Минералы и их свойства

Твердое природное неорганическое кристаллическое вещество. Строение, свойства минералов, их применение. Озотропные и анизотропные минералы. Разная структура полиморфных разновидностей. Природные минеральные формы. Химические и кристаллохимические формулы.

Рубрика Геология, гидрология и геодезия
Вид реферат
Язык русский
Дата добавления 19.09.2013
Размер файла 37,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

МИНЕРАЛ

СТРОЕНИЕ

СВОЙСТВА

ИСПОЛЬЗОВАНИЕ В СТРОИТЕЛЬСТВЕ

ВЫВОД

ЛИТЕРАТУРА

МИНЕРАЛ

Минерамл (фр. minйral, от позднелат. minera --руда) -- природное тело с определённым химическим составом и кристаллической структурой, образующееся в результате природных физико-химических процессов и обладающее определёнными физическими, механическими и химическими свойствами. Является составной частью земной коры, горных пород, руд, метеоритов. Изучением минералов занимается наука минералогия. В настоящее время установлено около 3500 минеральных видов. Однако лишь несколько десятков минералов (около 70) пользуются широким распространением. Они входят в состав горных пород и называются породообразующими.

Понятие «минерал» подразумевает твёрдое природное неорганическое кристаллическое вещество. Но иногда его рассматривают в неоправданно расширенном контексте, относя к минералам некоторые органические, аморфные и другие природные продукты, в частности некоторые горные породы, которые в строгом смысле не могут быть отнесены к минералам.

· Минералами считаются также некоторые природные вещества, представляющие собой в обычных условиях жидкости (например, самородная ртуть, которая приходит к кристаллическому состоянию при более низкой температуре). Воду, напротив, к минералам не относят, рассматривая её как жидкое состояние (расплав) минерала лёд.

· Некоторые органические вещества -- нефть, асфальты, битумы -- часто ошибочно относят к минералам, либо выделяют их в особый класс «органические минералы», целесообразность чего весьма спорна.

· Некоторые минералы находятся в аморфном состоянии и не имеют кристаллической структуры. Это относится главным образом к т. наз. метамиктным минералам, имеющим внешнюю форму кристаллов, но находящимся в аморфном, стеклоподобном состоянии вследствие разрушения их изначальной кристаллической решётки под действием жёсткого радиоактивного излучения входящих в их собственный состав радиоактивных элементов (U,Th, и тд.). Различают минералы явнокристаллические, аморфные -- метаколлоиды (например, опал, лешательерит и др.) и метамиктные минералы, имеющие внешнюю форму кристаллов, но находящиеся в аморфном, стеклоподобном состоянии.

«Минерал -- это химически и физически индивидуализированный продукт природной физико-химической реакции, находящийся в кристаллическом состоянии» .

По определению академика Н. П. Юшкина (1977), «минералами называются естественные дискретные органически целостные системы взаимодействующих атомов, упорядоченных с трёхмерной неограниченной периодичностью их равновесных положений, являющиеся относительно неделимыми структурными элементами горных пород и дисперсных фазовогетерогенных образований. Вся совокупность минералов составляет минеральный уровень структурной организации неорганической материи, спецификой которого является кристаллическое состояние, определяющее свойства, законы функционирования и методы исследования минеральных систем».

Понятие «минерал» часто употребляется в значении «минеральный вид», то есть как совокупность минеральных тел данного химического состава с данной кристаллической структурой.

Кристаллическая структура является и важнейшей диагностической характеристикой минерала, и носителем заложенной в минерале генетической информации, расшифровкой которой среди прочего занимается минералогия. Вопрос о целесообразности отнесения к минералам в порядке «исключений из правила» некоторых некристаллических (жидких или рентгеноаморфных) продуктов является спорным и до сих пор дискутируется учеными. Вместе с тем современные исследования показали, что некоторые аморфные, как считалось ранее, геологические продукты, например опал, устроены сложнее, чем считалось ранее и обладают внутренней «структурой дальнего порядка».

Некоторые разновидности лимонита, описанные в своё время как «метаколлоиды», оказались при детальном изучении скрытокристаллическими или волокнисто-сферолитовыми агрегатами гл. образом гётита, иногда с примесью лепидокрокита, гематита и ярозита. Представления о «колломорфном» происхождении некоторых минеральных форм (лимониты, «стеклянные головы» гётита, гематита, настурана и др.) были опровергнуты после их более углубленного изучения и анализа в работах Д. П. Григорьева, Ю. М. Дымкова и др. Коллоидные фазы существуют лишь как промежуточные в процессах массопереноса и минералообразования и являются одной из физико-химических сред, в которых или из которых происходит кристаллизация минералов.

СТРОЕНИЕ

Строение минералов. В природе существуют твердые, жидкие и газообразные минеральные образования. Твердые минералы могут быть кристаллическими и аморфными. Кристаллические состоят из множества одинаковых структурных элементов, образующих упорядоченную пространственную (кристаллическую) решетку. Различают атомный, ионный и молекулярный типы решеток,

которые определяют анизотропность (различные свойства), изотропность (одинаковые свойства) кристаллов и их способность самоограняться. Кристаллы - как природные, так и искусственные - имеют форму многогранников. Они могут быть изотропными и анизотропными. Аморфные минералы всегда изотропны.

