Движение жидкостей и газов в природных пластах
Анализ методов увеличения нефтеотдачи пластов на Восточно-Еловом месторождении. Физико-географическая и экономическая характеристика района: стратиграфия месторождения, оценка продуктивных пластов, системы их разработки с поддержанием пластового давления.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 12.09.2014 |
Размер файла | 1,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Расстояние между рядами нефтедобывающих скважин и между скважинами в ряду выбирают, основываясь на гидродинамических расчетах, с учетом особенностей геологического строения и физической характеристики коллекторов на данной разрабатываемой площади.
Рис. 2.3
Разработку каждой площади можно осуществлять по своей системе размещения добывающих скважин с максимальным учетом геологической характеристики площади.
Большое преимущество описываемой системы -- возможность начинать разработку с любой площади и, в частности, вводить в разработку в первую очередь площади с лучшими геолого-эксплуатационными характеристиками, наибольшей плотностью запасов с высокими дебитами скважин.
На рис. 2.3 показана схема разработки Ромашкинского месторождения, Татарская АССР, при внутриконтурном заводнении.
Первоначальным проектом разработки, составленным ВНИИ, Ромашкинское месторождение рядами водонагнетательных скважин разрезалось на 23 участка самостоятельной разработки.
В последующем отдельные площади дополнительно разрезались на более мелкие участки.
Разновидность системы внутриконтурного заводнения - блоковые системы разработки.
Блоковые системы разработки находят применение на месторождениях вытянутой формы с расположением рядов водонагнетательных скважин чаще в поперечном направлении. Принципиальное отличие блоковых систем разработки от системы внутриконтурного заводнения состоит в том, что блоковые системы предполагают отказ от законтурного заводнения. На рис. 8.3 показана принципиальная схема разработки пласта А4 Кулишовского нефтяного месторождения (Куйбышевская область). Как видно из схемы, ряды водонагнетательных скважин разрезают единую залежь на отдельные участки (блоки) разработки.
Преимущество блоковых систем заключается в следующем:
1. Отказ от расположения водо-нагнетательных скважин в законтурной зоне исключает риск бурения скважин в слабоизученной на стадии разведки месторождения части пласта.
2. Более полно используется проявление естественных сил гидродинамической области законтурной части пласта.
3. Существенно сокращается площадь, подлежащая обустройству объектами поддержания пластового давления.
4. Упрощается обслуживание системы поддержания пластового давления (скважины, кустовые насосные станции и т.д.).
5. Компактное, близкое расположение добывающих и водо-нагнетательных скважин позволяет оперативно решать вопросы регулирования разработки перераспределением закачки воды по рядам и скважинам и отбора жидкости в нефтедобывающих скважинах.
Широкое распространение получили блоковые системы на месторождениях Куйбышевской области и Западной Сибири.
Блоковые системы разработки предполагают расположение водо-нагнетательных скважин в направлении перпендикулярном к линии простирания складки. Вместе с тем, для спокойных полого залегающих антиклинальных складок целесообразно расположение водо-нагнетательных скважин по оси складки.
В этом случае представляется возможность вместо нескольких линий нагнетания иметь одну.
Заводнение пластов при расположении водо-нагнетательных скважин у оси складки получило наименование осевое заводнение. Все преимущества блоковых систем разработки характерны и при осевом заводнении.
Площадное заводнение применяют при разработке пластов с очень низкой проницаемостью. При этой системе добывающие и нагнетательные скважины размещаются по правильным схемам четырех-, пяти-, семи- к девятиточечным системам. На рис. 2.4 показаны основные схемы площадного заводнения.
Схемы отличаются не только расположением скважин, но и соотношением между числом добывающих и нагнетательных скважин.
Так, в четырехточечной системе (см. рис. 2.4) соотношение между нефтедобывающими и нагнетательными скважинами 2:1, при пятиточечной системе - 1:1, при семиточечной системе - 1:2, при девятиточечной системе - 1:3. Таким образом, наиболее интенсивным среди рассмотренных являются семи- и девятиточечные системы.
Большое влияние на эффективность площадного заводнения оказывает однородность пласта и величина запасов нефти, приходящаяся на одну скважину, а также глубина залегания объекта разработки.
Рис. 2.4
В условиях неоднородного пласта как по разрезу, так и по площади происходят преждевременные прорывы воды к добывающим скважинам по более проницаемой части пласта, что сильно снижает добычу нефти за безводный период и повышает водонефтяной фактор, поэтому площадное заводнение желательно применять при разработке более однородных пластов.
Очаговое заводнение - это дополнение к уже осуществленной системе законтурного или внутриконтурного заводнения. При этой системе заводнения группы нагнетательных скважин размещаются на участках пласта, отстающих по интенсивности использования запасов нефти. В отдельных случаях при хорошо изученном геологическом строении продуктивного пласта очаговое заводнение можно применять как самостоятельную систему разработки месторождения.
Избирательная система заводнения является разновидностью площадного заводнения и применяется на залежах нефти со значительной неоднородностью.
При системе избирательного заводнения разработка залежи осуществляется в следующем порядке. Залежь разбуривают по равномерной треугольной или четырехугольной сетке, и затем все скважины вводят в эксплуатацию как нефтедобывающие. Конструкция скважин подбирается таким образом, чтобы любая из них отвечала требованиям, предъявляемым к нефтедобывающим и нагнетательным скважинам. Площадь залежи нефти (месторождения) обустраивают объектами сбора нефти и газа и объектами поддержания пластового давления так, чтобы можно было освоить любую скважину не только как нефтедобывающую, но и как водонагнетательную.
Детальным изучением разреза в скважинах по данным каротажа, проведением в скважинах гидропрослушивания из числа нефтедобывающих выбирают скважины под нагнетание воды. Такими скважинами должны быть скважины, в которых нефтепродуктивный разрез вскрывается наиболее полно. Прослеживается гидродинамическая связь выбранной скважины с соседними. Избирательная система с успехом применена на месторождениях Татарской АССР.
Барьерное заводнение. При разработке газонефтяных месторождений с большим объемом газовой шапки может ставиться задача одновременного отбора нефти из нефтяной оторочки и газа из газовой шапки. В связи с тем, что регулирование отбора нефти и газа, а также пластового давления при раздельном отборе нефти и газа, не приводящим к взаимным перетокам нефти в газоносную часть пласта, а газа в нефтеносную часть, весьма затруднено, прибегают к разрезанию единой нефтегазовой залежи на отдельные участки самостоятельной разработки.
