Радиационное загрязнение окружающей среды и его действие на организм человека. Методы защиты

Распространение искусственного и естественного радиационного заражения. Заражение в результате аварий на АЭС. Инженерные мероприятия по уменьшению распространения искусственного и естественного облучения. Основные средства, применяемые для дезактивации.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид контрольная работа
Язык русский
Дата добавления 16.10.2012
Размер файла 33,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Контрольная работа

по курсу Безопасность жизнедеятельности

на тему: Радиационное загрязнение окружающей среды и его действие на организм человека. Методы защиты

Введение

Радиационное загрязнение - наиболее опасный вид физического загрязнения окружающей среды, связанный с воздействием на человека и другие виды организмов радиационного излучения. Этот вид загрязнения среды в нашей стране и в других государствах СНГ находится на втором месте после химического загрязнения.

К радиационному загрязнению относятся:

1) собственно радиационное загрязнение, под которым понимается физическое загрязнение среды, связанное с действием альфа- и бета-частиц и гамма-излучений, возникающих в результате распада радиоактивных веществ,

2) загрязнение окружающей среды радиоактивными веществами, т.е. по существу химическое загрязнение среды, связанное с превышением естественного уровня содержания (природного фона) радиоактивных веществ в окружающей среде.

В 21 веке человечество реально столкнулось с широким распространением нового фактора вредного воздействия, являющегося результатом его деятельности - радионуклидами.

Они обладают всеми неблагоприятными свойствами известных вредных веществ: не имеют вкуса и запаха, воздействуют на расстоянии и, попадая в него, накапливаются там, переходят по пищевой цепи, сохраняются, как правило, достаточно долго; их воздействие на человека мало изучено, а существующие методы лечения, вызываемых ими болезней человека, часто не дают положительных результатов. С радиационным загрязнением связывают также возникновение СПИДа.

Радиационное загрязнение окружающей среды происходит не только во время аварий и катастроф. Работающие безаварийно АЭС или предприятия ядерно-топливного цикла тоже опасны для здоровья людей. Радиационное загрязнение сопровождает все звенья атомного топливного цикла: добычу и переработку урана, производство топлива для АЭС, а также хранение и переработку отработавшего ядерного топлива (ОЯТ).

Радионуклид цезий-137 -- один из самых обычных в выбросах АЭС, попадая в организм человека, повышает риск получения таких заболеваний, как саркома. Стронций-90 -- может замещать кальций в твердых тканях и грудном молоке, что может привести к развитию рака крови (лейкемии), раку кости и раку груди. А малые дозы облучения криптоном-85 повышают вероятность заболевания раком кожи.

Наибольшему воздействию радиации подвергаются работники самих ядерных объектов, а также люди, которые живут совсем близко, в так называемых «закрытых административно-территориальных образованиях» (ЗАТО). Даже при строгом соблюдении всех норм радиационной безопасности, жителям таких городов свойственны раннее старение, ослабленные зрение и иммунная система, чрезмерная психологическая возбудимость. А распространенность врожденных аномалий среди детей в возрасте до 14 лет, проживающих в российских ЗАТО, вдвое превышает показатель по стране.

Но на самом деле от радиационного загрязнения страдают, сами того не зная, гораздо большее число людей. Даже самые малые дозы облучения вызывают необратимые генетические изменения, которые затем передаются из поколения в поколение. По оценкам американского радиобиолога Р. Бертелл, от атомной индустрии к началу XXI века генетически пострадало не менее 223 млн человек. Радиация тем и страшна, что ставит под угрозу жизнь и здоровье сотен миллионов людей будущих поколений, вызывая синдром Дауна, эпилепсию, дефекты умственного и физического развития.

«Вторичное загрязнение» -- еще один путь распространения «ядерной заразы». Уже давно стали обычным явлением скандалы с изъятием зараженной сельскохозяйственной продукции, грибов и ягод на российских рынках.

К сожалению, за все время существования ядерной отрасли всеобъемлющих исследований влияния «мирного» атома на природу и человека не проводилось ни разу. Однако даже те неполные данные, которыми мы располагаем, позволяют утверждать: «мирный» атом -- это мина замедленного действия.

Распространение искусственного и естественного радиационного заражения

Особенно сильное радиационное загрязнение в нашей стране произошло вследствие испытаний ядерного оружия в Семипалатинске (до 1963 г.) и из-за катастрофы на Чернобыльской АЭС (1986 г.). Радиационное загрязнение окружающей среды происходит также в связи с добычей топлива для АЭС. Моря и океаны загрязняются ядерными энергетическими установками на судах (атомные ледоколы, военные корабли, в частности атомные подводные лодки).

