Исследования в современном управлении
Предпосылки исследования систем управления и системного анализа. Модель механизма управления и эволюция живой природы. Формирование целей системного анализа и его структуризация. Методы экспертного оценивания. Количественный анализ деревьев взаимосвязей.
Рубрика | Менеджмент и трудовые отношения |
Вид | курс лекций |
Язык | русский |
Дата добавления | 20.02.2011 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1.4 Заключительные замечания
Возвращаясь к системному анализу, необходимо сказать, что объектом системного анализа. в теоретическом аспекте является процесс подготовки и принятия решений, а в прикладном аспекте - многие конкретные проблемы, возникающие при создании и функционировании систем.
В теоретическом аспекте - это:
общие закономерности проведения исследований, направленные на поиск наилучших решений различных проблем на основе системного подхода (содержание отдельных этапов системного анализа, взаимосвязи, существующие между ними и др.).
конкретные научные методы исследования - определение целей и их ранжирование, дезагрегирование проблем (систем) на их составные элементы, определение взаимосвязей, существующих как между элементами системы, так и между системой и внешней средой и др.
принципы интегрирования различных методов и приемов исследования (математических и эвристических), разработанных как в рамках системного анализа, так и рамках других научных направлений и дисциплин в стройную, взаимообусловленную совокупность методов системного анализа.
В прикладном плане системный анализ вырабатывает рекомендации по созданию принципиально новых или усовершенствованию существующих систем.
Рекомендации по улучшению функционирования существующих систем касаются самых различных проблем, в частности ликвидации нежелательных ситуаций (например, снижение темпов роста производительности труда), вызванных изменением как внешних по отношению к системе факторов, так и внутренних.
Следует отметить, что объект системного анализа является в то же время объектом целого ряда других научных дисциплин, как общетеоретических, так и прикладных.
В отличие от многих наук, главной целью которых является открытие и формулирование объективных законов и закономерностей, присущих предмету изучения, системный анализ в основном направлен на выработку конкретных рекомендаций, в том числе и на основе использования достижений теоретических наук в прикладных целях. Можно сказать, что системный анализ выполняет роль каркаса, объединяющего все необходимые методы, знания и действия для решения проблемы.
Заканчивая рассмотрение основных методологических компонентов системного анализа, следует отметить, что ему присущи определенные принципы, логические элементы, определённая этапность и методы проведения. Наличие (без исключения) всех этих компонентов и делает анализ какой-либо проблемы системным.
1.5 Вопросы для самопроверки
Как Вы связываете качество управления и уровень благосостояния общества?
Какая связь между качеством управленческих решений и эффективностью системы управления?
Какие факторы влияют на качество управленческих решений?
Как определить уровень эффективности системы управления?
Почему усложняются процессы управления экономикой страны (города, области, региона)?
Какие факторы, влияющие на сложность задач управления, Вы можете назвать?
Какие проблемы возникают при усложнении систем и процессов, подлежащих управлению?
Какие пути повышения эффективности управления Вы знаете?
Какие методы и средства используются для исследования и анализа сложных систем?
Почему системный анализ является более предпочтительным средством анализа систем?
Какие основные моменты присущи системному исследованию?
Основные идеи построения общей теории систем.
Роль тектологии А.Богданова в становлении системных представлений.
Эволюция понятия энтропия. Альтернативность и взаимосвязь понятий энтропия и количество информации.
Какова роль кибернетики Винера для исследования систем и процессов управления?
Что нового привнесла синергетика в системные исследования? Значение понятия самоорганизация для социально-экономических систем.
2. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
Основной целью данной главы является введение основных понятий и определений, которые далее будут использоваться. Следует сказать, что терминология и понятийный аппарат общей теории систем и системного анализа еще окончательно не сформировались и поэтому необходимо из всего многообразия основных понятий и определений выделить те, которыми мы будем пользоваться при изучении данного курса. При определении терминологии и понятийного аппарата будет также рассмотрена последовательность формирования основных определений.