Способность веществ при одинаковом химическом составе кристаллизоваться в разных формах называется полиморфизмом (многоформностью). Например: алмаз и графит, пирит и марказит, кальцит и арагонит. Разная структура полиморфных разновидностей объясняет их различные свойства. Некоторые вещества разного химического состава могут образовывать сходные кристаллографические формы. Такие вещества могут создавать смешанные формы, содержащие исходные компоненты в разной пропорции. Это явление называется изоморфизмом, а смеси именуются изоморфными. В качестве примера можно назвать полевые шпаты, изоморфный ряд которых формируется при смешивании альбитовой и анортитовой молекул.

В природных условиях чаще всего вырастают не вполне правильные кристаллические формы, имеющие некоторые дефекты, но при любых изъянах углы между соответствующими гранями кристаллов одного и того же вещества остаются одинаковыми и постоянными. Этот закон постоянства гранных углов дает возможность устанавливать идеальную форму кристаллов и точно диагностировать мельчайшие минеральные зерна.

Разная степень симметрии кристаллов объясняется различными комбинациями плоскостей, осей центров и симметрии в них. Таких комбинаций может быть 32, и называются они классами (или видами) симметрии. Последние объединяются в 7 систем, или сингоний: кубическую, тетрагональную, гексагональную, ромбическую, тригональную, моноклинную и триклинную. Кубические кристаллы обладают высшей симметрией: их простейший элемент - куб, они изотропны. Кристаллы гексагональной, тетрагональной и тригональной сингоний характеризуются средней симметрией. Они имеют столбчатый, шестоватый, игольчатый, листоватый, таблитчатый, пластинчатый габитус (облик) и шести-, четырех- и трехгранные сечения (соответственно), перпендикулярные длинной оси. Анизотропность выражается в различии основных свойств по длинным и коротким осям. Ромбическая, моноклинная и триклинная сингонии относятся к низшей группе симметрии. Им свойственны весьма разнообразные формы с анизотропными свойствами. У ромбических кристаллов сечение, перпендикулярное длинной оси, имеет форму ромба.

Природные минеральные формы (скопления). Природные скопления минеральных зерен, или кристаллов, принято называть минеральными агрегатами.

Они могут быть моно- и полиминеральными, т.е. состоять из одного или нескольких минералов. Форма минеральных агрегатов зависит от их состава и условий формирования.

Группа кристаллов, наросших на общем основании, образует друзу. Друза с ориентированными в одном направлении мелкими сросшимися кристаллами называется щеткой. Эти формы образуются при кристаллизации минералов в пустотах горных пород (кварц, кальцит, гипс). Тот же генезис имеют секреции - минеральные образования, частично или полностью выполняющие полости и растущие от периферии к центру. Секреции могут образовывать как аморфные (халцедон), так и кристаллические (кварц, кальцит) минералы. Крупные секреции именуют жеодами, мелкие - миндалинами.

Желваковые образования, возникшие в рыхлых осадочных образованиях на дне древних и современных водоемов как результат стяжения минерального вещества вокруг инородных центров кристаллизации, именуются конкрециями.

Конкреции растут от центра к периферии, по строению могут быть радиально-лучистыми и концентрическими. Их формы и размеры весьма различны. Мельчайшими конкрециями являются оолиты (кальцит, арагонит, фосфорит, кремень, сидирит, железо-марганцевые конкреции (жмк) дна современного океана).

В пустотах, в том числе и в пещерах, широко распространены натечные формы. Они могут иметь самый различный размер и состав (кальцит, малахит, глинистые минералы, лед и т.д.). Это прежде всего сталактиты, сталагмиты и сталагнаты, почковидные и гроздевидные образования пещер.

При быстрой кристаллизации в мелких трещинах и глине солей, выпадающих из подземных вод, образуются тонкие ветвистые древовидные образования - дендриты. Наиболее часто обнаруживаются дендриты самородной меди, железистых и марганцевых соединений и т.п.

Минеральные агрегаты неупорядоченных зерен и кристаллов делят на крупно- (более 3 мм), средне- (1-3 мм) и мелкозернистые (менее 1 мм). Облик их может быть не только зернистый (кристаллический), но и пластинчатый, листоватый, шестоватый, полосчатый, волокнистый, оолитовый и т.д. Именно характер минеральных агрегатов определяет структурно-текстурные признаки горных пород. Агрегаты неразличимых под лупой зерен именуют скрытокристаллическими; мягкие, пачкающие руки, напоминающие рыхлые почвы - землистыми (каолин, боксит, лимонит и т.д.).

Ложные формы, не соответствующие истинному габитусу слагающего их вещества, называются псевдоморфозами. В соответствии с генезисом различают псевдоморфозы превращения, или метаморфозы, как, например, образование лимонита по пириту; вытеснения (халцедона, кремня по кальциту), выполнения (опала, лимонита по дереву).