Распространению радиационных загрязнений способствует широкое применение радиационных материалов во многих отраслях народного хозяйства: медицине, машиностроении, производстве искусственного волокна, пищевой промышленности и т.д. Только в Москве, например, более 1500 предприятий и учреждений используют в своей деятельности ядерные установки различного назначения, радиационно-опасные вещества и изделия из них.

Лица, допущенные к работе с радиоактивными материалами должны строго соблюдать требования, обеспечивающие радиационную безопасность. Однако, недопустимо беспечное, если не сказать преступное, отношение части персонала, имеющего доступ к радиационным веществам, их правильному использованию и хранению, привело к опасному распространению этих веществ.

В результате появилась масса, в том числе совершенно неожиданных случаев распространения радиации, часто с печальным, а иногда с летальным исходом.

Были зафиксированы случаи попадания в медеплавильные печи цветного лома, загрязненного радиоактивными веществами, сооружения зданий с использованием загрязненного радиацией шлака, загрязнения радиацией банкнот, продажи радиационных материалов и т.д.

Кроме радиации, которая создается человеческой деятельностью, существует многократно превышающая ее по планете естественная радиация. Она создает радиационный фон, образуемый космическим излучением, увеличивающийся с высотой над уровнем моря и излучением естественных радионуклидов, которые могут находиться в грунте и строительных материалах. Эта естественная радиация создает повышенные дозы облучения для лиц, находящихся на большой высоте, например, во время полета на аэропланах, а также находящихся на большой глубине под Землей (в шахтах, бункерах и т.п.).

В обычных условиях естественная радиация создает малые дозы облучения 12-20 микрорентген в час, что значительно ниже недавно установленной более жесткой нормы (около 60 микрорентген в час), которая, по мнению медиков, не влияет на самочувствие и здоровье людей.

Однако, в зданиях, как правило, доза облучения оказывается существенно большей. Например, в Санкт-Петербурге средняя мощность дозы гамма-излучений больше, чем в парках: в деревянном здании - в 1,4 раза, в здании из силикатного кирпича - в 1,9 раза, а в панельном здании - в 2,5 раза.

Наибольшее значение в воздействии естественной радиации на людей имеют дозы, создаваемые радоном (радиоактивный газ без цвета, вкуса и запаха), находящимся в воздухе, в т. ч. жилых помещений, где человек проводит большую часть своей жизни.

Содержание радона зависит от региональных особенностей геологической структуры территории населенного места, конструкции здания и используемых строительных материалов. Большинство авторов, исследующих этот вопрос, считает, что причиной повышенного значения объемной активности радона в зданиях является его эскалация из грунта и строительных конструкций здания, ее связывают с уменьшенным воздухообменом в помещениях. Содержание естественных радионуклидов, создающих радиационный фон, варьирует в разных зданиях в широких пределах: от значений в 2 раза ниже средней величины и в 100 раз и более, превышающей ее.

Длительное воздействие повышенного радиационного фона в домах, построенных на территориях с аномально высоким содержанием урана в почве и подстилающих породах в районах его выработки, что было осуществлено, например, в Канаде, может вызвать заболевание людей, живущих в этих помещениях.

Поэтому Международная комиссия по радиационной защите (МКРЗ), которая раньше не придавала этой проблеме большого значения, рекомендует сейчас проводить защитные мероприятия при объемной активности радона более 200 Бк/м3, что соответствует эффективной эквивалентной дозе 20 м3/год.

При этом надо учитывать, что радон может быть в растворенном виде в воде и из нее также может поступать в воздух помещений. Это подтверждается, в частности, обследованиями 20 домов в Финляндии, которые показали, что средняя концентрация радона в ванных комнатах, кухнях и жилых комнатах оказалась соответственно равной: 8500, 3000 и 200 Бк/м3. Есть наблюдения, показывающие повышение радиоактивности воздуха, связанное с использованием душа разбрызгивающим теплую воду.

Радиационное загрязнение в результате аварий на АЭС

Радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся радиоактивному загрязнению. Основными специфическими явлениями и факторами, обусловливающими экологические последствия при радиационных авариях и катастрофах, служат радиоактивные излучения из зоны аварии, а также из формирующегося при аварии и распространяющегося в приземном слое облака (облаков) загрязненного радионуклидами воздуха; радиоактивное загрязнение компонентов окружающей среды.

Атомные электростанции представляют серьезную потенциальную радиационную опасность. Радиоактивное загрязнение окружающей среды при авариях на АЭС - это основной фактор, оказывающий влияние на состояние здоровья и условия жизнедеятельности людей на территориях, подвергшихся загрязнению.

На АЭС тепло, выделяющееся в ядерном реакторе, используется для получения водяного пара, вращающего турбогенератор для производства электрической энергии. При работе любого ядерного реактора ежесекундно происходит огромное количество делений ядер урана-235. При нормальной эксплуатации АЭС количество радиоактивных веществ, поступающих во внешнюю среду за счет газоаэрозольных выбросов и жидких сбросов, невелико. Доза внешнего и внутреннего облучения организма человека на границе санитарно-защитной зоны вокруг АЭС и за ее пределами намного ниже установленных норм, так как защитные барьеры ослабляют количество поступающей во внешнюю среду радиоактивности во много раз.