Водонагнетательные скважины при этом располагают в зоне газонефтяного контакта, а закачку воды и отборы газа и нефти регулируют таким образом, чтобы происходило вытеснение нефти и газа водой при исключении взаимных перетоков нефти в газовую часть залежи, а газа в нефтяную часть. стратиграфия месторождение пластовый нефтеотдача
3. АНАЛИЗ МЕТОДОВ УВЕЛИЧЕНИЯ НЕФТЕОТДАЧИ ПЛАСТОВ НА ВОСТОЧНО-ЕЛОВОМ МЕСТОРОЖДЕНИИ
3.1 Паротепловая обработка призабойной зоны скважин
Величина притока и темпы извлечения нефти, производительность скважины в значительной степени зависят от состояния призабойной зоны скважины. Особое значение имеет эффективная проницаемость призабойной зоны пласта. Ввиду радиального притока жидкости в скважину, на единицу площади призабойной зоны приходится наибольшее количество поверхностно-активных компонентов. Снижение проницаемости призабойной зоны может быть обусловлена выпадением содержащихся в нефти парафина и асфальтено-смолистых веществ, а также отложением их на поверхности породы и стенках скважины. Поверхности частиц песка или других пород скелета пласта могут служить такими же центрами кристаллизации, как и шероховатые поверхности стенок насосно-компрессорных труб.
В результате адсорбции поверхностно-активных веществ нефти может изменяться молекулярная природа поверхности и произойти гидрофобизация первоначально гидрофильной породы. Опыты Ф.А. Требина показали, что явление затухания фильтрации с повышением температуры снижается, и при 60-65°С для большинства нефтей оно почти исчезает. Повышение температуры препятствует также выделению из нефти парафина и асфальтено-смолистых веществ. Указанные факты показывают, что для повышения производительности скважин тепловое воздействие на призабойную зону является одним из важных методов. Паротепловое воздействие на призабойную зону преследует цель прогрева ограниченной площади пласта, направленного на увеличение продуктивности скважин. При этом улучшаются фильтрационные характеристики, снижается вязкость нефти, изменяйся смачиваемость горных пород, увеличивается подвижность нефти, активизируется режим растворенного газа.
Тепловое воздействие на призабойную зону может быть осуществлено путем электропрогрева или закачкой пара. Нагнетание пара в пласт производят в режиме циклической закачки его в добывающие скважины, выдержкой их в течение некоторого времени и последующего отбора продукции из этих же скважин. При данной технологии достигается прогрев нефтесодержащего пласта в призабойной зоне скважин, наряду со снижением вязкости повышается пластовое давление, происходит очистка призабойной зоны от смолистых веществ и восстановление ее проницаемости, в результате чего увеличивается приток нефти к скважинам, значительно облегчается подъем продукции по стволу скважины, увеличивается охват пласта вытеснением.
На этапе нагнетания пара в пласт он преимущественно внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта за счет противоточной капиллярной пропитки происходит активное перераспределение жидкостей: горячая вода и пар проникают в менее проницаемые пропластки, вытесняя оттуда прогретую нефть в более проницаемые слои.
Технология пароциклического воздействия на пласт заключается в последовательной реализации трех операций (этапов).
Этап 1. В добывающую скважину в течение двух-трех недель закачивается пар в объеме 30-100 т на один метр эффективной нефтенасыщенной толщины пласта. При этом происходит нагревание скелета пласта, содержащейся в нем нефти, температурное расширение всех компонентов, повышение давления в призабойной зоне. Объем закачиваемого пара должен быть тем больше, чем больше вязкость нефти в пластовых условиях и чем меньше давление в пласте.
Этап 2. После закачки пара скважину закрывают на «паропропитку» и выдерживают для конденсации пара и перераспределения насыщенности в пласте. В этот период происходит выравнивание температуры между паром, породами пласта и насыщающих его флюидов. При снижении давления в зону конденсации устремляется оттесненная от призабойной зоны пласта нефть, ставшая более подвижной в результате уменьшения вязкости при прогреве. В период конденсации пара происходит и капиллярная пропитка - в низкопроницаемых зонах нефть заменяется водой.
Этап 3. После выдержки скважину пускают на режим отбора продукции, при котором эксплуатацию ведут до предельного рентабельного дебита. По мере остывания прогретой зоны пласта в процессе эксплуатации дебит скважины постепенно уменьшается. Этот процесс сопровождается уменьшением объема горячего конденсата, что приводит к снижению давления в зоне, ранее занятой паром. Возникающая при этом депрессия является дополнительным фактором, способствующим притоку нефти в эту зону.
Эти операции (этапы) составляют один цикл. Фазы каждого цикла, а также объемы закачки пара (на 1 м эффективной толщины пласта) - величины непостоянные и могут меняться от цикла к циклу для получения максимального эффекта.
При осуществлении паротепловой обработки скважин горные породы действуют как теплообменник и способствуют тому, чтобы тепло, аккумулированное в процессе закачки пара, эффективно использовалось при фильтрации нефти из пласта в скважину. Одновременно при проведении паропрогрева происходит очистка призабойной зоны от парафина и асфальтено-смолистых отложений.
Реакция пласта на циклическую закачку пара в значительной степени зависит от коллектора. В толстых крутопадающих пластах, где преобладающим механизмом вытеснения нефти является гравитационное дренирование, может быть осуществлено 10 циклов и более. В пологих пластах, где добыча осуществляется на режиме растворенного газа, пластовая энергия быстро истощается, ограничивая число циклов обработки паром до 3-5.
На практике период нагнетания пара обычно равен одной неделе, редко - более трех недель, а период выдержки длится 1-4 сут., иногда больше, в зависимости от характеристик пласта. Последующая добыча с повышенным дебитом может длиться от 4 до 6 месяцев, после чего цикл работ повторяется.
Существенным экономическим показателем эффективности пароциклического воздействия является паронефтяной фактор, величина которого не должна превышать 2 т/т.
Прогрев ПЗС производят также с помощью спуска на забой скважины нагревательного устройства - электропечи или специальной погружной газовой горелки.
Однако электропрогревом, вследствие малой теплопроводности горных пород, не удается прогреть более или менее значительную зону, и радиус изотермы с избыточной температурой 40°С, как показывают расчеты и исследования, едва достигает 1 м.