Структура. В зависимости от химического состава минералов и физико-химических параметров находится тип химической связи между отдельными элементами и, как следствие, закономерность их пространственного распределения в кристаллической структуре минералов. Значительное изменение состава вызывает морфотропное изменение структуры и переход к веществу с новой структурой, т.е. к другому минералу. Изменение физико-химических параметров может привести к полиморфному переходу типа а-кварц-Я-кварц (повышение температуры), андалузитсиллиманит (повышение температуры) кианит (повышение давления). Обычные отклонения реальной структуры минералов от идеальной -- вакансии в отдельных узлах кристаллической решётки, связанные с появлением, например, примесей в междоузлиях, изменением валентности части катионов (анионов). Упорядочение ваканский может приводить к увеличению одного из параметров элементарной ячейки, к появлению сверхструктур, переходу, например, от слоистых структур (талька -- пирофиллита) к ленточным (честерит -- джимтомпсонит -- амфиболы) и т.п. В кристаллохимическом отношении среди минералов преобладают кристаллические структуры с ионным и ковалентным типами химической связи, менее распространены -- с металлическими и молекулярными решётками (сера самородная, реальгар, аурипигмент). В результате различных дефектов (вакансий, примесных, радиационных и других дефектов, вхождения посторонних ионов или молекул, например воды в каналы и другие полости решётки, изменения заряда катионов и анионов и т.д.) и дислокаций кристаллы минералов могут приобретать блочное строение. Реальные минералы образуют иногда т.н. упорядочивающиеся серии (например, полевые шпаты), когда распределение различных катионов по структурным позициям в той или иной степени отклоняется от правильного порядка, присущего идеальным кристаллам, и с понижением температуры проявляет тенденцию к упорядочению. Не менее широко распространены явления распада твёрдых растворов (смешанных кристаллов), находящие выражение в специфических структурах минералов.

Для минералов со слоистыми кристаллическими решётками (например, слюд, молибденита, сфалерита, глинистых минералов, хлоритов, графита и др.) характерно явление политипии, при котором смежные слои (или пакеты слоев) оказываются несколько повёрнутыми один относительно другого. В результате такого поворота возникают политипные модификации (или политипы), элементарные ячейки которых имеют одинаковые параметры по двум осям и различные -- по третьей. Образование политипов объясняется условиями роста кристаллов (в частности, кинетическими факторами и механизмом спирального роста). Политипия может приводить к изменениям симметрии кристаллов минералов, вплоть до перемены их сингонии, но не сопровождается существенной перестройкой кристаллической структуры.

В случае изоморфных рядов при выделении минеральных видов руководствуются следующими правилами: в двухкомпонентных (бинарных) твёрдых растворах различают два минеральных вида (с содержанием конечных членов от 0 до 50 и от 50 до 100 молекулярных %), в трёхкомпонентных -- три. Ранее и в бинарных изоморфных смесях выделялось по три минеральных вида, названия которых закрепились в минералогической номенклатуре (например, ряд вольфрамита: ферберит -- вольфрамит -- гюбнерит). Наряду с этим в минералогии бытуют и некоторые другие принципы выделения минеральных видов. Так, если представители данного ряда имеют особое значение по распространённости и отдельные промежуточные члены ряда твёрдых растворов типичны для определённых парагенезисов, выделение минерального вида становится более дробным и часто базируется на номерной основе. Примером являются плагиоклазы, среди которых выделяют альбит (№ 0-10; № отвечает содержанию анортитового компонента в молекулярном %), олигоклаз (№ 10-30), андезин (№ 30-50), лабрадор (№ 50-70), битовнит (№ 70-90), анортит (№ 90-100).

Кристаллы реальных минералов часто обнаруживают зонарное или секториальное, блочное или доменное строение; изоморфные примеси могут распределяться в них статистически (беспорядочно), занимать строго определённые структурные позиции или группироваться в кластеры; обнаружено вхождение в минералы примесных компонентов в форме плоских встроек и т.д. Чрезвычайно характерны для кристаллов многих минералов (кварца, полевых шпатов и др.) весьма многообразные явления двойникования, часто полисинтетического. Двойникование подобно распаду смешанных кристаллов фиксируется на разных уровнях -- от макроскопического до субмикроскопического и доменного.

Изучение реального строения и состава кристаллов минералов даёт важную информацию об условиях минералообразования.

Химический состав и конституция, химические и кристаллохимические формулы. В состав минералов входят все стабильные и долгоживущие изотопы элементов периодической системы, кроме инертных газов (гелий и аргон могут накапливаться в структурных каналах и полостях кристаллических решёток минералов как радиогенные продукты или вследствие захвата из атмосферы). Но минералообразующая роль различных элементов неодинакова. Одни из них проявляют тенденцию к образованию "собственных" минералов, другие (т.н. элементы-примеси) -- к изоморфному рассеянию в решётках минералов, содержащих кристаллохимически близкие к ним, но более распространённые элементы. К рассеянным элементам, чаще всего входящим в состав минералов в виде изоморфных примесей, относятся Rb, Cd, Ga, In, Tl, Sc, ряд редкоземельных, Ge, Re, I, Br, Ra, Se и др.; для многих из них вообще не известно самостоятельных минералов. Примеси могут входить в минералы не только изоморфно, но и путём сорбции, а также в виде механических минеральных или газово-жидких микровключений. Большинство минералов -- соединения переменного состава, т.е. члены изоморфных рядов: двух-, трёх- и многокомпонентных. Эти ряды (серии) определяют границы вариаций состава минералов, а тем самым и колебания их физических свойств: плотности, твёрдости, оптических, магнитных и других параметров элементарной ячейки, температуры плавления и т.д.