Однако в результате аварий, когда защитные барьеры оказываются разрушенными, из реакторов во внешнюю среду могут выбрасываться с потоками пара газообразные и возгоняющиеся радиоактивные элементы: радиоактивные благородные газы, радионуклиды йода и цезия.

На ранней фазе аварии (т.н. фаза "острого" облучения) происходит собственно выброс радиоактивных веществ в окружающую среду. Продолжительность этого периода может быть от нескольких минут до нескольких часов в случае разового выброса и до нескольких суток в случае продолжительного выброса.

Промежуточная фаза аварии - период, в течение которого нет дополнительного поступления радиоактивности из источника выброса в окружающую среду. Эта фаза начинается с нескольких первых часов с момента выброса и длится до нескольких суток, недель и больше. Для разовых выбросов протяженность промежуточной фазы прогнозируют, как правило, в пределах 7 - 10 суток.

Поздняя фаза (фаза восстановления) характеризуется периодом возврата к условиям нормальной жизнедеятельности населения и может длиться от нескольких недель до нескольких десятков лет в зависимости от мощности и радионуклидного состава выброса, характеристик и размеров загрязненного района, эффективности мер радиационной защиты. К наиболее тяжелым радиационным авариям на АЭС, сопровождаемым выбросом урана и продуктов его деления за пределы санитарно-защитной зоны и радиоактивным загрязнением окружающей среды, относятся т.н. запроектные аварии, обусловленные разгерметизацией первого контура реактора. Характерный пример такого типа аварий - авария реактора РБМК-1000 на Чернобыльской АЭС в апреле 1986 года.

Основной источник радиоактивных загрязнений окружающей среды и облучения людей при авариях ядерных реакторов - это выбрасываемые из реактора газоаэрозольных смеси. Радиоактивные аэрозоли после попадания на поверхность объектов закрепляются на ней. Процессы поверхностного и глубинного загрязнений, как правило, происходят одновременно.

В сухую погоду радиоактивные загрязнения являются в основном поверхностными. В то же время отдельные частицы будут проникать в выемки шероховатой поверхности, обуславливая глубинные загрязнения.

При загрязнении поверхности каплями, содержащими радиоактивные вещества, срабатывает другой механизм: первоначально будет происходить адгезия (прилипание) капель к твердой поверхности, которая в дальнейшем приведет к повышению концентрации радионуклидов на поверхности, ионному обмену и диффузии.

Помимо первичного радиоактивного загрязнения возможны последующие циклы загрязнения, так называемое <вторичное> загрязнение. При вторичном загрязнении происходит переход радиоактивных веществ с ранее загрязненного объекта или территории на чистый или загрязненный в меньшей степени объект. Так, радиоактивные загрязнения местности, сооружений и дорог могут переходить в воздушную среду или грунтовые воды, а затем осаждаться, вызывая радиоактивные загрязнения ранее "чистых" объектов, переноситься транспортом, людьми или животными.

При авариях на АЭС выделяют два основных периода: "йодовой опасности", продолжительностью до 2 месяцев, и "цезиевой опасности", которая продолжается многие годы.

В "йодном периоде", кроме внешнего облучения (до 45 % дозы за первый год), основные проблемы связаны с молоком и листовыми овощами - главными "поставщиками" радионуклида йода внутрь организма. На первом этапе радиационное воздействие на людей складывается из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными облучениями от загрязненных радионуклидами объектов окружающей среды и вдыханием радионуклидов с загрязненным воздухом. На втором этапе - облучением от загрязненных радионуклидами объектов окружающей среды и введением их в организм человека с потребляемой пищей и водой, а в дальнейшем - в основном за счет употребления населением загрязненных продуктов питания.

Принято считать, что 85 % суммарной прогнозируемой дозы облучения на последующие 50 лет после аварии составляет доза внутреннего облучения, обусловленного потреблением продуктов питания, которые выращены на загрязненной территории, и лишь 15 % падает на дозу внешнего облучения.

Рассмотрим некоторые аспекты экологических последствий радиационных катастроф на примере аварий на Чернобыльской АЭС, которая является не только самой крупной по своим масштабам, но и классической по опасным радиоэкологическим последствиям.

Первичное парогазовое облако, образовавшееся в результате разрушения реактора, содержало всю гамму радионуклидов, накопившихся в реакторе за время его работы, а также компоненты ядерного топлива.