При закачке теплоносителя радиус зоны прогрева легко доводится до 10-20 м, но для этого требуются стационарные котельные установки - парогенераторы. При периодическом электропрогреве ПЗС в скважину на специальном кабеле-тросе спускают на нужную глубину электронагреватель мощностью несколько десятков кВт. Повышение мощности приводит к повышению температуры в зоне расположения нагревателя до 180-200°С, вызывающее образование из нефти кокса.
Для периодического прогрева ПЗС создана самоходная установка электропрогрева скважин СУЭПС-1200 на базе автомашины повышенной проходимости ЗИЛ-157Е. На машине смонтированы каротажная лебедка с барабаном и приводом от двигателя автомобиля. На барабан наматывается кабель-канат КТНГ-10 длиной 1200 м с наружным диаметром 18 мм. Кабель-канат имеет три основные токопроводящие жилы сечением по 4 мм2 и три сигнальные жилы сечением по 0,56 мм2. Скрутка жил обматывается прорезиненной лакотканью и грузонесущей оплеткой, рассчитанной на разрывное усилие кабеля в 100 кН.
Вес 1 м кабеля 8 Н. На одноосном прицепе смонтированы автотрансформатор и станция управления от установки для центробежных электронасосов, применяемых при откачке нефти из скважин.
В комплект установки СУЭПС-1200 входят три таких прицепа для обслуживания трех скважин, а также вспомогательное оборудование, состоящее из устьевого ручного подъемника, треноги блока-баланса, устьевых зажимов кабеля и другого оборудования. Нагревательный элемент имеет три U-образные трубки из красной меди диаметром 11 мм, заполненные плавленой окисью магния. В трубках расположена спираль из нихромовой проволоки (рис. 21).
Сверху нагревательные трубки закрыты металлическим кожухом для защиты от механических повреждений. Нагреватель имеет наружный диаметр 112 мм и длину 2,1 м при мощности 10,5 кВт и длину 3,7 м при мощности 21 кВт. В верхней части электронагревателя монтируется термопара, подключаемая к сигнальным жилам кабеля, с помощью которой регистрируется на поверхности забойная температура и весь процесс прогрева. На устье скважины кабель-канат подключается к станции управления и автотрансформатору, который подсоединяется к промысловой низковольтной (380 В) сети.
Измерения температуры по стволу скважины показали, что нагретая зона распространяется примерно на 20-50 м вверх и на 10-20 м вниз от места установки электронагревателя. Это объясняется конвективным переносом теплоты в результате слабой циркуляции жидкости в колонне над нагревателем. По данным промысловых электропрогревов ПЗС в Узбекнефти после 5-7-суточного прогрева нагревателем мощностью 10,5 кВт и последующего его отключения температура на забое падает со скоростью примерно 3-5°С/ч. Поэтому пускать скважину в работу после электропрогрева необходимо без промедления.
Эффект прогрева держится примерно 3-4 мес. Повторные прогревы, как правило, показывают снижение эффективности.
По результатам 814 электропрогревов в Узбекнефти эффективных было 66,4%, при этом получено 70,3 т дополнительно добытой нефти на одну успешную обработку. По результатам 558 электропрогревов в Башкирии эффективных было 64,7%, при этом на каждую эффективную обработку получено 336 т дополнительной нефти.
В Сахалиннефти по данным 670 операций средняя эффективность составила 63 т дополнительной нефти на 1 обработку.
3.2 Тепловые методы повышения нефтеотдачи
При тепловых методах повышения нефтеотдачи пластов (ПНП) коллектор подогревается, чтобы снизить вязкость нефти и/или испарить ее. В обоих случаях нефть становится более подвижной и ее можно более эффективно направлять к добывающим скважинам. Помимо добавочного тепла в этих процессах создается движущая сила (давление). Существует два перспективных метода термического ПНП: нагнетание перегретого водяного пара и метод внутрипластового движущегося очага горения.
3.3 Вытеснение нефти перегретым паром
Водяной пар благодаря скрытой теплоте парообразования обладает значительно большим теплосодержанием, чем горячая вода. Если вода при температуре 148,9°С содержит 628 кДж/кг тепла, то насыщенный пар при той же температуре - 2742 кДж/кг, т.е. более чем в 4 раза. Но это еще не означает, что пар отдаст пласту в 4 раза больше тепла, чем-то же количество воды. Если пластовая температура равна 65°С, то 1 кг воды, нагретой до 148,9°С передает пласту 356 кДж, а 1 кг пара при тех же условиях - 2470 кДж, т.е. почти в 7 раз больше. Поэтому при помощи пара в пласт можно внести значительное количество тепла в расчете на единицу веса нагнетаемого агента. Кроме того, при одинаковых условиях 1 кг пар занимает в 25-40 раз больший объем и может вытеснить наибольший объем нефти, чем горячая вода.
При закачке пара в нефтяной пласт используют насыщенный влажный пар, представляющий собой смесь пара и горячего конденсата. Степень сухости закачиваемого в пласт пара находится в пределах 0,3-0,8. Чем выше степень сухости пара, равная отношению массы пар к массе горячей воды при одинаковом давлении и температуре, тем больше у него теплосодержание по сравнению с горячей водой. К примеру, при давлении 10 МПа и температуре 309°С у влажного пара со степенью сухости 0,6 теплосодержание почти в 1,6 раза больше, чем у горячей воды.
Процесс распространения тепла в пласте и вытеснение нефти при нагнетании в пласт водяного пара является более сложным, чем при нагнетании горячей воды. Пар нагнетают в пласты через паронагнетательные скважины, расположенные внутри контура нефтеносности, извлечение нефти производится через добывающие скважины.
Механизм извлечения нефти из пласта, при нагнетании в него перегретого пара, основывается на изменениях свойств нефти и воды, содержащихся в пласте, в результате повышения температуры. С повышением температуры вязкость нефти, ее плотность и межфазовое отношение понижаются, а упругость паров повышается, что благоприятно влияет на нефтеотдачу. Увеличению нефтеотдачи также способствуют процессы испарения углеводородов за счет снижения их парциального давления. Снижение парциального давления связано с наличием в зоне испарения паров воды. Из остаточной нефти испаряются легкие компоненты и переносятся к передней границе паровой зоны, где они снова конденсируются и растворяются в нефтяном валу, образуя оторочку растворителя, которая обеспечивает дополнительное увеличение нефти. При температуре 375°С и атмосферном давлении может дистиллироваться (перегоняться) до 10% нефти плотностью 934 кг/м3.