2.1 Общие определения
Общие определения начнем с того, что попытаемся определить такое понятие как общая теория систем.
Общая теория систем - междисциплинарная область научных исследований, в задачи которой входит: разработка обобщенных моделей систем; построение логико-методологического аппарата описания функционирования и поведения систем разного типа, включая теории динамики систем, их целенаправленного поведения, исторического развития, иерархического строения, процессов управления в системах и т.д.
Системный подход. Этот термин начал применяться в первых работах, в которых элементы общей теории систем использовались для практических приложений. Используя этот термин, подчеркивали необходимость исследования объектов (систем, процессов) с разных сторон, комплексно, в отличие от ранее принятого раздельного исследования систем и процессов. Оказалось, что с помощью многоаспектных исследований можно получить более правильное представление о реальных системах, выявить их новые свойства, лучше определить взаимоотношения системы (объекта) с внешней средой, другими объектами.
Можно сказать, что системный подход - это точное выражение процедур представления систем и способов многоаспектного исследования объектов (описания, объяснения, предвидения и т.д.).
Системные исследования. В таких исследованиях понятия теории систем используются более конструктивно: определяется класс систем, вводится понятие структуры и правила ее формирования и т.п. Это был следующий шаг в системных направлениях. В поисках конструктивных рекомендаций появились системные направления с разными названиями: системотехника, системология и др. Для их обобщения и стал применяться термин “системные исследования”.
Системные исследования - это совокупность научных и технических проблем, которые при всей их специфике и разнообразии сходны в понимании и рассмотрении исследуемых объектов с точки зрения систем, выступающих как единое целое.
2.2 Определение системного анализа
Сейчас признано, что наиболее конструктивным из прикладных направлений системных исследований является системный анализ. Однако до сих пор нет четкого однозначного определения этого понятия. Это вполне понятно, так как идет создание и формирование терминологии нового научного направления. Поэтому и мы, прежде чем остановится на каком-то конкретном определении системного анализа, проследим последовательность разных описаний и определений, которые приводились в разных работах, что, в конечном счете, позволит нам лучше понять содержательный смысл самого системного анализа.
Следует отметить, что вначале работы по системному анализу базировались на идеях теории оптимизации и исследования операций. Затем, в поисках конструктивных средств организации процесса принятия решений, системный анализ начинают определять как процесс последовательного разбиения изучаемого процесса на подпроцессы и основное вниманию уделяют выбору приемов, позволяющих организовать решение сложной проблемы путем расчленения ее на подпроблемы и этапы, для которых становится возможным подобрать методы исследования и исполнителей.
Наряду с расчленением процесса принятия решения на этапы и подэтапы, разрабатываются формализованные приемы и методы разделения системы на подсистемы, цели на подцели, “больших” неопределенностей на более “мелкие”, лучше поддающиеся исследованию. В большинстве работ стремятся в основу системного анализа поставить многоступенчатое расчленение в виде иерархических структур типа “дерева”. Применительно к исследованию целей эти структуры получили название “деревьев целей”. В ряде работ разработаны варианты аналогичных структур, определяющих не пространственное (как “деревья целей”), а временное разделение цели на последовательность подцелей или функций, направленных на ее достижение.
Во многих определениях часто подчеркивается, что системный анализ - это “формализованный здравый смысл” или просвещенный здравый смысл, на службу которому поставлены математические модели. Кроме того, отражается и такая особенность: системный анализ дает основу для сочетания знаний и опыта специалистов многих областей при нахождении решений, трудности которых не могут быть преодолены на основе суждений любого отдельного эксперта. Более того, часто указывается, что основной особенностью методик системного анализа является сочетание в них формальных методов и неформализованного (экспертного) знания.
