Разработка и эксплуатация нефтяных и газовых месторождений
Общая характеристика месторождения, химические и физические свойства нефти. Условия, причины и типы фонтанирования. Особенности эксплуатации скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Технология и оборудование для бурения скважин.
Рубрика | Геология, гидрология и геодезия |
Вид | отчет по практике |
Язык | русский |
Дата добавления | 28.10.2011 |
Размер файла | 2,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. ОЗНАКОМЛЕНИЕ С РАЙОНОМ ПРАКТИКИ
1.1 Общие сведения о месторождении
МЕСТОРОЖДЕНИЕ БАХМЕТЬЕВСКОЕ
Тип месторождения: нефтегазовое
Административная принадлежность: Волгоградская область
Нефтегазоносная провинция: Волго-Уральская
Нефтегазоносная область: Нижневолжская
Тектоническая принадлежность: Юго-восточный склон Воронежской антеклизы; Уметовско-Линевская впадина
Начало поискового бурения, год: 1951
Год открытия: 1951
Год начала разработки: 1955
Тип структуры: Брахиантиклиналь
Месторождение расположено в 330 км к северу от г. Волгограда. Разведочные работы проводились в комплексе геолого-геофизических исследований, осуществлявшихся в северных районах Доно-Медведицкого вала и завершившихся открытием в 1919 г. Жирновского месторождения. В декабре 1951 г. при опробовании отложении тульского горизонта получен нефтяной фонтан, ознаменовавший открытие Бахметьевского месторождения. В результате последующих разведочных работ установлена нефтегазоносность двенадцати пластов. Бахметьевское месторождение является одним из крупных в Волгоградской области и разрабатывается с 1955 г. На площади месторождения до передачи его в эксплуатацию было пробурено 16 разведочных скважин.
Бахметьевское поднятие отделяется от находящегося к югу Жирновского небольшим прогибом амплитудой до 40 м. Оно имеет по каменноугольным отложениям резко асимметричное строение и вытянуто с северо-востока на юго-запад. Углы падения на западном крыле достигают 40°. на посточном 1° 40'--2°. Размер поднятия уменьшается с глубиной. По кровле воронежского горизонта складка узкая, вытянутая, со сводом, смещенным на юго-запад по отношению к сводам каменноугольных отложений. На север и восток мощность терригенного девона значительно сокращается.
Нефтегазоносность месторождения приурочена к каменноугольным и верхнедевонским отложениям.
Залежь нефти воронежского горизонта приурочена к доломитизированным трещиноватым известнякам и серым доломитам. Залежь небольшая, разрабатывается с сентября 1965 г. Дебит скважины составлял 10 т/сутки.
Нефть имеет плотность 0,821-- 0,835 г/см3, содержит 1,8--2,7% парафина, 0,31-- 0,93% серы, 5--12% смол акцизных; выход легких фракций (до 300° С) 52--56%.
Залежь нефти и газа евлановско-ливенского горизонта приурочена к переслаиванию известняков, доломитов и доломитизированных известняков. Известняки трещиноватые, с псевдоолитовой структурой. Залежь расположена в самой верхней части горизонта и имеет небольшой размер. Начальный дебит скважин 40 т/сутки. Залежь разрабатывается с 1963 г.
Нефть легкая, плотностью около 0,815 г/см3, малосернистая (0,31%), малосмолистая (около 7% акцизных смол), парафинистая (3,49%); выход легких фракций (до 300° С) 54--66%.
Залежь нефти и газа кизеловского горизонта связана с органогенными детритусовыми известняками, участками перекристаллизованными, содержащими небольшие прослои глин. . Залежь нефти небольшая, плавающая. В верхней части пласта обнаружена небольшая газовая шапка. Залежь разрабатывается с 1960 г. со средним начальным дебитом на скважину 20 т/сутки.
Нефть имеет плотность 0,874-- 0,908 г/см3, содержит 3,3--4,6% парафина. 0,3--0,8% серы, 12--30% смол акцизных: выход легких фракций (до 300° С) 26--41%.
Залежь нефти и газа бобриковского горизонта приурочена к серым и темно-серым песчаникам, средне- и мелкозернистым, кварцевым, слабосцементированным. Залежь пластовая сводовая, разрабатывается с 1956 г. с поддержанием пластового давления. Начальный дебит скважин 27,2 м3/сутки.
Нефть имеет плотность 0,868 г/см3, вязкость 18,51 сст, содержит 0,30% серы, 17% акцизных смол и 0,71% парафина. Выход легких фракций (до 300° С) достигает 45%.
В тульском горизонте залежи нефти и газа обнаружены в трех пластах: Б-1, А-2 и А-1.
Газонефтяная залежь пласта Б-1 тульского горизонта приурочена к нескольким песчаным прослоям, объединенным в две пачки с общим контуром нефтеносности, но с различным положением газонефтяного контакта. Коллекторами являются слабосцементированные песчаники. Залежь пластовая сводовая; средний дебит скважин 31,7 т/сутки. Залежи разрабатываются с 1955 г. с применением законтурного заводнения.
Нефть тульского горизонта имеет плотность 0,860 г/см3, вязкость 48,31 сст, содержит 0,23% серы, 6,17% смол силикагелевых, 2,48% парафина; выход легких фракций (до 300° С) 45%.
Газонефтяная залежь в пласте А-2 приурочена к рыхлым мелко-и среднезернистым кварцевым песчаникам. Залежь пластовая сводовая. Разрабатывается с 1957 г. Газонефтяная залежь в пласте А-1 приурочена к серым органогенным зернистым известнякам, залегающим на 7--10 м ниже кровли горизонта. Залежь нефти небольшая, с газовой шапкой, в разработку не введена.
Залежь нефти намюрского яруса связана со светло-серыми известняками зернистыми, сахаровидными, трещиноватыми и пористыми. Залежь пластовая сводовая, разрабатывается с 1959 г.; дебиты скважин 20--1000 т/сутки.
Нефть тяжелая, плотность 0,904 г/см3, вязкая (123,2 сст), малосернистая (0,52%), содержит 6,88% силикагелевых смол, 0,27% парафина; выход легких фракций (до 300° С) 29--32%.
Залежь нефти нижнебашкирского подъяруса связана с пористыми и кавернозными известняками. Залежь нефти разрабатывается с 1960 г.
Нефть тяжелая, плотностью 0,905 г/см3, малосернистая, содержит 0,5% серы, 29,0% акцизных смол и 0,70% парафина; выход легких фракции (до 300° С) 30--34%.