Около 25% общего числа минеральных видов в земной коре -- силикаты и алюмосиликаты; около 18% приходится на фосфаты, арсенаты и их аналоги, около 13% -- на сульфиды и их аналоги, около 12% -- на оксиды и гидроксиды. Минералы, относящиеся к другим классам химических соединений, составляют около 32%. По распространённости в земной коре резко доминируют алюмосиликаты (особенно полевые шпаты) и силикаты, за ними следуют оксиды (прежде всего кварц) и гидроксиды (включая оксигидраты) и далее карбонаты; в сумме они слагают около 98% верхней части земной коры (до глубины 16 км). По типу химических соединений минералы подразделяются на редко встречающиеся простые вещества (самородные элементы), составные (бинарные, например, оксиды, галогениды, сульфиды) и сложные соединения (трёх- и многокомпонентные: силикаты, сложные оксиды, гидроксиды и прочие кислородные соединения, а также сложные сульфиды, тиосоли и галогениды). В составе бинарных соединений обычно присутствуют простые анионы (S2-, О2-, Cl2-, F-, OH-), реже более сложные (S22-); сложные соединения содержат комплексные анионные радикалы [CO3]2-, [SO4]2-, [PO4]3-, [SiO4]4-, [AsS3]3-, [SbS3]3- и др., а также полимерные: например, [Si2О7]6-, [AlSi3О8]-, [AlSi3O10]5-, [Sb4S11]10-, [Bi2S5]4. Состав минералов выражается его химической формулой -- эмпирической, полуэмпирической, кристаллохимической. Эмпирическая формула отражает лишь отношение между собой отдельных элементов в минералах. В ней элементы располагаются слева направо по мере увеличения номера их групп в периодической системе, а для элементов одной группы -- по мере уменьшения их порядковых номеров, т.е. по мере увеличения их силовых характеристик (злектроотрицательностей). Элементы, образующие изоморфные смеси, приводятся в круглых скобках через запятую, располагаясь в зависимости от их содержания в минералах. После расшифровки кристаллических структур подавляющего большинства минералов и уточнения позиций различных элементов в их кристаллической решётке стало возможным введение в минералогию понятия о конституции минералов, в которой химический состав минералов тесно увязывается с их структурой. Выражением конституции минералов служат т.н. структурные, или кристаллохимические формулы, составляемые и записываемые по определённым правилам. В этих формулах элементы, играющие роль нормальных катионов, записываются в их начале в том же порядке, что и в эмпирических формулах. Комплексные ионы, и в первую очередь анионы, выделяются квадратными скобками, причём в случае бесконечного полимерного комплекса вверху слева от квадратной скобки ставится специальный значок, обозначающий его тип. Для комплексов с цепочечным (и ленточным), слоистым и каркасным строением соответственно. Слева, вверху от символа элемента, в круглых скобках указывается его координационное число (КЧ) в структуре, а справа, вверху, -- степень окисления. Так, например, для пиропового граната соответствующие формулы имеют вид: (Mg, Fe, Mn, Ca)32+ (Al, Cr, Fe)23+Si3О12 (эмпирическая) и (6)(Mg, Fe, Mn, Ca)32+ (Al, Cr, Fe)23+ [SiO4]3 (кристаллохимическая); для буры -- Na2В4Н20О17 (эмпирическая), Na2В4О7*10Н2О (полуэмпирическая), Na2[В4О5(OH)4]*8Н2О (полукристаллохимическая), [(6)Na2(Н2О)8][(4)В2(3)В2О5(OH)4] (кристаллохимическая). Существуют и другие приёмы записи кристаллохимических формул (строгая общеобязательная регламентация отсутствует).

Для групп минералов сложного состава с широким проявлением изоморфизма употребительны обобщённые, т.н. типовые, кристаллохимические формулы, в которых катионы и анионы, сгруппированные по структурным позициям и координациональным числам, получают условные обозначения. Примеры типовых формул: структурный тип эвксенита AB2Х6, где А=Y, TR, U4+, Pb, Ca, Th; В=Nb, Ta, Ti; Х=О, OH; группа пироксенов М1М[Т2О6], где М1=Mg, Fe2+, Li, Ca, Na; М=Mg, Fe2+, Al, Fe3+; Т=Si, частично Al; группа блёклых руд М10+М22+[YS3]4S1; где М=Cu, Ag; М2+=Fe, Zn, Hg, Cd; Y=As3+, Sb3+, Te4+, отчасти Bi3+ и т.д.

Особенности химического состава минералов (в т.ч. содержание элементов-примесей) являются их важнейшими типоморфными признаками (см. Типоморфизм минералов).