С учетом всего вышесказанного можно сказать, что в определении системного анализа должны войти следующие аспекты, отражающие что системный анализ:
применяется для решения таких проблем, которые не могут быть полностью формализованы;
использует не только формальные методы, но и методы качественного анализа (“формализованный здравый смысл”), т.е. методы, направленные на активизацию использования интуиции и опыта специалистов (лиц, принимающих решение);
объединяет разные методы с помощью единой методологии;
дает возможность объединить знания, суждения и интуицию специалистов различных областей знаний и обязывает их к определенной дисциплине мышления;
основное внимание уделяет целям и целеполаганию.
Ко всему этому следует обязательно добавлять, что в основе методов и получаемых с применением системного анализа результатов лежит понятие системы или даже целенаправленной системы.
Мы будем использовать следующее определение системного анализа.
Системный анализ - это совокупность определенных научных методов и практических приемов решения разнообразных проблем, возникающих во всех сферах целенаправленной деятельности общества, на основе системного подхода и представления объекта исследования в виде системы.
Характерным для системного анализа является то, что поиск лучшего решения проблемы начинается с определения и упорядочения целей деятельности системы, при функционировании которой возникла данная проблема. При этом устанавливается соответствие между этими целями, возможными путями решения возникшей проблемы и потребными для этого ресурсами. Системный анализ характеризуется главным образом упорядоченным, логически обоснованным подходом к исследованию проблем и использованию существующих методов их решения, которые могут быть разработаны в рамках других наук.
Системный анализ предназначен для решения в первую очередь слабоструктурированных проблем, т.е. проблем, состав элементов и взаимосвязей которых установлен только частично, задач, возникающих, как правило, в ситуациях, характеризуемых наличием факторов неопределённости и содержащих неформализуемые (непереводимые на язык математики) элементы.
Проблема (задача) считается формализуемой, если она может быть описана с помощью некоторого формального языка (как правило, языка математики).
Одна из задач системного анализа заключается в раскрытии содержания проблем, стоящих перед руководителями, принимающими решения, настолько, чтобы им стали очевидны все основные последствия решений, которые они могли бы учитывать в своих действиях. Системный анализ помогает ответственному за принятие решения лицу более строго подойти к оценке возможных вариантов действий и выбрать наилучший из них с учётом дополнительных, неформализуемых факторов и моментов, которые могут быть неизвестны специалистам, готовящим решение (специалистам - системным аналитикам).
Следует отметить, что в каждом конкретном случае задачи системного анализа весьма специфичны. Тем не менее, определённые моменты указывают на существенную общность перечисленных направлений разработок в науке, технике и организации производства. Именно эта общность и позволяет говорить о системном подходе как о некоторой особой и внутренне единой исследовательской позиции.
2.3 Cистема и ее свойства
В настоящее время нет единства в определении понятия “система”. В первых определениях в той или иной форме говорилось о том, что система - это элементы и связи (отношения) между ними. Например, основоположник теории систем Берталанфи определял систему как комплекс взаимодействующих элементов или как совокупность элементов, находящихся в определенных отношениях друг с другом и со средой. Некоторые определяют систему как множество предметов вместе со связями между предметами и между их признаками. Ведутся дискуссии, какой термин - “отношение” или “связь” - лучше употреблять. Мы будем далее пользоваться следующим определением.
Определение системы. Под системой понимается наличие множества элементов с набором связей между ними и между их свойствами, т.е. всё, состоящее из связанных друг с другом частей, называются системой.
При этом элементы (части, объекты) функционируют во времени как единое целое - каждый объект, подсистема, элемент работают ради единой цели, стоящей перед системой в целом. Иногда говорят, система есть средство достижения цели. И это, в свете вышесказанного, можно трактовать, как достаточно короткое и емкое определение системы.
При такой трактовке системами являются: машина, собранная из деталей и узлов; живой организм, образуемый совокупностью клеток; предприятие, объединяющее и связывающее в единое целое множество производственных процессов, коллективов людей, различных видов ресурсов, готовой продукции и пр.