Залежи нефти и газа верхнебашкирского подъяруса приурочены к четырем пластам. Коллекторские свойства IV пласта незначительно отличаются от свойств вышележащей пачки I--III пластов. Дебиты нефти 1--7 т/сутки.
Нефть имеет плотность 0,899 г/см3, она вязкая (97,6 сст), малосернистая (до 0,36%), содержит 10,7% силикагелевых смол и 0,49% парафина; выход легких фракций (до 300° С) 25--35%.
2.ФОНТАННАЯ ЭКСЛУАТАЦИЯ СКВАЖИН
2.1 Условия, причины и типы фонтанирования
Причины фонтанирования
Нефтегазопроявления и открытое фонтанирование возможны при несоответствии технологии работы, выбранного оборудования геолого-техническим условиям эксплуатации скважин, при освоении и ремонте фонтанных и периодически фонтанирующих скважин, при пропусках газа и нефти вследствие ослабления соединений, сальников и нарушений в обвязке, при повышении давления в системе выше расчетного. При нефтегазопроявлениях и внезапных выбросах, когда из ремонтируемых скважин выделяются в атмосферу горючие газы, работа двигателя подъемного агрегата усугубляют аварийную ситуацию, создавая опасность пожара, разрушения самого двигателя, окружающих технологических средств и травмирования обслуживающего персонала. Персонал, занятый освоением или ремонтом скважин, при газопроявлении или открытом фонтанировании подвергается опасностям по ряду причин, внезапно оказываясь в экстремальных условиях. Например, он может отравиться газом, упасть, ушибиться и т.п. Большую опасность для ремонтных бригад представляет разлив нефти и распространение ее по площадке куста скважин. При загорании разлившейся нефти пожар может охватить большую часть площади куста и отрезать все пути эвакуации людей. Возможность открытого фонтанирования существует при ремонтах всех фонтанных скважин.
Многие фонтаны можно было предотвратить, если бы буровая бригада, в самом начале проявления, предприняла правильные действия для устранения его перехода в открытое фонтанирование.
В связи с этим в Правилах Безопасности уделяется особое внимание обучению работников нефтегазодобывающей промышленности предупреждению возникновения нефтегазопроявлений и открытых фонтанов.
В марте 1997 года при Южно-Российской противофонтанной военизированной части создан Учебный центр по обучению противофонтанной безопасности работников части, обслуживаемых предприятий и сторонних организаций.
Учебный центр сегодня -- крупнейшее специализированное учреждение, осуществляющее подготовку и переподготовку специалистов по противофонтанной безопасности.
Повышение квалификации проходят как рабочие, так инженерно-технический персонал буровых предприятий и предприятий КПРС.
Учебный материал лекций основан на требованиях «Правил безопасности в нефтяной и газовой промышленности» и других руководящих документах.
Преподаватели Учебного центра имеют значительный производственный, научный и педагогический опыт. Занятия со слушателями курсов проводятся не только на базе Центра, но и на выезде - на предприятиях нефтегазодобывающего комплекса.
Педагогический коллектив Учебного центра и специалисты ЮРПФВЧ постоянно работают над улучшением программы обучения, принимая во внимание причины возникновения ГНВП и открытых фонтанов на месторождениях, обслуживаемых противофонтанными частями.
Учебный центр ФГУ АСФ «Южно-Российская противофонтанная военизированная часть» проводит обучение по повышению квалификации по следующим курсам:
· «Контроль скважины. Управление скважиной при ГНВП».
· «Контроль скважины. Управление скважиной при ГНВП и поступлении сероводорода».
· «Контроль скважины. Управление скважиной при ГНВП. Бурение, подземный и капитальный ремонт нефтяных и газовых скважин на континентальном шельфе».
· «Ликвидация газонефтеводопроявлений и открытых фонтанов».
· «Медицинская подготовка спасателей».
· «Оказание первой медицинской помощи пострадавшим при несчастных случаях».
В нефтяной отрасли Российской Федерации постоянно развивается техника и технологии проводки скважин, разрабатываются новые, более сложные месторождения. Даже при проведении специальной подготовки работников нефтяных предприятий, на нефтяных и газовых скважинах не редки открытые фонтаны. Поэтому для поддержания боевой готовности периодически проводятся учения на тренировочных полигонах. Цель учений состоит в том, чтобы в реальных условиях оперативные группы и вспомогательные подразделения отработали действия на устье скважины.
Южно-Российская противофонтанная военизированная часть имеет и постоянно пополняет склады аварийного запаса нестандартным оборудованием, помогающим ликвидировать фонтан быстро, точно и безопасно. И новое оборудование проходит испытания сначала на таких учениях.
Типы фонтанирования
Различают два вида фонтанирования скважин:
фонтанирование жидкости, не содержащей пузырьков газа, - артезианское фонтанирование;
фонтанирование жидкости, содержащей пузырьки газа, облегчающего фонтанирование, - наиболее распространенный способ фонтанирования.
Артезианский способ встречается при добыче нефти редко. Он возможен при полном отсутствии растворенного газа в нефти и при забойном давлении, превышающем гидростатическое давление столба негазированной жидкости в скважине. При наличии растворенного газа в жидкости, который не выделяется благодаря давлению на устье, превышающему давление насыщения, и при давлении на забое, превышающем сумму двух давлений: гидростатического столба негазированной жидкости и давления на устье скважины.
Поскольку присутствие пузырьков свободного газа в жидкости уменьшает плотность последней и, следовательно, гидростатическое давление такого столба жидкости, то давление на забое скважины, необходимое для фонтанирования газированной жидкости, существенно меньше, чем при артезианском фонтанировании.
Условия фонтанирования
Фонтанирование скважин происходит в том случае, если перепад давления между пластовым и забойным будет достаточным для преодоления противодавления столба жидкости и потерь давления на трение, тоесть фонтанирование происходит под действием гидростатического давления жидкости или энергии расширяющегося газа. Большинство скважин фонтанирует за счет энергии газа и гидростатического напора одновременно.
Газ, находящийся в нефти, обладает подъемной силой, которая проявляется в форме давления на нефть. Чем больше газа расстворено в нефти, тем меньше будет плотность смеси и тем выше поднимается уровень жидкости. Достигнув устья, жидкость переливается, и скважина начинает фонтанировать. Общим обязательным условием для работы любой фонтанирующей скважины будет следующее основное равенство:
Рс = Рг+Ртр+ Ру; где
Рс - давление на забое, РГ, Ртр, Ру - гидростатическое давление столба жидкости в скважине, расчитанное по вертикали, потери давления на трение в НКТ и противодавление на устье, соответственно.