Все эти выбросы радионуклидов при меняющихся в этот период метеорологических условиях и вызывали в целом неравномерное радиоактивное загрязнение огромных территорий. Следует отметить, что выбросы радионуклидов представляли собой достаточно сложную аэродисперсную систему, из аэрозоля различные физические - химические природы. В этой аэродисперсной системе можно выделить две основные группы компонентов: диспергационную и конденсационную. При этом диспергационная группа компонентов включала частицы диспергационного топлива, а конденсационная - аэрозоли, образовавшиеся путем конденсации паров радионуклидов в выбросах. Заметим, что средняя дисперсность аэрозоли была в порядке 1мкм, что впоследствии сказалось на характере радиоактивных загрязнений окружающей среды.

В развитии радиационной обстановки после аварии на Чернобыльской АЭС принято выделять два основных периода: период " йодовой опасности " месяцев, и "цезиевый" период, начавшийся спустя 2 месяца. Второй период будет длиться еще многие годы.

В "йодовом периоде", кроме внешнего облучения, за счет которого формировалось до 45% дозы за первый год, основные проблемы были связаны со снижением уровней внутреннего облучения, которое определялось в основном употреблением молока - главного "поставщика" радионуклида йода в организм человека, и листовых овощей. Для примера отметим, что корова ежесуточно съедает на пастбище корм с площади около 150м и является идеальным концентратором радиоактивности в молоке.

"Цезиевый период", наступивший по прошествии 10 периодов полураспада йода-131 в конце июня 1986 года, будет продолжаться длительное время, и цезий будет являться основной причиной радиационного воздействия на население и окружающей среды. Как известно, период полураспада цезия-137 составляет 300 лет.

Все изложенное определяло характер экологических последствий аварии на Чернобыльской АЭС.

Анализ Чернобыльской аварии убедительно подтверждает, что радиоактивное загрязнение окружающей среды является наиболее важным экологическим последствием радиационных аварий с выбросами радионуклидов, основным фактором, оказывающим влияние на состояние здоровья и условия жизни деятельности людей на территориях, подвергающихся радиоактивному загрязнению.

Причем, если на первом этапе, как отмечалось выше, радиационное воздействие на людей складывалось из внешнего и внутреннего облучений, обусловленных соответственно радиоактивными излучениями из облака выброса, от загрязненных радионуклидами объектов окружающей среды и попаданием радионуклидов в организм человека с потребляемой пищей, водой. А в дальнейшем, в основном, за счет употребления населением загрязненных продуктов питания.

Необходимо заметить, что процессы радиоактивного загрязнения различных объектов, как подтвердил опыт Чернобыля, зависят от агрегатного состояния загрязняющих веществ, их химической природы, вида и состояния загрязняемых поверхностей, длительности контакта с ним радиоактивных веществ.

Радиоактивное загрязнение различных поверхностей при аварии на Чернобыльской АЭС происходило, в основном, за счет удержания радиоактивных веществ на поверхностях силами адгезии, сорбции и диффузии радиоактивных веществ вглубь загрязняемых поверхностей.

Инженерные мероприятия по уменьшению распространения искусственного и естественного радиационного заражения

Главное инженерное мероприятие, направленное на нераспространение радиации, заключается в захоронении радиоактивных отходов, количество которых постоянно возрастает.

Переработкой и захоронением неядерных радиоактивных отходов (РАО) занимается Московское государственное предприятие - объединенный эколого-технический и научно-исследовательский центр по обезвреживанию РАО и охране окружающей среды (Мос.НПО "Радон"). Предприятие обслуживает Москву и 10 прилегающих к ней областей. Выполненные Мос.НПО "Радон" разработки обязательны для всех других населенных пунктов (в основном крупных городов).

Предварительная обработка и переработка радиоактивных отходов включает сортировку, демонтаж, фрагментирование, дезактивацию, компактирование, остекловывание, цементирование, битумирование, сжигание и т.д.

Помимо инженерных способов переработки РАО существует также природный барьер. Он представляет собой бетонную емкость глубиной 4,5 м, в которую укладывают контейнеры с переработанными кондиционированными РАО. Пространство между контейнерами и над ними заливают жидким бетоном. Сверху хранилище засыпают слоем грунта толщиной 2-2,5 м.

Транспортировку РАО осуществляют специальным автотранспортом.

Инженерные мероприятия, снижающие недопустимое повышение радиационного фона в помещениях вследствие естественной радиации. Это, прежде всего, усиленная вентиляция их, создающая увеличенный воздухообмен с желательным преобладанием притока над вытяжкой, т.е. созданием в помещениях подпора особенно в нижних этажах, в частности подвалах и подполье, что будет способствовать уменьшению эскалации радона. Кроме того, может быть рекомендована окраска внутренних поверхностей стен масляной краской или оклейка их воздухонепроницаемым слоем.