Элемент. Под элементом принято понимать простейшую неделимую часть системы. Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта или системы, от точки зрения на него или от аспекта его исследования. Таким образом, элемент - это предел членения системы с точки зрения решения конкретной задачи и поставленной цели. Систему можно расчленить на элементы различными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.
Подсистема. Система может быть разделена на элементы не сразу, а последовательным разбиением на подсистемы, которые представляют собой компоненты более крупные, чем элементы, и в то же время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычленением совокупностей взаимосвязанных элементов, способных выполнять относительно независимые функции, реализующие отдельные подцели, направленные на достижение общей цели системы. Названием “подсистема” подчеркивается, что такая часть должна обладать свойствами системы (в частности, свойством целостности). Этим подсистема отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целостности (для такой группы используется название “компоненты”).
Структура. Это понятие происходит от латинского слова structure, означающего строение, расположение, порядок. Структура отражает наиболее существенные взаимоотношения между элементами и их группами (компонентами, подсистемами), которые мало меняются при изменениях в системе и обеспечивают существование системы и ее основных свойств.
Структура - это совокупность элементов и связей между ними.
Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов и т.п. Структуру часто представляют в виде иерархии. Иерархия - это упорядоченность компонентов по степени важности (многоступенчатость, служебная лестница и т.п.). Между уровнями иерархической структуры могут существовать взаимоотношения строгого подчинения компонентов (узлов) нижележащего уровня одному из компонентов вышележащего уровня, т.е. отношения так называемого древовидного порядка. Такие иерархии называют сильными или иерархиями типа “дерева”. Они имеют ряд особенностей, делающих их удобным средством представления организационных структур управления. Однако могут быть связи и в пределах одного уровня иерархии. Один и тот же узел нижележащего уровня может быть одновременно подчинен нескольким узлам вышележащего уровня. Такие структуры называют иерархическими структурами со слабыми связями. Между уровнями иерархической структуры могут существовать и более сложные взаимоотношения.
Интегративность. Интегративными называются свойства, присущие системе в целом и не присущие ни одному из ее элементов в отдельности. Интегративность означает, что хотя свойства системы и зависят от свойств ее элементов, но не определяются ими полностью. Система не сводится к простой совокупности (множеству) ее элементов. Так, государство не есть просто сумма его регионов. Интегративность в данном случае обеспечивается некоей общей для всех его элементов и подсистем системой ценностей, определяющей принципы существования и поддерживающей единство и согласованность поведения последних.
Индивидуальным интегративным свойством самолета как технической системы является его способность совершать управляемый полет. При этом ни одна из его частей сама по себе, включая и членов экипажа, этой способностью не обладает.
Наиболее общими фундаментальными интегративными свойствами в системном анализе являются свойства целостности, целесообразности и открытости.
Интегративные свойства, возникающие при взаимодействии структурных образований, порой могут проявляться самым неожиданным образом. Так, например, в области киноискусства широко известен эффект Кулешова, который заключается в том, что при монтаже двух соседних различных кадров возникает нечто, реально воздействующее на зрителя, чего нет ни в одном из этих кадров в отдельности. Монтаж объединяет эти кадры в информационную систему, в пределах которой они начинают взаимодействовать, придавая последней интегративные свойства.
Целостность. Целостность - это способность системы проявлять себя во взаимодействии с внешним миром как единое целое. Целостность системы проявляется в двух аспектах: структурном и процессуальном и в этом смысле можно дать следующее определение этого свойства. Целостность - это пространственная связность структурных элементов и временная согласованность их существования.
Целесообразность. Целесообразность - это свойство системы, проявляющееся в ценностной и целевой ориентированности ее существования.
Ценностная ориентированность. Ценностная ориентированность возникает в результате действия общих и частных, присущих только данной конкретной системе ценностных принципов, порождающих соответствующие законы поведения в ситуационных пространствах. Таким образом, целесообразность - это подчинение существования системы некоторой системе ценностных принципов и связанных с ними целей, свидетельствующих о ее разумности.