Морфология минералов зависит от их внутреннего строения и условий образования (термодинамического и кинетического факторов, состава минералообразующей среды). Различают несколько типов облика кристаллов минералов: изометричный, таблитчатый, листоватый и чешуйчатый, длинно- и короткостолбчатый, шестоватый и игольчатый, дощатый и др. Более строго (по преобладающим на кристалле граням -- т.н. габитусным формам) определяется габитус кристаллов: кубический, октаэдрический, пентагондодекаэдрический, кубооктаэдрический, ромбоэдрический, призматический и другие. При различных условиях один и тот же минерал может образовывать кристаллы различного облика (апатит -- длинно- и короткостолбчатые, игольчатые, таблитчатые, фенакит -- от изометрического до игольчатых и т.д.), а иногда, сохраняя свой облик (например, изометрический), меняет габитус (например, флюорит -- от октаэдрического до кубического). Часто даже в одном месторождении последовательные генерации одного минерала резко меняют свой облик и габитус, образуя т.н. эволюционный кристалломорфологический ряд. Форма кристаллов минералов -- его типоморфный признак.

Быстрая кристаллизация минералов приводит к искажению формы их кристаллов, возникновению скелетных, дендритных, нитевидных форм, сферо-кристаллов. Кристаллы минералов нередко несут на гранях характерную штриховку, фигуры роста и растворения. Массовая кристаллизация (например, при образовании изверженных горных пород) создаёт обстановку стеснённого роста, и минералы образуют зёрна неправильной формы. Детальное изучение форм выделений минералов, скульптуры на гранях их кристаллов, явлений двойникования, кристаллов-фантомов и т.д., прослеживание морфологической эволюции минералов в процессе их образования (кристалло-морфологический и онтогенический анализ) позволяют воссоздать историю формирования минеральных индивидов. Среди кристаллических минеральных индивидов различают: кристаллы нормальные, т.е. плоско- и полногранные разного облика, определяющегося составом и условиями образования, скелетные (рёберные), блочные, скрученные, расщеплённые, дендритные (расщеплённые скелетные кристаллы); сферокристаллы, возникающие при объёмном расщеплении кристаллов вплоть до образования круглых кристаллических индивидов [особенно характерных для стильбита и Mg (Mn) -- кальцита]; сферолиты, образованные расходящимися из центра пучками тончайших волокон, игл, столбчатых, пластинчатых и более крупных составных частей; сфероидолиты, отдельные волокна, иглы которых не прямые, как в сферолите, а изогнуты к периферии; и те и другие имеют круглую поверхность, причём сферолиты часто шарообразны.

Значительно чаще, чем отдельные кристаллы минералов, встречаются их сростки (минеральные агрегаты), как закономерно ориентированные (двойники, эпитаксия и синтаксия, симплектитовые и топотаксического срастания), так и лишённые взаимной ориентировки. Блочные, скрученные, дендритные и расщеплённые кристаллы, сферокристаллы, сферолиты и сфероидолиты могут рассматриваться одновременно как индивиды, из которых слагаются более сложные агрегаты, и как минеральные агрегаты, состоящие из отдельных индивидов -- волокон, игл и т.д. К минеральным агрегатам относятся друзы нормальных кристаллов, корки расщеплённых кристаллов, сферо-кристаллов, сферолитов. Все они образуются на относительно плоском основании. На основаниях иной формы могут возникать, например, псевдосталактиты, представляющие сферолитовые корки, возникающие вокруг волосовидных и других оснований (игольчатых минералов и остатков от растворения вмещающей породы и т.п.). Минеральные индивиды и минеральные агрегаты слагают минеральные тела. К малым минеральным телам относят, например, коралиты, сталактиты, сталагмиты, пизолиты, кокарды, гнёзда, жеоды, конкреции, к крупным -- жилы, рудные столбы, пласты, залежи, некки, силлы, батолиты, лакколиты и т.д.

кристаллический минерал озотропный неорганический

СВОЙСТВА

Важнейшими характеристиками минералов являются кристаллохимическая структура и состав. Все остальные свойства минералов вытекают из них или с ними взаимосвязаны. Важнейшие свойства минералов, являющиеся диагностическими признаками и позволяющие их определять, следующие:

· Габитус кристаллов. Выясняется при визуальном осмотре, для рассматривания мелких образцов используется лупа

· Твердость. Определяется по шкале Мооса

· Блеск -- световой эффект, вызываемый отражением части светового потока, падающего на минерал. Зависит от отражательной способности минерала.

· Спайность -- способность минерала раскалываться по определённым кристаллографическим направлениям.

· Излом -- специфика поверхности минерала на свежем не спайном сколе.

· Цвет -- признак, с определённостью характеризующий одни минералы (зелёный малахит, синий лазурит, красная киноварь), и очень обманчивый у ряда других минералов, окраска которых может варьировать в широком диапазоне в зависимости от наличия примесей элементов-хромофоров либо специфических дефектов в кристаллической структуре (флюориты, кварцы, турмалины).

· Цвет черты -- цвет минерала в тонком порошке, обычно определяемый царапанием по шершавой поверхности фарфорового бисквита.

· Магнитность -- зависит от содержания главным образом двухвалентного железа, обнаруживается при помощи обычного магнита.

· Побежалость -- тонкая цветная или разноцветная плёнка, которая образуется на выветрелой поверхности некоторых минералов за счёт окисления.

· Хрупкость -- прочность минеральных зёрен (кристаллов), обнаруживающаяся при механическом раскалывании. Хрупкость иногда увязывают или путают с твёрдостью, что неверно. Иные очень твёрдые минералы могут с лёгкостью раскалываться, то есть быть хрупкими (например, алмаз)

Эти свойства минералов легко определяются в полевых условиях. К другим свойствам минералов относятся, например, оптические свойства: Преломление, Дисперсия и Поляризация, которые характеризуются их оптическими константами: показатель преломления, угол между оптическими осями, оптический знак кристалла, ориентация оптической индикатрисы и др.