2.2 Штуцера для регулирования дебита скважины, их типы, конструкции
Они являются элементом фонтанной елки и предназначены для регулирования режима работы фонтанной скважины и ее дебита. Штуцеры устанавливаются на обеих выкидных линиях арматуры и подразделяются на нерегулируемые и регулируемые. Более просты и надежны нерегулируемые штуцеры. Они незаменимы в случаях, когда из скважины поступает песок или другой абразивный материал. Существует много конструкций нерегулируемых штуцеров, которые часто выполняются в виде коротких конических втулок из легированной стали или из металлокерамического материала с центральным каналом заданного диаметра. По мере износа штуцера установленный режим работы скважины нарушается и штуцер необходимо менять. Для этого работу скважины переводят временно на запасной отвод, на котором установлен штуцер заданного диаметра, и одновременно меняют изношенный штуцер в основном рабочем отводе. В связи с этим предложено много конструкций так называемых быстросменных штуцеров (рис. 2.1).
Простейший штуцер выполняется в виде диафрагмы с отверстием заданного диаметра, зажимаемой между двумя фланцами выкидной линии. Применяются регулируемые штуцеры, в которых проходное сечение плавно изменяют перемещением конусного штока в седле из твердого материала. Перемещение осуществляется вращением маховика, на штоке которого имеется указатель, показывающий эквивалентный диаметр проходного кольцевого сечения регулируемого штуцера.
Такие штуцеры сложнее, дороже, имеют сальниковые уплотнения и применяются обычно в скважинах, не продуцирующих песок. В любом штуцере происходит поглощение энергии газожидкостной струи и снижение давления от давления на буфере до давления в отводящей линии системы нефтегазосбора. Если разность давлений велика, применяют несколько последовательно соединенных штуцеров, в каждом из которых частично снижается давление.
Рис. 2.1. Фонтанная тройниковая арматура кранового типа для подвески двух рядов НКТ (2АФТ-60 x 40 х КрЛ-125): 1 - тройник; 2 - патрубок для подвески второго ряда НКТ; 3 - патрубок для подвески первого ряда НКТ
Рис. 2.2. Штуцер быстросменный для фонтанной арматуры высокого давления (ЩБА-50-700):
1 - корпус, 2 - тарельчатая пружина, 3 - боковое седло, 4 - обойма, 5 - крышка, 6 - нажимная гайка, 7 - прокладка, 8 - гайка боковая. 9 - штуцерная металлокерамическая втулка.
3. ЭКСПЛУАТАЦИЯ СКВАЖИН ГЛУБИННЫМИ НАСОСАМИ
3.1 Устройство и основные узлы ШСНУ
Штанговые скважинные насосные установки (ШСНУ) предназначены для подъема пластовой жидкости из скважины на дневную поверхность.
Установка состоит из:
· привода
· устьевого оборудования
· насосных штанг
· глубинного насоса
· вспомогательного подземного оборудования
· насосно-компрессорных труб
Привод предназначен для преобразования энергии двигателя в возвратно-поступательное движение колонны насосных штанг.
В большинстве ШСНУ (рис. 3.1) в качестве привода применяют балансирные станки-качалки. Балансирный станок-качалка состоит из рамы 2, установленной на массивном фундаменте 1. На раме смонтированы: стойка 9, на которой с помощью шарнира укреплен балансир 10, имеющий на одном конце головку 12 на другом - шарнир, соединяющий его с шатуном 7. Шатун соединен с кривошипом 5, укрепленном на выходном валу редуктора. Входной вал редуктора посредством клиноременной передачи соединен с электродвигателем 3. Головка балансира соединена с колонной штанг с помощью канатной подвески 13.
Рис. 3.1. Штанговая скважинная насосная установка: 1 -- фундамент; 2 - рама; 3 -- электродвигатель; 4 - цилиндр; 5 - кривошип; 6 -- груз; 7 - шатун; 8 - груз; 9 - стойка; 10 - балансир; 11 - механизм фиксации головки балансира; 12 - головка балансира; 13 - канатная подвеска; 14 - полированная штанга; 15 - оборудование устья скважины; 16 - обсадная колонна; 17 - насосно-компрессорные трубы; 18 - колонна штанг; 19 - глубинный насос; 20 - газовый якорь; 21 - уплотнение полированной штанги; 22 - муфта трубная; 23 - муфта штанговая; 24 - цилиндр глубинного насоса; 25 - плунжер насоса; 26 - нагнетательный клапан; 27 - всасывающий клапан
Устьевое оборудование I предназначено для герметизации полированного штока 14 с помощью сальника 21, направления потока жидкости потребителю, подвешивания насосно-компрессорных труб, замера затрубного давления и проведения исследовательских работ в скважине.
Колонна насосных штанг II соединяет канатную подвеску насоса с плунжером глубинного насоса. Колонна собирается из отдельных штанг 18. Штанги имеют длину по 8...10 м, диаметр 16...25 мм и соединяются друг с другом посредством муфт 23. Первая, верхняя штанга 14 имеет поверхность, обработанную по высокому классу чистоты, и называется полированной, иногда сальниковой штангой.
Колонна насосно-компрессорных труб II служит для подъема пластовой жидкости на поверхность и соединяет устьевую арматуру с цилиндром глубинного насоса. Она составлена из труб 17 длиной по 8...12 м, диаметром 38...100 мм, соединенных трубными муфтами 22. В верхней части колонны установлен устьевой сальник, герметизирующий насосно-компрессорные трубы. Через сальник пропущена полированная штанга. Оборудование устья скважины имеет отвод, по которому откачиваемая жидкостъ направляется в промысловую сеть.
Глубинный штанговый насос III представляет собой насос одинарного действия. Он состоит из цилиндра 24, прикрепленного к колонне насосно-компрессорных труб, плунжера 25 соединенного с колонной штанг. Нагнетательный клапан 26 установлен на плунжере, а всасывающий 27 - в нижней части цилиндра.
Ниже насоса при необходимости устанавливается газовый IV или песочный якорь. В них газ и песок отделяются от пластовой жидкости. Газ направляется в затрубное пространство между насосно-компрессорной 17 и обсадной 16 колоннами, а песок осаждается в корпусе якоря.
При работе ШСНУ энергия от электродвигателя передается через редуктор к кривошипно-шатунному механизму, преобразующему вращательное движение выходного вала редуктора через балансир в возвратно-поступательное движение колонны штанг. Связанный с колонной плунжер также совершает возвратно-поступательное движение. При ходе плунжера вверх нагнетательный клапан закрыт давлением жидкости, находящейся над плунжером, и столб жидкости в колонне насосно-компрессорных труб движется вверх -- происходит откачивание жидкости. В это время впускной (всасывающий) клапан открывается, и жидкость заполняет объем цилиндра насоса под плунжером.