Целеориентированность. Целеориентированность - это свойство системы, характеризующее ситуационную направленность (ориентированность) ее поведения в соответствующих пространствах. Целеориентированность проявляется также в активности системы.
Открытость. Открытость - это свойство взаимосвязи системы и ее внешнего окружения, проявляющееся в коммуникативности. Точнее говоря, открытость - это взаимопроникновение и взаимовлияние (взаимозависимость) системы и ее окружения. Открытость, с одной стороны, есть необходимое условие существования системы (раскрытия ее сущности), а с другой стороны, есть одна из основных причин ее диффузии (диссипации, распада ее сущности). Свойство открытости систем обеспечивает целостность мироздания.
Связь. Понятие “связь” входит в любое определение системы наряду с понятием “элемент” и обеспечивает возникновение и сохранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функционирование (динамику) системы. Связь характеризуется направлением, силой и характером (или видом). По первым двум признакам связи можно разделять на направленные и ненаправленные, генетические, равноправные (или безразличные), связи управления. Связи можно разделить также по месту приложения (внутренние и внешние), по направленности процессов в системе в целом или в отдельных ее подсистемах (прямые и обратные). Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.
Связи - это то, что соединяет элементы и свойства в системном процессе в целое.
Предполагается, что связи существуют между всеми системными элементами, между системами и подсистемами. Связями первого порядка называют связи, функционально необходимые друг другу. Дополнительные связи называют связями второго порядка. Если они присутствуют, то в значительной степени улучшают действие системы, но не являются функционально необходимыми. Излишние или противоречивые связи называются связями третьего порядка. Исследователь, решающий конкретную задачу, сам принимает решение, какие связи существенны, а какие тривиальны, т.е. вопрос о тривиальности оказывается связанным с личными интересами исследователя и задачами, которые стоят перед ним.
Важную роль в системах играет понятие “обратной связи”. Об этом понятии мы будем подробно говорить в следующей главе.
Коммуникативность. Коммуникативность представляет собой свойство системы, заключающееся в наличии между системой и внешней средой множества связей ( коммуникаций). Так, например, различные государства могут быть связаны между собой линиями воздушного , железнодорожного, автомобильного и т.д. сообщения. Между ними осуществляются культурные, научные и другие виды обмена.
Состояние. Понятие “состояние” обычно характеризует мгновенную фотографию, “срез” системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через параметры системы (производительность, себестоимость продукции, прибыль и т.п.). Состояние - это множество существенных свойств, которыми система обладает в данный момент времени.
Поведение. Если система способна переходить из одного состояния в другое, то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением и исследуют его закономерности. Иногда, в этом же смысле используют термин “движение”, который заимствован из механики, но при этом обязательно делают оговорку, что под движением понимают любое изменение состояния системы (например, изменение ее параметров).
Внешнее окружение (среда). Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы. Действительно, объекты в системном анализе не рассматриваются изолированно от внешнего мира. Та часть этого мира, которая непосредственно взаимодействует с системой или оказывает на нее существенное влияние, может быть, лишь только своим присутствием, и является таким внешним окружением или внешней средой. Поэтому, например, так важно при анализе экономической или социально-политической ситуации внутри какого-либо государственного образования выйти за его пределы и проанализировать экономические и социально-политические процессы в системах внешнего окружения с целью учета их влияния на состояние рассматриваемого объекта.
Равновесие - это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранять свое состояние сколь угодно долго.
Устойчивость. Под устойчивостью понимается способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий. Состояние равновесия, в которое система способна возвращаться, называют устойчивым состоянием равновесия.
