмкостях на нефтепромыслах, перекачивающих станциях и наливных станциях магистральных нефте- и продуктопроводов, сырьевых и товарных парках нефтеперерабат. з-дов; в ёмкостях и мелкой таре на нефтебазах и автозаправочных станциях.

Заключение

Современное состояние нефтяной промышленности предопределяет наступление нового этапа в развитии фундаментальных научных знаний о нефти и газе на основе прогрессивных достижений последнего времени в области науки, техники и технологий. На основе результатов фундаментальных исследований должно происходить обеспечение нефтегазового комплекса новыми технологиями.

Большие надежды правительство Казахстана связывает с Северо-Каспийским проектом, а именно с Кашаганом. С началом промышленной добычи Кашагана Казахстан войдет в 5-ку крупнейших нефтедобытчиков мира. Доказанные запасы нефти Казахстана составили 6,5 млрд. тонн.

Нефтегазовый комплекс, занимая лидирующие позиции в экономике страны, становится приоритетным в рамках решения глобальной задачи по обеспечению ее энергетической независимости. В последние годы становится общепризнанным, что проблемы развития нефтегазовой отрасли так же, как и проблемы повышения глобальной энергетической безопасности - можно решать лишь на основе выдвижения и последовательной реализации ясных и достаточно устойчивых стратегических приоритетов в соответствующих сферах. Сегодня в условиях быстро растущего потребления энергоресурсов в мире особое стратегическое значение любого нефтегазового регион заключается в объемах запасов его энергоресурсов и местоположении. Все прикаспийские государства занимают особенное положение: регион находится между основными рынками сбыта нефти и нефтепродуктов и странами, являющимися ведущими поставщиками углеводородного сырья.

Таким образом, Казахстан является надежным и ответственным участником системы обеспечения международной энергетической безопасности, его роль в мировой нефтегазовой отрасли неуклонно растет.

Список использованной литературы

1. Муравьев В.М., Середа Н.Г. Основы нефтяного и газового дела. - М.: Недра, 1967.

2. Гиматудинов Ш.К. и др. Разработка и эксплуатация нефтяных, газовых и газоконденсатных месторождений. - М.: Недра, 1988.

3. Бойко В.С. Разработка и эксплуатация нефтяных месторождений. - М.: Недра, 1990.

4. Коршак А.А., Шаммазов А.М. Основы нефтегазового дела. -Уфа:ДизайнПолиграфСервис, 2001.

5. Танирбергенов А.Г. Учебно-методический комплекс дисциплины студента.-Алматы: КазНТУ, 2004.

6. Желтов Ю.П. Разработка нефтяных месторождений: Учебник для вузов.-М.: Недра, 1986.

7. Басарыгин Ю. М., Булатов А. И., Проселков Ю. М. Бурение нефтяных и газовых скважин. -- Учеб. пособие для вузов. -- М.: ООО «Недра-Бизнесцентр», 2002.

8. Для подготовки данной работы были использованы материалы с сайтов: http://www.studentu, http://www.dcenter.ru, www.Google.ru.

9. Калинников М.В., Головин Б.А., Головин К.Б. Учебное пособие по исследованиям скважинам. - Саратов, 2005.

10. Акульшин А.И. и др. Эксплуатация нефтяных и газовых скважин. - М.: Недра, 1989.

Размещено на Allbest.ru


Подобные документы

  • Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

    курсовая работа [53,5 K], добавлен 19.06.2011

  • Характеристика текущего состояния разработки Южно-Приобского месторождения. Организационная структура УБР. Техника бурения нефтяных скважин. Конструкция скважин, спуск обсадных колонн и крепление скважин. Промысловый сбор и подготовка нефти и газа.

    отчет по практике [1,5 M], добавлен 07.06.2013

  • Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.

    отчет по практике [2,1 M], добавлен 30.05.2013

  • Основные технико-экономические показатели геолого-разведочных работ. Поиски и разведка нефтяных и газовых месторождений. Нефтегазовый комплекс России. Состав и параметры нефти. Месторождения нефти и газа. Типы залежей по фазовому составу. Понятие ловушки.

    презентация [20,4 M], добавлен 10.06.2016

  • Подготовительные работы к строительству буровой. Особенности режима бурения роторным и турбинным способом. Способы добычи нефти и газа. Методы воздействия на призабойную зону. Поддержание пластового давления. Сбор, хранение нефти и газа на промысле.

    курсовая работа [1,8 M], добавлен 05.06.2013

  • Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

    отчет по практике [4,5 M], добавлен 23.10.2011

  • Геологические основы поисков, разведки и разработки нефтяных и газовых месторождений. Нефть: химический состав, физические свойства, давление насыщения, газосодержание, промысловый газовый фактор. Технологический процесс добычи нефти и природного газа.

    контрольная работа [367,2 K], добавлен 22.01.2012

  • Общая характеристика месторождения, химические и физические свойства нефти. Условия, причины и типы фонтанирования. Особенности эксплуатации скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Технология и оборудование для бурения скважин.

    отчет по практике [2,1 M], добавлен 28.10.2011

  • Коллектор - горная порода с высокой пористостью и проницаемостью, содержащая извлекаемые количества нефти и газа. Классификационные признаки коллекторов. Типы пород и залежей. Фильтрационные и емкостные свойства нефтяных и газовых пластов. Типы цемента.

    курсовая работа [2,0 M], добавлен 27.01.2014

  • Геолого-технический наряд на бурение скважины. Схема промывки скважины при бурении. Физические свойства пластовой жидкости (нефти, газа, воды). Технологический режим работы фонтанных и газлифтных скважин. Системы и методы автоматизации нефтяных скважин.

    отчет по практике [3,1 M], добавлен 05.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.