При ходе плунжера вниз всасывающий клапан под действием давления столба откачиваемой жидкости закрывается, нагнетательный клапан открывается и жидкость перетекает в надплунжерное пространство цилиндра.
Откачиваемая жидкость отводится из колонны через боковой отвод устьевого сальника и направляется в промысловую сеть.
Арматура устьевая АУШ-65/50г14 предназначена для герметизации устья скважин, эксплуатируемых штанговыми скважинными насосами.
Она состоит (рис. 3.2) из устьевого патрубка с отборником проб 6, угловых вентилей 5, 8, 9 и перепускного клапана 10.
Рис. 3.2. Устьевая арматура типа АУШ: 1 - отверстие для проведения исследовательских работ; 2 - сальниковое устройство; 3 - трубная подвеска; 4 - устьевой патрубок; 5, 8, 9 -- угловые вентили; 6 - отборник проб; 7 - быстросборная муфта; 10 - перепускной клапан; 11 - уплотнительное кольцо
Устьевой патрубок 4 имеет два отвода с угловыми вентилями 8 и 9. Угловой вентиль 9 и его отвод предназначен для регулирования давления в затрубном пространстве и проведения различных технологических операций, связанных с ремонтом и профилактикой скважины.
Угловые вентили 5 и 8 перекрывают потоки нефти. К угловому вентилю 8 крепится быстросборная муфта 7, позволяющая быстро отсоединить выкидную линию и освободить пространство у скважины для проведения работ при ремонте и исследовании скважины.
Трубная подвеска 3, имеющая два уплотнительных кольца 11, является основным несущим звеном насосно-компрессорных труб с глубинным насосом на нижнем конце и сальниковым устройством 2 наверху. Отличительная особенность сальника - наличие пространственного шарнира между головкой сальника (содержащей уплотнительную набивку) и тройником. Шарнирное соединение, обеспечивая самоустановку головки сальника при несоосности сальникового штока с осью ствола скважины, исключает односторонний износ набивки, увеличивает срок службы сальника, одновременно облегчает смену набивки.
Сальник рассчитан на повышенные давления на устье скважины и обеспечивает надежное уплотнение штока при однотрубных системах сбора нефти и газа.
Корпус трубной головки имеет отверстие 1 для выполнения исследовательских работ.
Продукция скважины поступает через боковое отверстие трубной подвески. Для снижения давления в затрубном пространстве путем перепуска продукции в трубную часть предусмотрен перепускной клапан 10.
Устьевые сальники изготавливаются двух типов: СУС1 - с одинарным уплотнением (для скважин с низким статическим уровнем и без газопроявлений); СУС2 - с двойным уплотнением (для скважин с высоким статическим уровнем и с газопроявлениями).
Самоустанавливающийся сальник СУС1 (рис. 3.3, а) состоит из шаровой головки 9 с помещенными в ней нижней 2 и верхней втулками с вкладышами 3 и 10 из прессованной древесины и уплотнительной набивки 8. На верхнюю часть шаровой головки навинчивается крышка 12 с двумя скобами, которыми подтягивается уплотнительная набивка.
Рис. 3.3. Устьевой самоустанавливающийся сальник: а -- СУС1-73-25; б - СУС2-73-40; 1 - тройник; 2 - втулка нижняя; 3 - вкладыш; 4 - стопор; 5 - кольцо уплотнительное; 6 - манжетодержатель; 7 - крышка шаровая; 8 -- уплотнительная набивка; 9 - головка шаровая; 10 -- вкладыш; 11 - грундбукса; 12 - крышка головки; 13 -- гайка; 14 - болт откидной; 15 - палец; 16 -- шплинт; 17 - гайка накидная; 18 -- ниппель; 19 - наконечник; 20 - сальниковый шток
В верхней части крышки головки над грундбуксой 11 имеется кольцевой резервуарчик, служащий для смазки трущихся поверхностей сальникового штока, набивки и вкладышей. Для надежного уплотнения шаровой головки предусмотрено уплотнительное кольцо 5.
Два стопора 4 в нижней части шаровой головки не позволяют ей проворачиваться вокруг своей оси при затяжке крышки.
Шаровая головка крепится к тройнику 1 двумя откидными болтами 14, укрепленными на тройнике пальцами 15, которые входят в проушины болтов. Тройник снабжен быстроразборным соединением для подсоединения к выкидной линии.
Устьевой сальник СУС2 (рис. 3.3, б) в отличие от сальника СУС1 имеет вторую камеру, включающую шаровую головку с помещенными в ней уплотнительной набивкой и промежуточной втулкой с вкладышами и двумя резиновыми кольцами.
При этом основная уплотнительная набивка помещена в корпусе, который навинчен на резьбу шаровой головки. Устьевой сальник с двойным уплотнением позволяет заменять изношенные верхние уплотнительные элементы на скважине. Изношенные направляющие втулки, необходимо заменять при текущем ремонте скважин, когда устьевой сальник вместе со штоком находится на мостках.
Перед установкой устьевого сальника на устье скважины вкладыши растачивают под соответствующий диаметр сальникового штока. Сальниковый шток желательно вставлять в устьевой сальник в горизонтальном положении на мостках. Можно устанавливать устьевой сальник тогда, когда шток находится в скважине. При этом используют зажим, устанавливаемый на сальниковом штоке.
При установке устьевых сальников на устье все резиновые кольца и уплотнительные набивки необходимо смазывать густой смазкой.
При потере герметичности в шаровой опоре или при ее заклинивании разбирать шаровую крышку и отделять головку от тройника можно только в мастерской. После разборки шаровой крышки и шаровой головки рабочие поверхности шарнира должны быть тщательно очищены. При потере герметичности в шаровой опоре заменяют уплотнительное кольцо.
Запорное устройство оборудования - проходной кран с обратной пробкой. Скважинные приборы опускают по межтрубному пространству через специальный патрубок (рис. 3.2).
3.2 Коэффициент подачи штангового насоса
Экспериментальное моделирование считается по праву эффективным способом анализа процессов протекающих в оборудовании, расположенном в местах недоступных человеку. Штанговый скважинный насос спускают в скважину на большие глубины. Для определения эффективности работы такого насоса мы предлагаем использовать экспериментальное моделирование. Так как эксплуатация скважин штанговыми скважинными насосами широко распространена на большей части нефтедобывающих месторождений мира, то поставленная задача представляется нам актуальной.