ИСПОЛЬЗОВАНИЕ В СТРОИТЕЛЬСТВЕ

Приводимое ниже описание наиболее распространенных и важных в породообразущем отношении минералов предусматривает характеристику представителей классов силикатов, оксидов и гидроксидов, карбонатов, сульфатов, сульфидов и самородных минералов.

Силикаты являются солями различных кремниевых кислот и относятся к сложным химическим соединениям, содержащим в своем составе элементы К. Na, Ca, Mg, Fe, Mn, Al, Si, О, Н и др. Однако для них более характерным является не химический состав, а особенности кристаллического строения с наличием ионной кристаллической решетки. Основной структурной единицей этой решетки является кремнекислородный тетраэдр, размеры которого почти всегда строго постоянны.

Класс силикатов объединяет представителей с разнообразными свойствами, которые отражают различный характер сочленения этих структурных единиц в кристаллической решетке и появление изолированных, цепочечных, ленточных, слоистых, каркасных силикатов. Характерной особенностью кремнекислородных тетраэдров является способность иона Si частично заменяться ионом AI с появлением в кристаллической решетке других алюмокислородных тетраэдров и образованием каркасных алюмосиликатов. К наиболее важным представителям этого класса относятся полевые шпаты, плагиоклазы, нефелин, роговая обманка, авгит, слюды, гидрослюды, а также вторичные силикаты -- тальк, асбест, каолинит, монтмориллонит.

Полевые шпаты по химическому составу представляют собой каркасные алюмосиликаты калия, натрия, кальция и разделяются на натриево-кальциевые (плагиоклазы) и калиево-натриевые полевые шпаты. Их характерной особенностью является способность образовывать изоморфные, т. е. близкие по составу и строению, соединения. Они имеют светлую окраску, стеклянный блеск, высокую твердость (6.. .6,5} по шкале Мооса, совершенную спайность в двух направлениях и плотность от 2,5 до 2,7. Наиболее распространенными полевыми шпатами являются близкие по строению и свойствам, одинаковые по составу микроклин и ортоклаз, отличающиеся между собой интенсивностью розовой окраски. Они могут замещать друг друга в породах или же присутствуют одновременно. На поверхности земли, под влиянием кислорода, воды, углекислого газа и др., они постепенно выветриваются и превращаются в глинистые минералы. Являясь породообразующими компонентами, полевые шпаты увеличивают твердость и прочность пород, поэтому полевошпатовые разновидности последних охотно используются в строительстве и в промышленности строительных материалов (стекольная, керамическая и др.). Высокосортные залежи полевых шпатов имеются в Карелии, на Украине, Урале, в Сибири.

Плагиоклазы -- изоморфные смеси минералов альбита и анортита. В природе существуют многочисленные разновидности непрерывно меняющегося ряда плагиоклазов-- от чистого анортита до чистого альбита, причем чем выше содержание анортита в составе плагиоклаза, тем выше степень его основности. Применяются в качестве особо ценного декоративного и облицовочного материала (Лабрадор). Их месторождения известны на Украине и Урале.

Нефелин -- бесцветный или чаще серовато-белый минерал с разнообразными оттенками, отличается твердостью в пределах 5 ... 6 и невысокой плотностью (2,6), несовершенной спайностью, неровным или раковистым изломом. Легко выветривается на поверхности земли, превращаясь в каолинит, и вторичные образования карбонатного, сульфатного состава и др. В контактах с богатейшими апатитовыми месторождениями нефелиновые породы нередко образуют крупные массивы, имеющие промышленное значение и используются при производстве цемента, стекла; из нефелиновых отходов с помощью обогащения получают глинозем, соду, силикагель, ультрамарин и др. Месторождения этих пород известны на Кольском полуострове (Хибины).

Авгит--магнезиально-железистый силикат -- относится к цепочечным силикатам (пироксены) и является важным породообразующим минералом основных магматических пород. Обычно окрашен в темно-зеленый, черно-бурый или черный цвет со стеклянным блеском. Имеет твердость 5... 6 и плотность в пределах 3,2 ... 3,6, совершенную спайность, повышенные вязкость и прочность. Присутствие авгита в породах сообщает им высокую сопротивляемость механическим воздействиям. Встречается на Урале.

Мусковит -- белая слюда встречается в магматических и метаморфических породах. Имеет перламутровый блеск, весьма совершенную спайность в одном направлении, благодаря чему легко расщепляется на тонкие и прозрачные упругие листочки, невысокую твердость (2 ... 3) и плотность в пределах 2,8... 3,1. Мусковит относительно стоек химически и при выветривании обычно переходит в россыпи без заметного изменения. Используется как отличный электроизоляционный материал, а в строительстве -- в виде слюдяного порошка (скарпа), как посыпочный материал при изготовлении кровельных материалов (рубероида), огнеупорных красок, керамических изделий и т. п. Достаточно крупные месторождения мусковита имеются на Кольском полуострове, Украине, Среднем Урале, в Восточной Сибири.