2.4 Системы и их виды
2.4.1 Модель состава системы
При рассмотрении любой системы, прежде всего, обнаруживается то, что ее целостность и обособленность выступают как внешние свойства. Внутренность же системы оказывается неоднородной, что позволяет различать составные части самой системы. При более детальном рассмотрении некоторой части системы могут быть, в свою очередь, разбиты на составные части и т.д. Те части системы, которые мы рассматриваем как неделимые, будем называть элементами. Части системы, состоящие более чем из одного элемента, назовем подсистемами. При необходимости можно ввести обозначения или термины, указывающие на иерархию частей (например, “подсистемы”, или “подсистемы такого-то уровня”).
В результате такого рассмотрения получается модель состава системы, описывающая, из каких подсистем и элементов она состоит (рис.2.1).
Определение состава системы только на первый взгляд кажется простым делом. Если дать разным экспертам задание определить состав одной и той же системы, то результаты их работы будут различаться, и иногда довольно значительно. Причины этого состоят не только в том, что у них может быть различная степень знания системы: один и тот же эксперт при разных условиях также может дать разные варианты состава системы. Существуют, по крайней мере, еще три важные причины этого факта.
Во-первых, разные варианты (модели) состава получаются вследствие того, что понятие элементарности можно определить по разному. То, что с одной точки зрения является элементом, с другой - оказывается подсистемой, подлежащей дальнейшему разделению.
СИСТЕМА
ЭЛЕМЕНТ
ЭЛЕМЕНТ
ЭЛЕМЕНТ
ЭЛЕМЕНТ
ПОДПОДСИСТЕМА ЭЛЕМЕНТ
ПОДСИСТЕМА ПОДСИСТЕМА
Рис. 2.1. Модель состава системы
Во-вторых, как и любые модели, модель состава является целевой, и для различных целей один и тот же объект потребуется разбить на разные части. Например, один и тот же завод для директора, главного бухгалтера, начальника пожарной охраны состоит из совершено различных подсистем. Точно так же модели состава самолета с точек зрения летчика, стюардессы, пассажира и аэродромного диспетчера окажутся различными. То, что для одного обязательно войдет в модель, может совершенно не интересовать другого.
В-третьих, модели состава различаются потому, что всякое разделение целого на части, всякое деление системы на подсистемы является относительным, в определенной степени условным. Например, тормозную систему автомобиля можно отнести либо к ходовой части, либо к подсистеме управления. Другими словами, границы между подсистемами условны и относительны.
Это относится и к границам между самой системой и окружающей средой; поэтому остановимся на этом моменте подробнее. В качестве примера рассмотрим систему "ЧАСЫ". Какую бы природу ни имели устройства, которые мы называем часами, в них можно выделить две подсистемы - датчик времени, т.е. процесс, ход которого изображает течение времени (это может быть равномерное раскручивание пружины, электрический ток с некоторым постоянным параметром, равномерное течение струйки песка, колебание некоторой молекулы и т.д.); индикатор времени - т.е. устройство, преобразующее, отображающее состояние датчика в сигнал времени для пользователя. Модель состава системы "ЧАСЫ" можно считать полностью исчерпанной (если далее не разбивать эти две подсистемы). Однако, поскольку фактически каждые часы показывают состояние своего датчика, рано или поздно их показания разойдутся между собой. Выход из этого положения состоит в синхронизации всех часов с неким общим для всех эталоном времени, например с помощью сигналов “точного времени”, передаваемых по радио. Здесь и возникает вопрос: включать ли эталон времени в состав системы "ЧАСЫ" или рассматривать часы как подсистему в общей системе указания времени?
Ниже приведены некоторые упрощенные примеры моделей состава для различных систем.
СИСТЕМА |
ПОДСИСТЕМА |
ЭЛЕМЕНТЫ |
|
Система телевидения “ОРБИТА” |
Подсистема передачи |
Центральная телестудия Антенно-передающий центр |
|
Канал связи |
Среда распространения радиоволн Спутник - ретранслятор |
||
Приемная подсистема |
Местные телецентры Телевизоры потребителей |
||
Отопительная система жилого дома |
Источники тепла |
Котельная или отвод от центральной теплотрассы |
|
Подсистема распределения и доставки тепла |
Трубы Калориферы Вентили |
||
Подсистемы эксплуатации |
Службы эксплуатации и ремонта Персонал |
2.4.2 Виды и типы систем
При анализе и исследовании различают физические и абстрактные системы.