В реальных условиях низкие показатели эксплуатации насосной установки во многом объясняются незаполнением цилиндра штангового насоса жидкостью. Наибольшее влияние на степень заполнения жидкостью оказывает наличие газа в продукции. При ходе плунжера вверх в цилиндр насоса поступает газожидкостная смесь, и по мере увеличения объема под плунжером происходит как расширение свободного газа, так и выделение растворенного. Поэтому под влиянием газа происходит уменьшение коэффициента заполнения штангового скважинного насоса за счет того, что газ занимает часть рабочего цилиндра, и при движении плунжера вниз подвергается сжатию, а при движении вверх расширению, что приводит к снижению эффективности работы насоса [1].
Экспериментальные исследования проводили на стенде специальной конструкции (рис. 3.4), изготовленном фирмой ООО ЃбФЕСТО-РФЃв, куда входит насос, состоящий из плунжера 1, всасывающего V03 и нагнетательного клапанов V04. Насос соединен с модулем, имитирующим растяжения штанг, оборудованным ультразвуковым датчиком Z1. Модуль соединен с приводом, представляющим собой регулируемый пневматический привод A1. Для поддержания необходимого уровня жидкости, емкость Н1 разделена на две части и оборудована циркуляционным насосом P1, подача которого превышает максимальную подачу штангового скважинного насоса. Компрессор C1 используется для поддержания давления для работы пневматического силового привода. Стенд оборудован дросселем V01 для регулирования подачи сжатого воздуха под нагнетательный клапан. Линия подачи сжатого воздуха имеет в своем составе обратный клапан V03.
Рисунок 3.4. Упрощенная принципиальная схема стенда [2]
1 - плунжер; V03 - всасывающий клапан; V04 - нагнетательный клапан; Z1 - ультразвуковой датчик; A1 - регулируемый пневматический привод; Н1 - емкость; P1 - циркуляционный насос; C1 - компрессор; V01 - дроссель; V03 -обратный клапан
Стенд обеспечил возможность: измерения коэффициентов подачи, наполнения, упругих растяжений штанг; измерения этих же показателей для каждого двойного хода; определения изменения показателей во время двойного хода; записи результатов замеров; изменения числа двойных ходов и длины хода; применения клапанов различных типоразмеров; работы с небольшим объемом жидкости; быстрой подготовки к новому циклу измерений.
Конструкция стенда позволяет получать необходимую для исследования точность измерения коэффициентов наполнения, упругих растяжений и подачи. Программируемый силовой пневматический привод дает возможность изменять число двойных ходов в минуту и длину хода. Исследованиям на стенде предшествует определение диапазона скоростей откачки путем выбора диаметра насоса, диаметра отверстия клапана, длины хода, числа двойных ходов. В реальном насосе скорость движения жидкости в отверстии клапана варьирует в интервале от 0,8 до 4,0 м/с (рекомендуется не более 2,5 м/с). Эксперименты проводили при условиях, позволяющих получать скорости течения жидкости через отверстия клапана в указанном диапазоне значений скорости. Для анализа степени влияния растворенного газа в нефти на коэффициент подачи штангового скважинного насоса, были проведены серии экспериментов: с помощью дросселя регулировалась подача воздуха с расходом 0.17 л/мин до 0.97 л/мин (рис. 3.5, рис. 3.6, рис. 3.7).
Для определения погрешности эксперимента на нескольких режимах проводили по нескольку десятков замеров, рассчитывали средние значения и дисперсию полученных данных.
Под влиянием свободного газа может произойти срыв подачи насоса, который заключается в том, что насос перестает засасывать из скважины газожидкостную смесь или пену, так как рабочая часть цилиндра целиком заполняется газом. При ходе плунжера вниз газ сжимается, а при ходе вверх - расширяется. Давление газа в цилиндре при ходе вверх не становится ниже давления всасывания и поэтому приемный клапан не может открыться. Срыв подачи может происходить только от действия газа, оставшегося во вредном пространстве. Если вредное пространство полностью освобождается от газа к началу хода вниз, то срыва не может быть. Это обстоятельство очень важно для практики, так как оно означает, что при отсутствии влияния вредного пространства работа насоса устойчива при любом даже самом низком коэффициенте наполнения [3]. Это достигается либо применением насоса с нагнетательным клапаном в нижней части плунжера (НСН- 2, НСВД), либо увеличением длины хода плунжера (длинноходовой насос, правильная посадка плунжера над всасывающим клапаном), либо одновременным увеличением длины хода плунжера при одновременном уменьшении диаметра насоса. Однако тип насоса всегда должен быть правильно подобран к условиям скважины.
Рисунок 3.5 - Коэффициент подачи насоса от расхода воздуха (длина хода 300 мм)
Рисунок 3.6. Коэффициент подачи насоса от расхода воздуха (длина хода 450 мм)
Рисунок 3.7. Коэффициент подачи насоса от расхода воздуха (длина хода 600 мм)
4. МЕТОДЫ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ
4.1 Требования, предъявляемые к нагнетаемой воде в системе поддержания пластового давления
Поддержание пластового давления закачкой воды, кроме повышения нефтеотдачи обеспечивает интенсификацию процесса разработки. Это обусловливается приближением зоны повышенного давления, создаваемого за счет закачки воды в водонагнетательные скважины, к добывающим скважинам.
Для принятия решения о проведении поддержания пластового давления закачкой воды на конкретной залежи нефти последовательно прорабатывают следующие вопросы:
· определяют местоположение водонагнеательных скважин;
· определяют суммарный объем нагнетаемой воды;
· рассчитывают число водонагнеательных скважин;
· устанавливают основные требования к нагнетаемой воде.
Местоположение водонагнетательных скважин определяется в основном особенностями геологического строения залежи нефти. Задача сводится к тому, чтобы подобрать такое расположение водонагнетательных скважин, при котором обеспечивается наиболее эффективная связь между зонами нагнетания воды и зонами отбора с равномерным вытеснением нефти водой.
В зависимости от местоположения водонагнетательных скважин в настоящее время в практике разработки нефтяных месторождений нашли применение следующие системы заводнения.