При паротепловом воздействии (ПТВ) в пласте образуются три характерные зоны: зона вытеснения нефти паром; зона горячего конденсата, где реализуется механизм вытеснения нефти водой в неизотермических условиях, и зона, не охваченная тепловым воздействием, где происходит вытеснение нефти водой пластовой температуры. Указанные зоны различаются по температуре, распределению насыщенности жидкости и механизму вытеснения нефти из пласта. Процессы, происходящие в каждой из этих зон, испытывают взаимное влияние.
Нагрев пласта вначале происходит за счет теплоты прогрева. При этом температура нагнетаемого перегретого пара вблизи нагнетательной скважины снижается (в зоне 1) до температуры насыщенного пара (т.е. до точки кипения воды при пластовом). На прогрев пласта (в зоне 2) расходуется скрытая теплота парообразования и далее пар конденсируется. В этой зоне температура пароводяной смеси и пласта будут приблизительно постоянны и равны температуре насыщенного пара (зависящей от давления), пока используется вся скрытая теплота парообразования. Основным фактором увеличения нефтеотдачи здесь является испарение (дистилляция) легких фракций остаточной нефти, образованной после вытеснения горячей водой. Размеры ее при практически приемлемых объемах закачки небольшие.
В зоне 3 пласт нагревается за счет теплоты горячей воды (конденсата) до тех пор, пока температура ее не упадет до начальной температуры пласта. В зоне 4 температура пласта снижается до начальной.
Нефть вытесняется остывшим конденсатом при пластовой температуре. Часть теплоты, как и в случае нагнетания горячей воды, расходуется через кровлю и подошву пласта. Кроме того, на распределение температуры влияет изменение пластового давления по мере удаления теплоносителя от нагнетательной скважины. В соответствии с распределением температуры нефть подвергается воздействию остывшей воды, горячего конденсата, насыщенного и перегретого пара.
Увеличению нефтеотдачи также способствуют процессы испарения под действием пара нагретой нефти и фильтрации части углеводородов в парообразном состоянии. В холодной зоне пары углеводородов конденсируются, обогащая нефть легкими компонентами и вытесняя ее как растворитель.
Механизм вытеснения и характер распределения температуры в пласте удобно рассматривать и в обратном к вытеснению направлении.
В зоне 4 фильтруется безводная нефть при пластовой температуре.
В зоне 3 температура пласта тоже равна начальной. Вытеснение нефти водой происходит при пластовой температуре. Насыщенность воды в направлении вытеснения постепенно уменьшается до значения насыщенности связанной водой.
Зона 2 - это зона горячей воды. Температура в этой зоне снижается от температуры пара до начальной пластовой. В ней фильтруется горячая вода, нагретая нефть, обогащенная легкими фракциями углеводорода, которые образовались из остаточной нефти в зоне пара и вытесняются из зоны конденсации. Здесь вытеснение нагретой нефти производится горячей водой. В этой зоне повышение коэффициента нефтеотдачи достигается за счет снижения вязкости нефти, повышения ее подвижности, усиления капиллярных эффектов.
На участке зоны 2, примыкающей к зоне 1, температура несколько ниже, чем температура парообразования. В этой зоне, размеры которой небольшие, пары воды и газообразные углеводородные фракции из-за охлаждения компенсируются и вытесняются горячей водой по направлению к добывающим скважинам.
Зоны: 1 - насыщенного пара; 2 - вытеснение нефти горячей водой; 3 - вытеснение нефти водой при пластовой температуре; 4 - фильтрация нефти при начальных условиях.
Зона 1 - это зона влажного пара, которая образуется вблизи нагнетательной скважины. В ней температура приблизительно постоянна, ее значение равно температуре парообразования воды, зависящей от давления в пласте. В этой зоне происходит испарение легких фракций из остаточной нефти.
Таким образом, увеличение нефтеотдачи пласта при закачке пара достигается за счет снижения вязкости нефти, что способствует улучшению охвата пласта воздействием: путем расширения нефти, перегонки ее паром и экстрагирования растворителем, что повышает коэффициент вытеснения.
Вязкость нефтей, как правило, резко снижается с увеличением температуры, особенно в интервале 20-80°С. Поскольку дебит нефти обратно пропорционален ее вязкости, то производительность скважин может быть увеличена в 10-30 раз и более.
Высоковязкие нефти со значительной плотностью обладают большим темпом снижения вязкости, остаточная нефтенасыщенность их уменьшается более резко, особенно при температурах до 150°С. С повышением температуры вязкость нефти уменьшается более интенсивно, чем вязкость воды, что также благоприятствует повышению нефтеотдачи.
В процессе закачки пара нефть в зависимости от состава может расширяться, за счет чего появляется дополнительная энергия для вытеснения пластовых жидкостей.
По Р.Х. Муслимову (1999), влияние различных факторов па нефтеотдачу при вытеснении нефти паром оценивается за счет (рис. 33):
* снижения вязкости нефти - до 30;
* эффекта термического расширения - до 8%;
* эффекта дистилляции - до 9%;
* эффекта газонапорного режима - до 7%;
* эффекта увеличения подвижности - до 10%.
Процесс вытеснения нефти паром предусматривает непрерывное нагнетание пара в пласт. По мере продвижения через пласт пар нагревает породу и содержащуюся в нем нефть и вытесняет ее по направлению к добывающим скважинам. При этом процессе основная доля тепловой энергии расходуется на повышение температуры пород пласта. Поэтому даже без тепловых потерь при движении теплоносителя по стволу скважины и в кровлю-подошву пласта фронт распространения температуры отстает от фронта вытеснения нефти.
С целью повышения эффективности процесса и рационального использования внесенного в пласт тепла, после создания тепловой оторочки, составляющей 0,6-0,8 парового объема пласта, эту оторочку продвигают к забоям добывающих скважин не нагретой водой путем закачки ее в те же нагнетательные скважины. Данная технология получила название метода тепловых оторочек. Оценка эффективности теплового воздействия на пласт при закачке пара обычно выражается удельным расходом пара на добычу дополнительной нефти.