Биотит -- черная или бурого цвета железисто-магнезиальная слюда широко распространена в кислых магматических и метаморфических породах. Имеет небольшую твердость (2...3), весьма совершенную спайность в одном направлении, легко расщепляется на тончайшие упругие пластинки. В природе образует преимущественно пластинчато-чешуйчатые и зернистые скопления, является химически нестойким минералом. Месторождения биотита известны на Урале, в Забайкалье и др.

Вермикулит является хорошим теплоизоляционным и звукопоглощающим материалом. Крупные месторождения его находятся на Украине, Урале и Кольском полуострове.

К группе вторичных слоистых силикатов относятся довольно широко распространенные в природе тальк, асбест, каолинит и монтмориллонит.

Тальк образуется при изменении магнезиальных силикатов и алюмосиликатов природными горячими растворами и является породообразующим минералом тальковых сланцев. Окрашен в белый или бледно-зеленый цвет, имеет стеклянный блеск с перламутровым отливом, очень низкую твердость (меньше 1), плотность (2,7... 2,8), весьма совершенную спайность и легко расщепляется на гладкие неупругие пластинки, жирен на ощупь. Тальк находит применение в порошкообразном виде в качестве наполнителей в производстве пластмасс, паст, глазурей и кислотоупорных изделий. Камневидный тальк используется для огнеупорной футеровки. Промышленные месторождения его известны на Урале.

Асбест встречается в виде нескольких разновидностей, но наибольшее применение для практических целей имеет хризотил-асбест. Для асбеста характерна параллельно-тонковолокнистая структура с длиной волокон, колеблющейся от десятых долей миллиметра до 20 ...25 мм, иногда до 50... 150 мм. Он имеет зеленовато-желтый, а в распушенном состоянии снежно-белый цвет, невысокую твердость (2...3) и способен расщепляться на прочные волоконца толщиной меньше 0,0001 мм. Отличается высокой огнестойкостью и щелочеупорностью, плохо проводит теплоту и электричество.

Хризотил-асбест образуется из ультраосновных оливиновых, а также карбонатных пород под влиянием природных горячих растворов. Наиболее ценным сортом считается длинноволокнистый асбест с длиной волокон более 8 мм, используемый при производстве несгораемых тканей, автомобильных тормозных лент, асбесторезиновых изделий и др. Для изготовления асбестоцементных изделий, теплоизоляционных труб, панелей и т. п. применяется асбест с длиной волокон 2 ... 8 мм. Мелкое асбестовое волокно направляется для получения обмазочной теплоизоляции, огнестойких красок, штукатурных растворов и др. Значительные месторождения асбеста известны на Украине, Урале, в Забайкалье, Саянах.

Каолинит является главным минералом многих глинистых пород. Основным потребителем каолиновых глин является керамическая промышленность. Они используются при производстве тонкой фарфоровой и фаянсовой керамики. Каолиновые наполнители широко применяются при производстве пластмасс, эмульгаторов, красителей и т. д.

Монтмориллонит отличается непостоянным химическим составом, который зависит от содержания воды в атмосфере. Являясь составной частью глинистых пород, он сообщает им повышенные набухаемость и адсорбируемость. В чистом виде используется как адсорбент (отбеливатель), наполнитель, эмульгатор в резиновом, пластмассовом, керамическом и других производствах. Высококачественные месторождения монтмориллонитовых глин находятся на Кавказе, в Крыму, Приднепровье, Закарпатье.

Чистый кварц -- бесцветный минерал, но может приобретать различную окраску в зависимости от содержания механических примесей. Отличается высокой твердостью (7), несовершенной спайностью, раковистым изломом. Как породообразующий минерал кварц входит в магматические, осадочные и метаморфические породы. Он является химически стойким минералом и накапливается в виде мощных осадочных отложений (пески, песчаники). Повсеместное распространение кварца способствует широкому использованию его в стекольной и керамической промышленности, а в виде природного камня (кварцитов, песчаников)--в качестве стойкого облицовочного и конструкционного строительного материала. Кварц является хорошим абразивом, а также используется как сырье для производства оптических приборов, химической посуды и т. п.

В природе часто встречается гидратированный аморфный кремнезем-- опал. Осадочными опалсодержащими породами являются трепелы, диатомиты, опоки, мергели и др., применяемые как гидравлические добавки при производстве цемента, абразивов, а также для изготовления керамических изделий и легких блочных материалов.

Гематит -- химически стойкий минерал, образует мощные месторождения железной руды, являющейся ценным сырьем для получения чугуна и стали. Порошкообразный гематит используется в качестве красок при отделочных строительных работах, входя в состав красного пигмента, мумии, или являясь компонентом масляных и водных красок. Известные месторождения гематитовых руд находятся на Украине, в районе Курской магнитной аномалии, на Северном Урале.

Кальцит -- кристаллический минерал ромбоэдрической, пластинчатой формы, бесцветный или молочно-белой окраски с различными оттенками, стеклянным блеском, низкими твердостью (3) и плотностью (2,6 ... 2,8), совершенной спайностью по трем направлениям и ровным изломом. Месторождения различных видов кальцита, а также разнообразных карбонатных пород -- мела, мраморов -- встречаются в Карелии, на Украине, в Донбассе, на Урале. Они являются ценным поделочным материалом, сырьем для производства цемента, извести, огнеупоров.