Законтурное заводнение применяют для разработки залежей с небольшими запасами нефти. Скважины располагают в законтурной водоносной части пласта Применение законтурной системы разработки возможно тогда, когда водонефтяной контакт при достижимых перепадах давления может перемещаться. Практикой разработки нефтяных месторождений выявлены случаи, когда непосредственно у поверхности залежь нефти “запечатана” продуктами окисления нефти (асфальтены, смолы, парафин и другие) или продуктами жизнедеятельности бактерий. Кроме того, проектирование и реализация этой системы требует детального изучения законтурной части пласта. Иногда характеристики законтурной части пласта, по пористости, проницаемости, песчанистости существенно отличаются от характеристик центральной части пласта.
Приконтурное заводнение применяют тогда, когда затруднена гидродинамическая связь нефтяной зоны пласта с законтурной областью. Ряд нагнетательных скважин в этом случае размещается в водонефтяной зоне или у внутреннего контура нефтеносности.
Внутриконтурное заводнение применяют в основном при разработке нефтяных залежей с очень большими площадными размерами. Внутриконтурное заводнение не отрицает законтурное заводнение, а в необходимых случаях внутриконтурное заводнение сочетается с законтурным. Для крупных залежей нефти законтурное заводнение недостаточно эффективно, так как при нем наиболее эффективно работает 3--4 ряда нефтедобывающих скважин, располагаемых ближе к водонагнетательным.
Расчленение нефтеносной площади на несколько площадей путем внутриконтурного заводнения позволяет ввести всю нефтеносную площадь в эффективную разработку одновременно. Для полноценного разрезания нефтеносной площади нагнетательные скважины располагают рядами. При закачке в них воды по линиям рядов нагнетательных скважин образуется зона, повышенного давления, которая препятствует перетокам нефти из одной площади в другую. По мере закачки очаги воды, сформировавшиеся вокруг каждой нагнетательной скважины, увеличиваются в размерах и, наконец, сливаются, образуя единый фронт воды, продвижение которого можно, регулировать так же, как и при законтурном заводнении. С целью ускорения образования единого фронта воды по линии, ряда нагнетательных скважин, освоение скважин под нагнетание в ряду осуществляют “через одну”. В промежутках проектные водонагаетательные скважины вводят в эксплуатацию как нефтедобывающие, осуществляя в них форсированный отбор. По мере появления в “промежуточных” скважинах закачиваемой воды, они переводятся под нагнетание воды.
Добывающие скважины располагают рядами параллельно рядам водонагнетательных скважин. Расстояние между рядами нефтедобывающих скважин и между скважинами в ряду выбирают, основываясь на гидродинамических расчетах, с учетом особенностей геологического строения и физической характеристики коллекторов на данной разрабатываемой площади.
Разработку каждой площади можно осуществлять по своей системе размещения добывающих скважин с максимальным учетом геологической характеристики площади.
Большое преимущество описываемой системы -- возможность начинать разработку с любой площади и, в частности, вводить в разработку в первую очередь площади с лучшими геолого-эксплуатационными характеристиками, наибольшей плотностью запасов с высокими дебитами скважин.
Первоначальным проектом разработки, составленным ВНИИ, Ромашкинское месторождение рядами водонагнетательных скважин разрезалось на 23 участка самостоятельной разработки. В последующем отдельные площади дополнительно разрезались на более мелкие участки.
Разновидность системы внутриконтурного заводнения -- блоковые системы разработки.
Блоковые системы разработки находят применение на месторождениях вытянутой формы с расположением рядов водонагнетательных скважин чаще в поперечном направлении. Принципиальное отличие блоковых систем разработки от системы внутриконтурного заводнения состоит в том, что блоковые системы предполагают отказ от законтурного заводнения. На рис. 3 показана принципиальная схема разработки пласта А4 Кулишовского нефтяного месторождения (Куйбышевская область). Как видно из схемы, ряды водонагнетательных скважин разрезают единую залежь на отдельные участки (блоки) разработки.
Широкое распространение получили блоковые системы на месторождениях Куйбышевской области и Западной Сибири.
Блоковые системы разработки предполагают расположение водонагнетательных скважин в направлении перпендикулярном к линии простирания складки. Вместе с тем, для спокойных полого залегающих антиклинальных складок целесообразно расположение водонагнетательных скважин по оси складки. В этом случае представляется возможность вместо нескольких линий нагнетания иметь одну.
4.2 Сущность и область метода заводнения с применением полимеров
Методы химического воздействия на продуктивные пласты осуществляются на основе изучения особенностей структуры и свойств пористой среды и физико-химических свойств насыщающих их жидкостей, а также процессов, протекающих на границе разделов жидкость-жидкость, жидкость-твердое тело.
В то же время методы исследования макро- и микропроцессов, протекающих между жидкостями и породой непосредственно в поровом пространстве, практически не исследованы ввиду чрезвычайно больших трудностей проведения таких исследований.
Что касается результатов промысловых испытаний, то в большинстве публикаций отмечается положительная эффективность испытуемых химических МУН. Авторами их являются, как правило, разработчики технологий, а также представители тех нефтяных компаний, которые осуществляли эти испытания. Публикации независимых экспертов по оценке эффективности химических МУН практически отсутствуют. Очевидно, те компании, которые продолжают применять химические МУН, уверены в их эффективности. Те компании, которые не применяют химические МУН, не считают нужным их применять, и потому не приглашают независимых экспертов. Те же компании, которые резко сократили или полностью отказались от применения этих методов (например, Сибнефть), очевидно, такой вывод сделали на основании собственных исследований и поэтому также не нуждаются в независимой экспертизе.
Методы, направленные на увеличение коэффициента вытеснения
Коэффициент вытеснения нефти - отношение объема нефти, вытесненной каким-либо агентом из образца породы или модели пласта до полного насыщения этим агентом получаемой продукции, к начальному объему нефти, содержащейся в образце породы или модели пласта (Л.Е.Ленченкова «Повышение нефтеотдачи пластов физико-химическими методами», М., Недра, 1998, стр.12).
Увеличение коэффициента вытеснения достигается за счет смешиваемости нефти и вытесняющего агента (углекислый газ, газ высокого давления, растворители), снижения межфазного натяжения и повышение смачиваемости пласта водой (поверхностно-активные вещества, щелочи). (М. Л. Сургучев. «Вторичные и третичные методы
Чем больше параметр мо, тем меньше коэффициент охвата пласта заводнением.
При увеличении коэффициента вытеснения нефти водой увеличивается водонасыщенность пласта. В соответствии с кривыми фазовой проницаемости с увеличением водонасыщенности увеличивается фазовая проницаемость для воды, а, следовательно, и параметр мо. В результате уменьшается коэффициент охвата пласта заводнением.