При сжигании 1 т нефти в парогенераторах можно получить 13-15 т пара, поэтому при рентабельной технологии удельный расход пара на дополнительную добычу нефти не может быть больше 13-15 т. Если учесть затраты на приготовление и закачку пара, составляющие 30-35% от общих расходов, то получится, что при эффективном процессе расход пара на добычу одной тонны дополнительной нефти должен быть не более 3-6 тонн.
При выборе объекта для ПТВ необходимо иметь в виду, что нефтенасыщенная толщина пласта не должна быть менее 6 м. При меньшей толщине процесс вытеснения нефти паром становится неэкономичным из-за больших потерь теплоты через кровлю и подошву залежи. Глубина залегания пласта не должна превышать 1200 м из-за потерь теплоты в стволе скважины, которые примерно достигают 3% на каждые 100 м 1лубины, и технических трудностей обеспечения прочности колонн. Проницаемость пласта не должна быть менее 0,1 мкм, а темп вытеснения нефти должен быть достаточно высоким для уменьшения потерь теплоты в кровлю и подошву залежи. Общие потери теплоты в стволе скважины и в пласте не должны превышать 50% от поступившей на устье скважины. В противном случае процесс ПТВ будет неэффективен.
Существуют различные технологические схемы ввода в пласт теплоносителя (пара) для подогрева пласта и содержащихся в нем флюидов: циклическая, блочно-циклическая, импульсно-дозированная, площадная, или рядная.
3.4 Внутрипластовое горение
Процесс внутрипластового горения (ВГ) - способ разработки и метод повышения нефтеотдачи продуктивных пластов, основанный на использовании энергии, полученной при частичном сжигании тяжелых фракций нефти (кокса) в пластовых условиях при нагнетании окислителя (воздуха) с поверхности. Это сложное, быстро протекающее превращение, сопровождаемое выделением теплоты, используется для интенсификации добычи нефти и увеличения нефтеотдачи в основном на залежах нефти с вязкостью более 30 мПа•с.
Основа горения - экзотермическая окислительно-восстановительная реакция органического вещества с окислителем. Для начала реакции необходим первичный энергетический импульс, чаще всего нагревание нефти. Поэтому процесс ВГ начинается с поджога некоторого количества нефти с помощью забойного нагревающего устройства (электрических или огневых горелок). После образования устойчивого очага горения в пласт закачивают через нагнетательную скважину окислитель или смесь окислителя и воды. Кислород соединяется с топливом (нефтью), образуя СО2 и воду с выделением тепла. Предварительно разогретая порода далее нагревает движущийся через нее окислитель до температуры выше воспламенения кокса и нефти. При нагнетании окислителя разогретая зона (очаг горения), температура которого поддерживается высокой за счет сгорания части нефтепродуктов, продвигается вглубь пласта. При этом часть пластовой нефти (10-15%) сгорает и выделяющиеся в результате горения газы, пар и другие горючие продукты сгорания, продвигаясь по пласту, эффективно вытесняют нефть из пласта. Процесс автотермический, т.е. продолжается непрерывно за счет образования продуктов для горения (типа кокса). Процесс внутрипластового горения сочетает все преимущества термических методов - вытеснение нефти горячей водой и паром, а также смешивающегося вытеснения, происходящею в зоне термического крекинга, в которой все углеводороды переходят в газовую фазу.
Диапазон применения ВГ очень широк: на неглубоко залегающих месторождениях и на значительных глубинах.
Экспериментальные работы в сочетании с теоретическими исследованиями позволили сформулировать основные закономерности процесса ВГ:
- внутрипластовое горение может проявляться в трех разновидностях: сухое (СВГ), влажное (ВВГ) и сверхвлажное (СВВГ);
- определяющим параметром для ВВГ и СВВГ является водовоздушный фактор (ВВФ) - отношение объема закачиваемой в пласт воды к объему закачиваемого в пласт воздуха;
- интенсивные экзотермические реакции окисления нефти происходят в узкой зоне пласта, называемой фронтом горения;
- на фронте горения при сухом и влажном процессах температура в среднем может составить 400-600°С, процесс сверхвлажного горения протекает при температурах 200-250°С:
- увеличение ВВФ позволяет: повысить скорость продвижения по пласту тепловой волны, снизить расход воздуха на выжигание пласта и на добычу нефти, уменьшить концентрацию сгорающего в процессе химических реакций топлива;
- на процессе внутрипластового горения существенное влияние оказывают такие параметры, как пластовое давление, тип породы-коллектора, тип нефти, начальная нефтенасыщенность.
Различают два основных варианта внутрипластового горения - прямоточный и противоточный.
Прямоточное внутрипластовое горение - это процесс теплового воздействия на пласт, при котором фильтрация окислителя и распространение фронта горения происходит в направлении вытеснения нефти - пт нагнетательной скважины к добывающей. Скорость движения фронта горения регулируется типом и количеством сгоревшей нефти и скоростью нагнетания воздуха.
Если же повышают температуру призабойной зоны добывающей скважины и очаг горения возникает в ее окрестности, то фронт горения распространяется к нагнетательной скважине, т.е. в направлении, противоположном направлению вытеснения нефти. Такой процесс называется противоточпым горением. Он используется, как правило, только в том случае, если невозможно осуществить прямоточный процесс горения, например на залежах с неподвижной нефтью или битумом.
При внутрипластовом горении действует широкий комплекс механизмов извлечения нефти: вытеснение ее газообразными продуктами горения, водой, паром; дистилляция легких фракций нефти; разжижение нефти под действием высокой температуры и углекислого газа. Образованные за счет дистилляции легкие фракции нефти переносятся в область впереди теплового фронта и, смешиваясь с исходной нефтью, играют роль оторочки растворителя.
4. МЕТОДЫ КОНТРОЛЯ И РЕГУЛИРОВАНИЯ РАЗРАБОТКИ МЕСТОРОЖДЕНИЯ
Рассмотрены теория и практика геофизических методов исследования скважин при разработке месторождений нефти с целью определения нефтенасыщенности пластов. Даны понятия о параметрах выработки продуктивных пластов, описаны методы качественного и количественного определения начальной, текущей и остаточной нефтенасыщенности, методика работ, условия применения, эффективность и ограничения каждого метода. Описано применение геофизических методов для оценки эффективности мероприятий по повышению нефтеотдачи пласта.