С целью уменьшения воздействия радиации, которое может быть неблагоприятным, необходимо распространить знания радиационной гигиены и безопасности на все население, а не оставлять их только достоянием лиц, работающих с источниками радиационного излучения. Необходимо обеспечить население нужным количеством дозиметрических приборов радиации [19].

дезактивация радиационный заражение авария

Средства, применяемые для дезактивации

Дезактивация - это такое удаление радиоактивных веществ с зараженных объектов, которое исключает поражение людей и обеспечивает их безопасность. Объектами дезактивации могут быть жилые и производственные здания, участки территории, оборудование, транспорт и техника, одежда, предметы домашнего обихода, продукты питания и вода. Конечная цель дезактивации - обеспечить людей, исключить или уменьшить вредное воздействие ионизирующего излучения на организм человека. Характерной особенностью дезактивационных мероприятий является строго дифференцированный подход к определению объектов, которые следует дезактивировать. Такой подход позволяет из большего количества зараженных объектов выделить наиболее важные для жизнедеятельности людей и при ограниченных силах и средствах провести запланированные работы. Заражение поверхностей может быть адгезионным, поверхностным и глубоким. При адгезионном заражении радиоактивные частицы удерживаются на поверхности силами адгезии (прилипания). Прилипшие частицы легко удаляются с поверхности в том случае, если сила отрыва будет больше силы адгезии. В водной среде силы адгезии значительно уменьшаются, поэтому применение воды в целях дезактивации вполне оправданно. Реже можно встретиться со случаями поверхностного и глубинного заражения. Обусловлены они процессами адсорбции, ионного обмена и диффузии. При этом заражается весь верхний слой, который должен удаляться вместе с радиоактивными веществами.

Таким образом, все способы дезактивации можно разделить на жидкостные и безжидкостные.

Жидкостный - удаление радиоактивных веществ струей воды или пара, либо в результате физико-химических процессов между жидкой средой и радиоактивными веществами. Безжидкостный - механическое удаление радиоактивных веществ: сметание, отсасывание, сдувание, снятие зараженного слоя. Эффективность жидкостного способа зависит от расхода воды, напора перед брандспойтом, расстояние до обрабатываемой поверхности и тех добавок, которые применяются. Например, наибольший коэффициент дезактивации достигается при направлении струи под углом 30 - 45о к обрабатываемой поверхности. Для уменьшения расхода воды или дезактивирующих растворов на единицу поверхности целесообразно использовать щетки. Щетки существенно влияют на результат дезактивации, особенно в начальной стадии заражения. Среди безжидкостных механических способов дезактивации следует выделить вакуумную очистку, сметание, удаление зараженного слоя, перепахивание грунта. Дезактивация территорий с твердым покрытием осуществляется механическим способом (подметание, вакуумная очистка).

Дезактивирующие вещества и растворы

Для проведения дезактивационных работ используют вещества, которые позволяют повысить эффективность удаления радиоактивных частиц. К ним относятся поверхностно активные моющие вещества, отходы промышленных предприятий, органические растворители, сорбенты и ионообменные материалы. Чтобы повысить моющую способность воды, в нее добавляют поверхностно-активные вещества (ПАВ). И добавлять их надо совсем немного 0,1 - 0,5%. ПАВ способствуют отрыву и выведению в дезактивирующий раствор радиоактивных частиц. К ПАВ, обладающим моющим действиям, относятся обычное мыло, гардиноль, сульфанол, препараты ОП-7. ОП-10 и др. Гардиноль - порошок белого или кремового цвета, хорошо растворимый в воде с образованием слабощелочной среды. Обладает хорошими поверхностно-активными и моющими свойствами. Сульфанол - пастообразное или в виде пластинок коричневого цвета вещество, умеренно растворяется в воде. Обладает хорошей моющей способностью. Сульфанол используется для приготовления моющих порошков СФ-2 и СФ-2У. Препараты ОП-7 и ОП-10 широко применяются в промышленности в качестве смачивателей и эмульгаторов. Применяют их как составную часть дезактивирующих растворов для обработки сооружений, оборудования, техники, одежды и средств индивидуальной защиты. Отходы промышленных предприятий. Отходы, содержащие в своем составе ПАВ. Имеются на предприятиях машиностроительной, станкостроительной, текстильной промышленности, на масложиркомбинатах, фабриках химической чистки, банно-прачечных комбинатах. В этих отходах могут присутствовать жирные кислоты, сульфонол, ОП-7, различные масла и другие вещества. Органические растворители: среди них дихлорэтан, бензин, керосин, дизельное топливо. Дезактивировать ими рекомендуется главным образом металлические поверхности (станки, машины, технику, транспорт) Радиоактивные вещества смывают ветошью, щетками и кистями, смоченными в растворителях. Все вышеперечисленные вещества, за исключением сорбентов и ионитов, можно использовать при приготовлении растворов для дезактивации поверхности различных сооружений, оборудования, техники и транспорта, одежды, обуви и средств защиты.