Таким образом, увеличение коэффициента вытеснения должно вести к увеличению нефтетдачи.. В тоже время уменьшается коэффициент охвата пласта заводнением, что ведет к уменьшению нефтеотдачи. То есть, применение агентов, увеличивающих коэффициент вытеснения, оказывают два противоположных эффекта. Поэтому все промысловые эксперименты по применению методов, увеличивающих коэффициент вытеснения, не дали однозначного четкого результата.
Основное свойство полимера заключается в загущении воды. То есть раствор полимера обладает более высокой вязкостью, чем обычная вода. Это приводит к уменьшению соотношения вязкостей нефти и рабочего агента, то есть параметра мо. и сокращению условий прорыва воды в следствие вязкостной неустойчивости. Растворы полимера оказывают влияние также на поведение фазовых проницаемостей.
Полимерные растворы обладают также вязкопластичными свойствами, или так называемыми неньютоновскими свойствами, то есть обладают начальным градиентом сдвига. В неоднородных средах это ведет к тому, что часть пор меньше определенного размера, будет отключена из фильтрации при одних и тех же давлениях нагнетания. А это означает снижение охвата пласта заводненнием. В целом указанные факторы снижают приемистость нагнетательных скважин.
Для поддержания достигнутых темпов разработки требуется повышение давления нагнетания. Однако повышение давления нагнетания может вести к созданию трещин или расслоению пласта, что будет сводить на нет положительные результаты растворов полимера.
Таким образом, изложенное также свидетельствует о неоднозначности эффективности полимерного заводнения.
Полимерное заводнение прошло широкие промысловые испытания. О их результатах будет отмечено ниже.
Потокоотклоняющие технологии и технологии выравнивания профиля приемистости.
Такое подразделение носит условный характер. В технологиях выравнивания профиля приемистости реагент закачивается в объеме 5 -- 40 м3 на 1 м толщины пласта, а в потокоотклоняющих технологиях -- значительно больше.
К потокоотклоняющим технологиям относят закачку реагентов, понижающих проницаемость отдельных высокопроницаемых промытых пропластков.
К ним относятся закачка суспензионных растворов; реагентов, образующих в пласте осадки в результате химического взаимодействия закачиваемого реагента с пластовыми флюидами, прежде всего с водой, или взаимодействия между реагентами закачиваемой композиции; композиции, образующие в пласте гель или эмульсии.
Считается, что структура реагентов такова, что они проникают в наиболее проницаемые пропластки пласта, снижая их проницаемость. Это приводит к перераспределению потоков жидкости в пласте в менее проницаемые пропластки и тем самым снижают степень неоднородности пласта. Поэтому эти методы получили наименование потокоотклоняющих или выравнивания профиля приемистости (отдачи при ограничении добычи попутной воды).
При лабораторных исследованиях при прокачке реагентов через модель пласта наблюдается снижение расхода жидкости. То же самое происходит, как правило, при закачке реагентов в скважины, что свидетельствует о том, что закачиваемые реагенты или имеют повышенную вязкость, или происходит кольматация пласта.
Поэтому закачка реагентов в нагнетательные скважины производится при повышенных давлениях. При этом может происходить раскрытие трещин или расслоения пласта. После закачки реагентов нагнетательные скважины подключаются к действующей системе ППД, где поддерживается то же давление, что и до закачки реагентов.
Спрашивается, почему до закачки реагентов низкопроницаемые пласты не принимали воду, а после закачки реагента начали принимать при тех же давлениях закачки?
Оценка фактического прироста коэффициента нефтеотдачи пластов за счет применения МУН
Одним из самых важных моментов является оценка фактического прироста коэффициента нефтеотдачи пластов за счет применения МУН.
В начале проведения промысловых испытаний оценку прироста коэффициента нефтеотдачи пытались осуществить путем сравнения технологических показателей разработки опытных и контрольных участков. При этом контрольный участок должен быть идентичен опытному, как по геолого-физическим свойствам, так и по условиям разработки. Выдержать же идентичность опытного и контрольного участков по всем показателям не удается практически никогда.
В связи с этим для оценки технологической эффективности используют статистические методы прогнозирования показателей разработки и конечной нефтеотдачи. В качестве статистических методов используются характеристики вытеснения, представляющие эмпирические зависимости между значениями отбора нефти, воды и жидкости. По полученным зависимостям производится прогноз добычи нефти, жидкости и воды по базовому варианту, т.е. без применения МУН.
Точность оценки технологической эффективности по характеристикам вытеснения зависит от соблюдения технологии разработки объекта после применения метода, которая должна быть такой же, как и до применения, а также от длительности периода, на который проводится экстраполяция. Также на точность определения дополнительной добычи нефти влияет точность замера дебита жидкости скважин и определения обводненности их продукции.
5. БУРЕНИЕ СКВАЖИН
5.1 Конструкция забоев скважин на нефтяных месторождениях
нефть месторождение скважина бурение
Конструкция забоев скважин на нефтяных, газовых и газоконденсат-ных месторождениях претерпевала много изменений: открытый забой, манжетная заливка, сплошная колонна с последующим цементированием и др. В современных условиях, когда в качестве эксплуатационного объекта принимают большие толщины продуктивной части, содержащей несколько пластов и прослоев, неоднородных по проницаемости, наиболее сообразной конструкцией забоя скважины следует считать наличие ной колонны с последующим цементированием. Поскольку сквозное долговременное сооружение, а с появлением воды в залежи возникают серьезные осложнения в обеспечении равномерной выработки луатац Ьных пластов и прослоев, объединенных в единый объект эксп- и позво ' Конструкция забоя скважин должна быть абсолютно надежной Чессы и ТЬ Репятственн° выполнять многие технологические проемы, связанные с поэтапным освоением, селективным воздействием, производством ремонтно-изоляционных работ и др. . упрощения, диктуемые соображениями экономии обсадных труб, Wo 'e существенно снизить степень надежности сооружения. Напротив как конструкция забоев скважин длительное время подвергается воздействию многочисленных факторов: кумулятивные струи и разлетавшиеся продукты детонации; эрозия и коррозия металла труб; тербарическое воздействие и многие другие факторы, которые отрицательно действуют на колонну и цементное кольцо, необходимо нижнюю часть колонны существенно усилить как за счет увеличения толщин, стенок труб, так и качества металла. Минимальный диаметр колонны при этом должен быть 146 мм.
5.2 Основные документы буровой бригады
Основными документами, на основании которых осуществляется строительство скважин, являются технический проект и смета.