Для промысловых геофизиков и разработчиков нефтяных месторождений
Бурный рост потребления нефти, отсутствие естественного воспроизводства и ограниченность запасов ее на Земле вынуждают предпринимать энергичные усилия к более полному извлечению нефти из недр. В связи с этим очень важной в области разработки нефтяных месторождений является проблема повышения нефтеотдачи и оценки эффективности новых методов повышения нефтеотдачи пластов. Определение параметров выработки нефтяных пластов позволяет решить эти задачи.
Для оценки эффективности новых методов повышения нефтеотдачи необходимо иметь надежные средства определения нефтеотдачи пластов. Такие средства могут основываться на методах промысловой геофизики. Применение этих методов для оценки нефтеотдачи пластов сдерживалось следующими обстоятельствами:
а) неконтролируемым изменением солености пластовых вод (преимущественно в сторону опреснения) в процессе разработки нефтяных месторождений;
б) недостаточным знанием петрофизических параметров разрабатываемых пластов, в частности макроскопического сечения поглощения нейтронов минерального скелета, коэффициента статической аномалии самопроизвольной поляризации пород, поверхностной проводимости и т.п.;
в) несовершенством методов определения пористости разрабатываемых пластов, особенно в обсаженных скважинах.
В течение 1964-1987 гг. автором проведены исследования и разработан ряд геофизических, методов для количественного определения параметров выработки продуктивного пласта при произвольной солености пластовых вод.
Этот ряд включает методы: радиогеохимический, определения остаточной нефтенасыщенности заводненных пластов с использованием импульсного нейтронного каротажа; определения текущей нефтенасыщенности пластов и прогнозирования начальной доли нефти в жидкости, извлекаемой из пласта; многозондового нейтронного каротажа для определения пористости пластов; измерений расхода и определения состава жидкости в скважинах.
Некоторые из указанных методов применяются в промышленных масштабах. Так, радиогеохимический метод используется для выделения заводненных пластов в различных нефтедобывающих районах страны. Он широко применяется в США, Венесуэле, ГДР и в других странах. При этом зарубежные специалисты признают приоритет нашей страны в разработке этого метода.
Метод определения остаточной иефтенасыщенности заводленных пластов с использованием импульсного нейтронного каротажа прошел опытно-промышленное опробование на нефтяных месторождениях различных районов страны. Метод определения текущей нефтенасыщенности пластов и прогнозирования начальной доли нефти в жидкости, извлекаемой из пласта, имеет большое значение для промысловой геофизики. Этот метод широко опробован на нефтяных месторождениях ТатАССР, Западной Сибири и БашАССР.
В настоящее время проведен большой объем научно-исследовательских работ по разработке технических и методических средств измерения пористости пластов методами многозондового нейтронного каротажа, определения расхода и состава жидкости в скважинах. На основе этих работ показана высокая перспективность применения указанных методов в промысловой геофизике.
Описанными методами определены параметры выработки пластов при использовании различных вытеснителей и решен ряд важных проблем разработки нефтяных месторождений. В частности, разработана методика оценки эффективности мероприятий по повышению нефтеотдачи пластов и определена эффективность некоторых методов повышения нефтеотдачи пластов на нефтяных месторождениях ТатАССР.
Установлен наиболее точный вид закона изменения нефтеотдачи от удельной площади, приходящейся на одну скважину, и разработана методика оптимизации плотности сетки скважин при разработке нефтяных месторождений.
Несмотря на определенные успехи в промышленном освоении, объем и темпы внедрения предложенных методов в нефтяной промышленности остаются неудовлетворительными. Такое положение сложилось как из-за организационных причин, так и из-за недостаточной информированности научно-технической общественности о физических основах этих методов. В последние годы для контроля разработки нефтяных месторождений начали применять бурение специальных скважин, обсаженных электроизоляционными (стеклопластиковыми) колоннами.
Такая конструкция скважин позволяет одновременно производить исследования как нейтронными, так и электрическими методами. Большинство перечисленных методов получили развитие и в других странах, прежде всего в США. Однако в промышленности США применяются и другие методы, такие как углеродно-кислородные и диэлектрический.
В настоящее время геофизические методы контроля разработки нефтяных месторождений развиваются быстрыми темпами. Периодическое обобщение и изложение новых данных о методах контроля будет способствовать ускорению этого процесса.
4.1 Методы регулирования разработки месторождения и оценка их эффективности
Известен способ закачки в пласт гелеобразующего состава для регулирования разработки нефтяных месторождений, включающий полисахарид, соединение поливалентного металла и воду (Патент РФ №2107811, МПК Е21В 43/22, опубл. 27.03.98, Бюл. №9). В качестве полисахарида используют экзополисахарид, содержащий 1-3 вес. % уроновых кислот и продуцируемый Azotobacter Vinelandii (Lipman) ФЧ-1 ВКПМ В-5933 в виде культуральной жидкости, в качестве соединения поливалентного металла используют хромкалиевые квасцы.
Состав готовят и закачивают на пресной воде. Недостатком данного способа закачки гелеобразующего состава является то, что экзополисахарид в виде культуральной жидкости обладает невысокими вязкостными характеристиками, а при контакте со сточной водой (минерализация 100 г/л и выше) полностью теряет свои вязкостные свойства, выпадая в осадок.
Известен способ регулирования разработки нефтяной залежи, включающий закачку через нагнетательную скважину композиции гуаровой камеди, поверхностно-активного вещества и растворителя (Патент РФ №2250361, МПК Е21В 43/22, опубл. 20.04.05, Бюл. №11). Недостатком данного способа является низкая эффективность при разработке неоднородных по проницаемости заводненных нефтяных пластов.
Известен способ повышения нефтеотдачи методом гидроразрыва пласта (Патент США №3888312, НКИ 166/308.5, опубл. 10.06.97), в котором в качестве гелеобразующего полимера используется полисахарид класса галактоманнан (гуаровая камедь) с массовой концентрацией от 0,3 до 3% и в качестве сшивателя - органические соединения титана со степенью окисления +4. Недостатком данного способа является то, что для процесса гелеобразования необходимо поддерживать значения водородного показателя среды (рН) в интервале от 2 до 7. Для этого дополнительно вводится фумаровая или муравьиная кислота. Еще одним недостатком является очень короткий индукционный период гелеобразования. Это создает трудности при осуществлении технологического процесса закачки таких сшитых полимерных составов на промыслах.