Особенности дезактивации

Территории объектов

Дезактивационные работы на промышленных предприятиях должны, как правило, проводиться своими силами, а точнее командами (группами) обеззараживания. Большей частью этого будет недостаточно. Тогда на крупные и важные объекты направляются части и соединения ГО, подразделения химических войск Министерства обороны. На время ликвидации больших аварий создаются специальные подразделения, т.к. работа им предстоит длительная и кропотливая, связанная с радиационным облучением. Поэтому их подразделяют на первоочередных и последующих. К первоочередным относят дезактивацию основных проездов, соединяющих цеха, производственные и служебные помещения, погрузо-разгрузочные площадки, подъездные пути, транспорт. Во вторую очередь дезактивируются остальная территория объекта, прилегающая местность, стены и крыши зданий.

С асфальтовых проездов и проходов (с которых и начинается дезактивация) радиоактивную пыль смывают с помощью поливомоечных и пожарных машин, мотопомп и других средств, позволяющих производить обработку поверхностей направленной струей под давлением. Процедура сложная, требующая не только времени, а в большинстве случаев неоднократного повторения, т.к. снижение уровня загрязненности идет медленно и очень часто на очищенную поверхность вновь попадают радиоактивные элементы, занесенные ветром или человеком. Остальная территория объекта и проезды без твердых покрытий обеззараживаются срезанием и удалением зараженного грунта (снега) на глубину 5 - 10 см, укатанный снег - на 6 см, рыхлый снег - до 20 см. Зараженный грунт или снег вывозят в безопасное место или специально оборудованные могильники.

Надо помнить, дезактивация дорог и проездов не устраняет полностью опасности облучения человека, но все же значительно снижает ее.

Зданий и сооружений

Способы дезактивации могут быть различными: обмывание струей воды под давлением, обмывание с одновременным протиранием моющими веществами, удаление радиоактивных веществ при помощи промышленных пылесосов, пескоструйных аппаратов. Наружную дезактивацию зданий начинают с крыш, затем из шлангов обмывают стены, обращая особое внимание на окна, стыки и другие места, где может задержаться радиоактивная пыль. Бетонные, кирпичные, оштукатуренные поверхности прочно удерживают радиоактивные вещества, при расходе до 3 л/м2 воды под давлением 3 кгс/см2 удаляется 30 - 60%. Для получения лучших результатов следует увеличить расход воды и повысить давление. При дезактивации стен в некоторых случаях вместо обработки водой можно рекомендовать смывание радиоактивных частиц водными растворами моющих и комплексообразующих веществ. Этот метод наиболее удобен при обработке больших и гладких поверхностей. Когда все эти способы не обеспечивают значительного снижения зараженности, целесообразно прибегать к удалению верхнего слоя с помощью обдирочных устройств или пескоструйной обработки.

Транспортных средств

Дезактивация транспортных средств и техники может быть частичная или полная. Частичную выполняет водительский и обслуживающий состав. Они обрабатывают те места и узлы машин, с которыми приходится соприкасаться в процессе эксплуатации. Приступая к обеззараживанию автомобиля, надо в первую очередь обработать тент. Верх кабины, моторную часть, переднее стекло, грязевые щитки и подножки обметают или протирают ветошью. После этого дезактивируют внутренние поверхности кабины, приборы и рычаги управления. Если на машине предполагается перевозить людей, то дополнительно обрабатывается задний борт и весь кузов машины. Полная дезактивация проводится за пределами зараженной зоны на станциях и площадках обеззараживания или на пунктах специальной обработки (ПуСО), как это было в Чернобыле. Здесь требования более жесткие. Весь процесс происходит при соблюдении строгих правил безопасности, под постоянным дозиметрическим контролем. Для обработки применяются специальные моющие растворы. Работу проводят специалисты. И в этих, кажется уже идеальных условиях, не всегда удавалось провести дезактивацию так, чтобы полностью обеззаразить технику. Вот почему и поныне в зоне заражения ЧАЭС на площадках отстоя можно видеть автомашины, бульдозеры, краны и другую технику. Пользоваться ею нельзя. Она продолжает быть радиационно-зараженной.