Технические проекты разрабатывают специальные проектные институты (НИПИ) на основании проектных заданий , выдаваемых заказчиком, например, НГДУ. Задание содержит: сведения об административном расположениии площади; номер скважин, которые должны сооружаться по данному проекту; цель бурения, категорию скважин, проектный горизонт и проектную глубину; краткое обоснование заложения скважин; характеристику; геологического строения площади, перспективных на нефть и газ объектов, горно-геологических условий бурения; данные о пластовых давлениях, давлениях гидроразрыва пород, геостатических температурах, об объектах, подлежащих опробованию в процессе бурения и испытанию, об объеме геофизических , лабораторных и специальных исследований, диаметре эксплуатационной колонны, объеме подготовительных работ к строительству и заключительных после окончания испытания скважины; о строительстве объектов теплофикации, жилищных и культурно-бытовых помещений; название бурового предприятия, которое должно строить скважины; другую информацию, необходимую для разработки проекта.
Технический проект включает разделы: сводные технико-экономические данные; основание для проектирования; общие сведения; геологическая часть; конструкция скважины; профиль ствола скважины; буровые растворы; углубление скважины; крепление скважины; испытание скважины; дефектоскопия, опрессовка оборудования и инструмента; сводные данные об использовании спецмашин и агрегатов при проводке скважины; сведения о транспортировке грузов и вахт; мероприятия и технические средства для охраны окружающей среды; механизация , средства контроля и диспетчеризация на буровой; техника безопасности , промышленная санитария и противопожарная техника; строительно-монтажная часть; список нормативно- справочных и инструктивно-методических материалов, используемых при принятии пректных решений; приложения.
В приложение к проекту включаются: геолого-технический наряд, обоснование продолжительности строительства скважины, схема расположения бурового оборудования, схемы обвязки устья скважины при бурении и испытании, нормы расхода долот , инструмента и материалов, профиль наклонной скважины, схему транспортных связей, документы для обоснования дополнительных расходов времени и средств, а также могут включаться расчет обсадных колонн, расчет цементирования, специальные вопросы по предупреждению осложнений, решения по технологии углубления и испытания и т.д.
Смету на строительство скважины составляют к каждому техническому проекту. Она определяет общую стоимость скважины и служит основой для расчета бурового предприятия с заказчиком.
Смета состоит из четырех разделов, соответствующих основным этапам строительства скважины:
Раздел 1. Подготовительные работы к строительству скважины.
Раздел 2. Строительство вышки, привышечных сооружений, зданий котельных, монтаж и демонтаж оборудования.
Раздел 3. Бурение и крепление скважины.
Раздел 4 . Испытание скважины на продуктьивность.
В виде отдельных статей (кроме упомянутых разделов) в смету включают затраты на промыслово-геофизические работы, резерв на производство работ в зимнее время, затраты на топографо-геодезические работы, накладные расходы, плановые накопления (прибыль), дополнительные затраты (надбавка за работу на Севере и приравненных к нему районах и т.д.)
Буровая бригада перед началом строительства скважины получает три основных документа: геолого-технический наряд , наряд на производство буровых работ и инструктивно-технологическую карту.
Геолого-технический наряд (ГТН) - это оперативный план работы буровой бригады. Его составляют на основе технического проекта.
Наряд на производство буровых работ состоит из двух частей. В первой части указывают номер и глубину скважины, проектный горизонт, назначение ее и способ бурения, характеристики конструкции скважины, бурового оборудования и бурильной колонны, сроки начала и окончания работ по нормам, затраты времени на бурение и крепление отдельных интервалов и скважины в целом по нормам, плановую и нормативную скорости бурения, а также сумму заработной платы бригады.
Вторую, основную часть наряда составляет нормативная карта. Эта карта позволяет определить нормативную продолжительность работ от начала бурения до перфорации эксплуатационной колонны. Для составления карты используют материалы ГТН и отраслевые или утвержденные для данной площади нормы времени на выполнение всех видов работ. Для разработки нормативной карты скважину разбивают на несколько нормативных пачек; в карте перечисляют последовательно все виды работ, которые должны быть выполнены при бурении каждой пачки; указывают затраты времени на каждый вид работ по нормам; рассчитывают затраты времени на бурение и крепление каждого участка и в целом скавжины.
Инструктивно-технологическая карта предназначена для распространения передового опыта работы, накопленного в районе. Она состоит из трех частей : режимно- технологической , инструктивной и оперативного графика строительства. Карту составляют на основе анализа работы буровых бригад и вахт, которуые добились наиболее высоких показателей при бурении скважин на данной площади или при выполнении отдельных видов работ (например, по спуску и подъему бурильных колонн и т.п.). В режимно-технологической части помещают рекомендации о типоразмерах долот, забойных двигателей, параметрах режима бурения и свойствах промывочных жидкостей, при использовании которых могут быть достигнуты наиболее высокие показатели бурения.
Подобные документы
Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.
отчет по практике [2,0 M], добавлен 20.03.2012Батырбайское месторождение нефти и газа. Краткие сведения из истории геологического изучения района. Гидродинамические и термодинамические методы исследования скважин и пластов. Эксплуатация скважин штанговыми насосами. Условия приема на работу.
отчет по практике [500,8 K], добавлен 08.08.2012Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.
отчет по практике [1,6 M], добавлен 23.09.2014Критерии выделения эксплуатационных объектов. Системы разработки нефтяных месторождений. Размещение скважин по площади залежи. Обзор методов увеличения производительности скважин. Текущий и капитальный ремонт скважин. Сбор и подготовка нефти, газа, воды.
отчет по практике [2,1 M], добавлен 30.05.2013Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.
отчет по практике [4,5 M], добавлен 23.10.2011Разработка нефтяных залежей пробуренными скважинами. Процесс освоения скважин. Насосно-компрессорные трубы и устьевое оборудование. Условия фонтанирования скважин. Эксплуатация скважин погружными центробежными и штанговыми глубинными электронасосами.
курсовая работа [1,8 M], добавлен 16.09.2012Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.
курсовая работа [1,9 M], добавлен 07.07.2015Общие сведения о промысловом объекте. Географо-экономические условия и геологическое строение месторождения. Организация и производство буровых работ. Методы увеличения производительности скважин. Текущий и капитальный ремонт нефтяных и газовых скважин.
отчет по практике [1,0 M], добавлен 22.10.2012Геологическая характеристика месторождения, технологические показатели его разработки. Особенности эксплуатации газовых скважин. Причины гидратообразования, его условия и способы ликвидации. Применение метода подачи метанола на забой газовых скважин.
дипломная работа [3,1 M], добавлен 25.01.2014Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.
реферат [1,1 M], добавлен 14.07.2011