Наиболее близким по технической сущности к предлагаемому изобретению является способ регулирования разработки нефтяных месторождений, включающий закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла и воды и технологическую выдержку для гелеобразования (Патент РФ №2285785, МПК Е21В 33/138, С09К 8/90, опубл. 20.10.06, Бюл. №29). В качестве полисахарида используют ксантан, продуцируемый микроорганизмами типа Xanthomonas campestris, в качестве соединения поливалентного металла используют ацетат хрома и/или хромкалиевые квасцы при соотношении 1:1 в воде с минерализацией от 0,5 г/л до 100 г/л при следующем соотношении компонентов, мас.%: ксантан - 0,05-0,3, ацетат хрома и/или хромкалиевые квасцы - 0,005-0,2, вода - остальное, причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 10 суток.
Недостатком данного способа является то, что полученный гель на основе ксантана и ацетата хрома и/или хромкалиевых квасцов легко разрушается под действием приложенного напряжения. Вследствие этого снижается эффективность выравнивания проницаемости неоднородных заводненных нефтяных пластов.
Технической задачей данного изобретения является повышение эффективности способа регулирования разработки неоднородных по проницаемости заводненных нефтяных пластов за счет улучшения фильтрационных свойств гелеобразующих составов, обладающих селективным действием, повышения их прочности и расширения технологических возможностей способа.
Указанная техническая задача достигается первым способом регулирования разработки нефтяных месторождений, включающим закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования. Новым является то, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид цинка в присутствии ацетата хрома в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь |
0,2-0,5 |
|
Оксид цинка |
0,03-0,05 |
|
Ацетат хрома |
0,02-0,1 |
|
Вода |
Остальное, |
причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 суток.
Указанная техническая задача достигается вторым способом регулирования разработки нефтяных месторождений, включающим закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования. Новым является то, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид магния в присутствии ацетата хрома, как в пресной, так и в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь |
0,2-0,5 |
|
Оксид магния |
0,02-0,04 |
|
Ацетат хрома |
0,01-0,12 |
|
Вода |
Остальное, |
причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 суток.
По химическому строению гуаровая камедь (гуар) представляет собой неионогенный полисахарид растительного происхождения. Молекулярная структура представляет собой прямую цепь, образованную галактозой и маннозой, следовательно, гуаровая камедь является галактоманнаном. Соотношение маннозы и галактозы должно быть приблизительно 2:1.
Гуаровая камедь является гидроколлоидом с высоким молекулярным весом. При растворении в холодной и горячей воде гуар образует высоковязкий гель.
С 1960 года начали применять гуар, сшитый боратными сшивателями для транспорта проппанта в жидкостях гидроразрыва для стимуляции притока в нефтяных и газовых скважинах методом гидроразрыва пласта (ГРП). Как раньше, так и сейчас в качестве сшивателя используют водорастворимые соединения бора (борная кислота или другие боросодержащие соединения) и гидроокись натрия как щелочной активатор для поддержания рН на уровне 10-10,5.
Но сшитые полимерные составы на основе гуара и боратов практически не имеют индукционного периода сшивки, т.е. загущение композиции происходит практически сразу после смешения компонентов. Это создает трудности при осуществлении технологического процесса закачки таких сшитых полимерных составов на промыслах.
С целью повышения нефтеотдачи неоднородных по проницаемости заводненных нефтяных пластов путем выравнивания проницаемостной неоднородности пласта закачкой гелеобразующего состава были разработаны сшитые полимерные составы с использованием в качестве сшивателей окислов двухвалентных металлов и ацетата хрома. Применение окислов металлов в качестве сшивателей до сих пор не практиковалось.
Под влиянием сшивателей происходит структурирование водного раствора гуара с образованием гелеобразной системы. Процесс этот происходит во времени. В течение некоторого периода времени, называемого индукционным периодом, вязкость композиции практически не отличается от вязкости раствора полимера. За это время необходимо закачать ее в пласт, где и происходит образование сшитой полимерной системы (СПС). Длительный индукционный период позволяет продвинуть гелеобразующий состав на большую глубину до начала гелеобразования. Очевидно, что в более проницаемые пропластки состав внедрится на большую глубину, чем в малопроницаемые. Для образования прочной сшитой полимерной системы при закачке гелеобразующего состава в пласт по предлагаемым способам делают технологическую выдержку продолжительностью от 3 до 5 суток. Чем выше неоднородность, тем больше продолжительность технологической выдержки.
Растворы гуаровой камеди имеют высокий коэффициент солестойкости. Коэффициент солестойкости - это устойчивость водных растворов полимеров к высаливающему действию электролитов, содержащихся в минерализованной (сточной) воде. Для приготовления растворов гуаровой камеди использовалась как пресная, так и минерализованная вода с общей минерализацией до 300 г/л, что значительно расширяет технологические возможности использования способа.
В качестве сшивателей были использованы окислы цинка (ZnO) в минерализованной воде и окислы магния (MgO) в пресной и минерализованной воде в присутствии ацетата хрома.
Оксид цинка ZnO - рыхлый белый порошок, желтеющий при нагревании, соответствует ГОСТу 10262-73. Оксид цинка применяется для изготовления белой масляной краски (цинковые белила), в медицине и косметике, значительная часть получаемого оксида цинка используется в качестве наполнителя резины в шинной промышленности.
Сшивка гуара только в присутствии ZnO не происходит, необходима затравка, в качестве которой используется ацетат хрома. Надо сказать, что в присутствии только ацетата хрома гуаровая камедь также не образует сшитую полимерную систему.
В пресной воде в исследованном диапазоне концентраций гуара и сшивателя - оксида цинка в присутствии ацетата хрома не происходит образование сшитых полимерных систем.
Оксид магния MgO обычно получают путем прокаливания природного магнезита MgCO3. Он представляет собой белый рыхлый порошок, известный под названием жженой магнезии, применяется в медицине и при изготовлении огнеупоров. Выпускается согласно ТУ-6-09-3023-79.
Преимуществом окиси магния является то, что она образует СПС на основе гуара в пресной и минерализованной воде. Но окись магния, так же как и окись цинка, вступает в реакции гелеобразования только в присутствии ацетата хрома.
4.2 Сущность изобретения
На поздней стадии разработки нефтяных месторождений с образованием обширных промытых зон усугубляется проницаемостная неоднородность пласта. Одним из эффективных направлений повышения нефтеотдачи является увеличение фильтрационного сопротивления этих зон за счет создания остаточного фактора сопротивления с применением гелеобразующих составов.