Одежда и обувь

Дезактивация одежды, обуви и средств индивидуальной защиты может быть также частичной и полной. Все зависит от конкретных условий, степени заражения и сложившейся обстановки. Если населением проводится частичная санитарная обработка, то одновременно осуществляется и частичная дезактивация. При выполнении таких действий в зоне заражения, одежду, обувь, средства защиты не снимают. После выхода в незараженный район их снимают, но дезактивацию проводят в респираторе или противогазе. Частичная дезактивация заключается в том, что человек сам удаляет радиоактивные вещества. Для этого одежду, обувь, средства индивидуальной защиты развешивают на щитах, веревках, веревках, сучках деревьев и тщательно в течении 20 - 30 минут обметают веником, чистят щетками или выколачивают палками. Этому способу дезактивации можно подвергнуть все виды одежды и обуви, за исключением изделий из резины, прорезиненных материалов, синтетических пленок и кожи, которые протирают ветошью, смоченной водой или дезактивирующим раствором. После обработки зараженность одежды, обуви и средств защиты осталась выше допустимой. Тогда проводится дополнительное обеззараживание на площадках дезактивации, развертываемых вблизи санитарно - обмывочных пунктов или площадок санитарной обработки, где население будет проходить полную санитарную обработку. При дезактивации, вызывающей пылеобразование, люди должны иметь резиновые перчатки или рукавицы, респиратор или противогаз. Если указанные средства отсутствуют, на лицо одевают многослойную марлевую или тканевую повязку. Поверх одежды надевают халат или комбинезон, на ноги - резиновые сапоги.

Меры безопасности

Основное правило, которое надо соблюдать при организации и проведении дезактивационных работ - это установление минимальных доз облучения и сокращение сроков пребывания на зараженной территории или работы на загрязненной технике. Чем меньше человек будет подвергаться ионизирующему излучению, тем лучше. В связи с этим организуется ежедневный контроль над дозой облучения. Превышать установленные пределы недопустимо. Для этого ведется учет доз с помощью индивидуальных дозиметров. Предпринимать меры, предотвращающие поступление в организм радиоактивных веществ с продовольствием и водой. Запасы продовольствия и воды хранить в пыле-водонепроницаемой таре (емкостях, мешках). Пищу и воду принимать лучше всего на незараженной территории.

Использовать средства защиты органов дыхания. Пригодны в первую очередь, респираторы Р-2, «Лепесток», «Астра» и др. При отсутствии респираторов можно использовать противогазы и простейшие средства, такие, как противопылевая тканевая маска ПТМ-1, ватно-марлевая повязка. Для других частей тела - обычную бытовую (производственную) одежду, приспособленную соответствующим образом. Обувь, желательно резиновую и закрытую, на руки - перчатки, рукавицы. Учеными были специальные химические препараты, которые при введении внутрь повышают устойчивость организма к радиации или снижают поражающий эффект этого воздействия. Такие препараты называют радиозащитными или радиопротекторами. Они действуют эффективно, если введены в организм перед облучением (до начала работ по дезактивации) и, присутствуя в нем, обеспечивают защиту в течении 5 - 6 часов. Для продления времени действия надо произвести повторный прием таблеток. И последнее - психологическая устойчивость.

Люди должны четко знать правила поведения на зараженной территории, представлять меру реальной угрозы от переоблучения, уметь владеть элементарными способами защиты, хорошо понимать значение работ по дезактивации - все это придаст спокойствие и уверенность в поступках и действиях населения в экстремальной ситуации.

Радиационное загрязнение окружающей среды может произойти при любом использовании ядерной энергии как в мирных, так и в военных целях. Оно возникает в результате аварий на объектах, производящих или использующих радиоактивные материалы, при разработке радиоактивных руд, неправильном хранении радиоактивных отходов, а также при испытании и применении ядерного оружия. Наиболее тяжёлое последствие радиационного поражения человека -- острая лучевая болезнь, как правило, заканчивающаяся смертью, -- возникает при однократном получении человеком высокой дозы (100--450 бэр) ионизирующего излучения. Длительное, в течение ряда лет, облучение приводит к хронической лучевой болезни, снижению иммунитета организма, помутнению хрусталика глаза с полной или частичной утратой зрения, снижению функций щитовидной железы и возрастанию риска развития рака щитовидной железы. Даже через много лет после облучения возможно возникновение мутаций (нарушений механизма наследственности) и других повреждений клеточных структур, которые служат причиной доброкачественных и злокачественных опухолей. С мутациями также связаны многочисленные врождённые нарушения и уродства, которые передаются по наследству.

Вывод

Безъядерное будущее

Гринпис выступает за отказ от использования ядерной энергетики и против строительства новых атомных реакторов. Мы -- за чистую, безопасную и эффективную энергетику. Ядерная энергетика таковой не является.

«Мирный» атом, порожденный программами по разработке ядерного оружия, принес человечеству неисчислимые беды. Доводы:

· Ни один ядерный объект не застрахован от крупной аварии. Жертвами аварий на атомных реакторах уже стали миллионы людей.

· Любой ядерный объект, даже при безаварийной работе, является источником опаснейшего радиоактивного загрязнения. Есть доказательства негативного воздействия радионуклидов на живые организмы, в том числе, на человека.

· Ядерная энергетика экономически абсолютно неэффективна и «живет» за счет налогоплательщиков. Ядерная отрасль высасывает из государственного бюджета огромные средства, маскирует их под различные субсидии и программы помощи, и тем самым разрушает экономику.