Магнезит по структуре и форме кристаллов сходен с кальцитом, но распространен в природе значительно реже. В природе встречается в виде сплошных мраморовидных (кристаллических) и плотных (аморфных) масс, которые имеют большое промышленное значение, особенно при производстве высокоогнеупорных изделий.

Натрит-- бесцветный или окрашенный в белый цвет минерал со стеклянным блеском, небольшими твердостью (1 ... 1,5), плотностью (1,4 ... 1,5) и несовершенной спайностью. С НСl обнаруживает бурную реакцию вскипания. При нагревании растворяется в собственной кристаллизационной воде. Он образуется в некоторых соляных озерах, богатых натрием, при избытке растворенного углекислого газа. Применяется при производстве стекла, в металлургии и др. Обычно встречается в виде плотных и зернистых масс.

Гипс -- кристаллический минерал, обычно слагающий в природе огромные мраморовидные скопления гипсовых пород. Вместе с ангидритом он широко используется для получения вяжущих веществ.

Барит (тяжелый шпат) -- весьма распространенный после ангидрита минерал с таблитчатой формой кристаллов. Барит применяется для производства специальных стекол, керамических эмалей, пластмасс, высокосортных красок.

Мирабилит содержит свыше 55% кристаллизационной воды, с которой связаны многие его свойства. Используется в стекольной, химической промышленности (сода, краски и др.).

ВЫВОД

Таким образом, было выяснено, что минералы - твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, - довольно однородные кристаллические вещества с упорядоченной внутренней структурой и определенным составом, который может быть выражен соответствующей химической формулой. Они имеют огромное значение во многих отраслях промышленности, в том числе строительство.

ЛИТЕРАТУРА

1. Годовиков А. А., «Минералогия», М., «Недра», 1983.

2. З.К. Азизов, С.А. Пьянков «Определитель минералов», Учебное пособие, Ульяновск-2006

3. Минералогическая энциклопедия. Л., 1985 Берри Л.. Мейсон Б., Дитрих Р. Минералогия.

4. Ананьев В. П., Коробкин В.И. «Инженерная геология» Москва-1973

Размещено на Allbest.ru


Подобные документы

  • Происхождение, химические свойства минералов. Особенности формирования эвапоритовых залежей. Плотность, спайность, излом минералов. Пылеватые и глинистые сцементированные и сильноуплотненные породы. Физико-механические свойства алевролитов и аргиллитов.

    реферат [25,4 K], добавлен 13.12.2012

  • Каркасные силикаты, их характеристика. Термодинамические свойства и температурная зависимость мольного объема полиморфных разновидностей окиси кремния. Распространенность полевых шпатов, сосуществование двух видов в магматических, метаморфических породах.

    презентация [9,1 M], добавлен 26.07.2013

  • Понятия: минерал, руда, минеральный вид. Характеристика, физические свойства минералов. Минералы как полезные ископаемые в недрах Крымского полуострова. Рудник Камыш-Бурун. Эльтиген-Ортельское месторождение. Майкопские глины - органический материал.

    реферат [30,8 K], добавлен 16.11.2008

  • Принципы классификации кристаллов. Физические свойства, происхождения и применение минералов класса вольфраматов. Особенности аморфных тел. Свойства кристаллических веществ. Минералы черной металлургии осадочного происхождения, механизм их образования.

    контрольная работа [1,4 M], добавлен 03.04.2012

  • Физические свойства ртути. Применение полезного ископаемого. Номенклатура товарной продукции, получаемой из ртутного сырья и ее назначение. Минералы, из которых извлекают ртуть, их описание и состав. Технологические свойства основных минералов ртути.

    реферат [888,0 K], добавлен 21.05.2015

  • Внутреннее строение Земли. Неровности земной поверхности. Горные породы: механические сочетания разных минералов. Классификация горных пород по происхождению. Свойства горных пород. Полезные ископаемые - горные породы и минералы, используемые человеком.

    презентация [6,3 M], добавлен 23.10.2010

  • Понятие и место в природе минералов, их строение и значение в организме человека, определение необходимых для здоровья доз. История исследования минералов от древних времен до современности. Классификация минералов, их физические и химические свойства.

    реферат [36,2 K], добавлен 22.04.2010

  • Общая характеристика полиморфных модификаций углерода: алмаза и графита, их строение. Промышленные типы месторождений, их разработка. Природные и технологические типы алмазосодержащих и графитовых руд. Области применения и значение данных минералов.

    курсовая работа [665,9 K], добавлен 06.04.2010

  • Главные сведения о минералах и их основные свойства. Исследование происхождения, условий нахождения и природных ассоциаций минералов. Классификация изверженных, осадочных и метаморфических пород. Принцип формирования картотеки рентгеновских данных.

    реферат [45,8 K], добавлен 04.04.2015

  • Понятия и основные физические и химические свойства свинца. Основные минералы элемента. Основные геолого-промышленные типы месторождений. Конфигурация внешних электронных оболочек атома. Применение свинца в производстве свинцовых аккумуляторов.

    реферат [54,0 K], добавлен 17.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.