Предлагаемые гелеобразующие составы на основе гуаровой камеди в момент смешения компонентов имеют невысокую исходную вязкость и поэтому легко закачиваются в пласт, в первую очередь, поступают в высокопроницаемую зону пласта, и уже там начинается процесс гелеобразования, т.е. образование поперечных связей между отдельными макромолекулами полисахарида с помощью оксида цинка в присутствии ацетата хрома в минерализованной воде или оксида магния в присутствии ацетата хрома как в пресной, так и в минерализованной воде. Этот процесс происходит во времени, и поэтому нужна технологическая пауза, чтобы образовалась прочная устойчивая во времени сшитая полимерная система, которая закупоривает высокопроницаемую часть пласта и тем самым способствует уменьшению неоднородности пласта. При этом происходит увеличение охвата пласта воздействием (заводнением) потому, что закачиваемая вслед вода вынуждена идти в низкопроницаемые, неохваченные раннее воздействием пласты. Такая селективная закупорка пласта является одним из методов регулирования процесса разработки нефтяных месторождений.
Изучение патентной и научно-технической литературы показало, что подобная совокупность существенных признаков является новой и ранее не использовалась, что, в свою очередь, позволяет сделать заключение о соответствии технического решения критерию «новизна».
Неизвестно применение данных существенных признаков, выполняющих аналогичную задачу. Следовательно, предлагаемый способ соответствует критерию «изобретательский уровень».
Изучение влияния данного способа на изменение фильтрационных и нефтевытесняющих параметров, а также сравнение с прототипом проводилось с использованием физических моделей слоисто-неоднородных пористых сред с непроницаемыми границами раздела.
Лабораторные насыпные модели представляли собой две одинаковые трубки из нержавеющей стали длиной 150 см, внутренним диаметром 2,7 см, плотно заполненные молотым кварцевым песком, с общим входом и раздельными выходами. При этом одна трубка (более проницаемый пропласток) содержала песок, проницаемость которого по нефти кратно превышала проницаемость песка в другой трубке (менее проницаемый пропласток).
В качестве вытесняемой нефти использовалась дегазированная девонская нефть с Карабашской УКПН вязкостью 13-19 мПа·с при температуре 20°С.
В качестве полисахарида использовалась гуаровая камедь производства ООО «Химическая группа ОСНОВА», г. Казань в соответствии с ТУ 2458-019-57258729-2006 под торговым названием «Гуамин». Недостатком всех полисахаридов является их подверженность микробной деструкции, поэтому для подавления микробиологической деструкции исследуемого продукта ко всем приготавливаемым растворам добавляется бактерицид, выбранный из числа формалина, СНПХ-1002 и др. в количестве 0,3%.
В качестве соединения поливалентного металла использовались окись цинка или окись магния в присутствии ацетата хрома.
В качестве вытесняющей нефть минерализованной воды использовалась модель сточной воды (с минерализацией не ниже 100 г/л).
Первичное вытеснение нефти проводилось до общей обводненности остаточной нефти до 95-99%. После этого в общий вход модели закачивались гелеобразующие составы по предлагаемым способам, затем проводилась технологическая выдержка в течение 3-5 суток.
По прототипу закачивали раствор ксантана с массовой долей 0,2% с разными сшивателями с массовой долей 0,2% с технологической выдержкой от трех до десяти суток.
Подобные документы
Экономико-географическая характеристика района работ. Литолого-стратиграфическая характеристика разреза. Анализ эффективности методов повышения нефтеотдачи продуктивных пластов на Тагринском месторождении. Источники и объекты загрязнения окружающей среды.
дипломная работа [2,4 M], добавлен 09.10.2013Коллекторские свойства продуктивных горизонтов. Физико-химические свойства пластовых флюидов. Краткая технико-эксплуатационная характеристика фонда скважин. Классификация современных методов повышения нефтеотдачи пластов. Расчет промывки забоя скважины.
курсовая работа [1,4 M], добавлен 19.05.2011Условия залегания продуктивных пластов. Состав и физико-химические свойства пластовых жидкостей и газа месторождения. Характеристика запасов нефти. Режим разработки залежи, применение системы поддержания пластового давления, расположение скважин.
курсовая работа [323,6 K], добавлен 13.04.2015История геологической изученности и разработки месторождения. Стратиграфия, тектоника, нефтегазоносность, водоносность. Методы увеличения производительности скважин. Обзор тепловых методов повышения нефтеотдачи пластов. Разбуривание опытного участка.
дипломная работа [199,5 K], добавлен 22.04.2015Динамика и состояние разработки Сабанчинского месторождения. Анализ показателей разработки, фонда скважин. Современные технологии повышения нефтеотдачи пластов. Характеристика методов воздействия на призабойные зоны пласта для интенсификации добычи нефти.
курсовая работа [749,4 K], добавлен 26.04.2014Геолого-физическая характеристика Мыхпайского месторождения. Анализ фонда скважин и его структура. Обзор способов увеличения нефтеотдачи пластов. Проведение промышленных испытаний и оценка технологической эффективности ПГС "Ритин" на очаге №303.
дипломная работа [1,1 M], добавлен 26.01.2014Краткая характеристика Приобского нефтяного месторождения, геологическое строение данного района и описание продуктивных пластов, оценка запасов нефти и газа. Комплексные геофизические исследования: выбор и обоснование методов проведения полевых работ.
дипломная работа [560,6 K], добавлен 17.12.2012Краткая геолого-промысловая характеристика нефтяного месторождения. Исследование пластов и продуктивности скважин. Сравнительный анализ результатов и особенности разработки нефтяных залежей. Проектирование методов повышения нефтеотдачи пластов.
курсовая работа [62,3 K], добавлен 20.07.2010Общая геологическая характеристика Биттемского месторождения. Геолого-петрофизическая характеристика продуктивных пластов месторождения. Комплекс, техника и методика геофизических исследований скважин. Методики выделения пластов-коллекторов пласта АС10.
курсовая работа [2,9 M], добавлен 25.01.2014Анализ Жирновского нефтегазового месторождения. Назначение и классификация методов увеличения нефтеотдачи пластов. Состояние добычи нефти в ОАО "Лукойл". Геолого-промысловые и климатические условия применения технологии "АРС и П" при водонапорном режиме.
курсовая работа [814,7 K], добавлен 28.10.2011