· При работе ядерных реакторов образуется большое количество радиоактивных отходов, безопасно хранить и перерабатывать которые человечество так и не научилось.

· Подавляющее большинство россиян ПРОТИВ строительства новых реакторов и ввоза в нашу страну радиоактивных отходов из-за рубежа. К сожалению, руководство российского ядерного комплекса игнорирует общественное мнение.

· Руководство Росатома намерено и дальше развивать ядерную энергетику. Запланировано строительство более 20 новых реакторов за период c 2010 до 2020 года.

· В 2001 году принят закон, разрешающий ввоз в нашу страну отработавшего ядерного топлива (ОЯТ) из-за рубежа, что грозит России превращением в международную ядерную свалку.

Развивая сегодня ядерную индустрию, мы перекладываем на плечи наших потомков проблемы, связанные с радиационным загрязнением окружающей среды и радиоактивными отходами. Смогут ли они решить их?

Список литературы

1. http://www.greenpeace.org/russia/ru

2. М.И. Будыко. Современные проблемы экологии М.1994г.

3. А.П. Акимова. Экология М.2001г..

4. В.И Цветкова Экология, Учебник М. 1999г

5. Петров Н.Н. Человек в чрезвычайных ситуациях. Учебное пособие - Челябинск Южно-Уральское книжное изд-во, 1995 г.

6. Т.Х.Маргулова Атомная энергетика сегодня и завтра Москва Высшая школа, 1996 г.

7. Радиационная экология//Ресурсы интернет

8. Ярошинская А.А. Ядерная энциклопедия.- М., 1996.

9. В.В. Бадев, Ю.А. Егоров, С.В. Казаков "Охрана окружающей среды при эксплуатации АЭС", Москва, Энергоатомиздат, 1990 г.

Размещено на Allbest.ru


Подобные документы

  • Характеристика аварий на радиационно-опасных объектах. Загрязнение среды отходами производства и потребления. Твердые бытовые, радиоактивные, диоксинсодержащие отходы. Обеспечение благоприятных условий жизни людей, защита человека и окружающей его среды.

    контрольная работа [26,9 K], добавлен 29.03.2010

  • Радиоактивность и ионизирующие излучения. Источники и пути поступления радионуклидов в организм человека. Действие ионизирующих излучений на человека. Дозы радиационного облучения. Средства защиты от радиоактивных излучений, профилактические мероприятия.

    курсовая работа [40,8 K], добавлен 14.05.2012

  • Вычисление значения для нахождения естественного освещения для комнаты в жилой квартире по заданным значениям. Определение параметров искусственного освещения. Методика расчета необходимого дополнительного источника света, его мощности и отдачи.

    практическая работа [13,7 K], добавлен 27.06.2014

  • Особенности радиационного заражения местности при авариях на атомной электростанции. Проведение санитарной обработки. Действия шума, ультразвука и инфразвука на организм человека. Задачи Российской Федерации по укреплению безопасности в XXI веке.

    курсовая работа [27,7 K], добавлен 27.05.2014

  • Особенности радиоактивности и ионизирующих излучений. Характеристика источников и путей поступления радионуклидов в организм человека: естественная, искусственная радиация. Реакция организма на различные дозы радиационного облучения и средства защиты.

    реферат [42,6 K], добавлен 25.02.2010

  • Цели и правовые основы охраны труда. Описание основных методов анализа производственного травматизма. Особенности нормирования искусственного и естественного освещения. Анализ воздействия ионизирующих излучений на организм человека, способы защиты от них.

    шпаргалка [642,4 K], добавлен 03.11.2010

  • Оценка дозовой нагрузки от естественного фона радиации и техногенных источников, количества биологически активных изотопов при аварийном выбросе атомной электростанцией. Изучение зоны радиоактивного заражения местности в результате ядерного взрыва.

    контрольная работа [221,9 K], добавлен 12.01.2015

  • Основные понятия гигиены и экологии труда. Сущность шума и вибраций, влияние шума на организм человека. Допустимые уровни шума для населения, методы и средства защиты. Действие производственной вибрации на организм человека, методы и средства защиты.

    реферат [31,2 K], добавлен 12.11.2010

  • Проведение измерения освещенности на рабочих местах. Санитарная оценка естественного и искусственного освещения. Диапазоны измерения освещенности и ее качества, пульсации. Расчет электрического искусственного освещения производственного помещения.

    лабораторная работа [45,9 K], добавлен 22.10.2015

  • Создание безопасных условий труда. Комплекс гигиенических условий для правильного светового режима. Общие вопросы искусственного? естественного освещения. Распределение освещенности в помещении при естественном освещении. Расчет площади световых проемов.

    реферат [141,3 K], добавлен 23.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.