Физические системы состоят из изделий, оборудования, машин и вообще из естественных или искусственных объектов. Этим системам можно противопоставить абстрактные системы. В абстрактных системах свойства объектов, существующие только в уме исследователя, представляют символы. Идеи, планы, гипотезы и понятия, находящиеся в процессе исследования, могут быть описаны как абстрактные системы.
Пример 1. Рассмотрим систему, части которой - пружина, груз с некоторой массой и твердая поверхность, предположим, потолок. Вообще говоря, эти компоненты не связаны друг с другом (за исключением искусственных логических отношений, как, например, то, что они находятся в одной комнате). Однако, стоит прикрепить пружину к потолку и повесить на нее груз, как между ими появятся особые отношения (в смысле физической связанности), которые дадут начало весьма интересной системе. В частности, возникают новые связи между свойствами данных частей. Длина пружины, расстояние груза от потолка, упругие свойства пружины и размер груза - все это находится в некоторых связях друг с другом. Такая система статична, её свойства не изменяются со временем. Если задать начальное отклонение от положения равновесия, получим определённое значение скорости движения груза, зависящее от размеров массы и упругих свойств пружины. Положение массы будет меняться во времени. В этом случае имеем дело с динамической системой.
Пример 2. Более сложный пример - радиосистема с высокой точностью воспроизведения. В ней гораздо больше частей, но для простоты выделим следующие: диск и звукосниматель проигрывателя, усилитель, громкоговоритель и ящик. Как и в первом случае, не связанные друг с другом части не образуют системы. Но если связи установлены, т.е. электрическая связь идет от входа к выходу, то части системы и их свойства находятся в таких отношениях друг к другу, что изменение системы на каком-то участке зависит от изменений на других участках, например, механические вибрации в громкоговорителе связаны с силой тока и напряжением в усилителе.
Теперь рассмотрим системы, не имеющие физической природы. Как правило, это абстрактные системы, записанные на языке математики. Простейший случай - это система уравнений действительных переменных. Наиболее очевидное свойство действительной переменной - её числовое значение; другими словами, в этом случае объект и его свойство тесно связаны между собой (в любом случае объект, в конечном счёте, определяется его свойствами). Связи между переменными обычно формулируются в виде уравнений. Для большей конкретности рассмотрим следующий пример.
Пример 3. Имеются переменные x1 и x2, удовлетворяющие двум линейным уравнениям:
a1x1 + a2x2 = c1
b1x1 + b2x2 = c2.
Эти уравнения связывают переменные: вместе они образуют систему линейных уравнений, частями которой являются переменные x1 и x2. Отношения между ними определяются константами и ограничениями, наложенными одновременно на все данные величины. Данная система уравнений может рассматриваться как статическая по аналогии с системой “пружина - груз”. Эта аналогия объясняется тем, что числа, которые удовлетворяют уравнениям, фиксированы точно так же, как заданная длина пружины в механическом примере.
С другой стороны, введение времени t дает, например, уравнение следующего вида:
dx1/dt = a1x1 + a2x2
dx2/dt = b1x1 + b2x2.
Такую систему уравнений можно назвать динамической (продолжая аналогию с системой "пружина - груз"). В этом случае решение уравнений - функция времени (длина пружины в динамической системе).
Термины статический и динамический всегда относятся к системам, уравнения которых представляют абстрактные модели реальных ситуаций. Абстрактные математические и (или) логические отношения сами по себе никогда не зависят от времени.
Выше рассмотренные примеры дают нечто большее, чем просто случайную иллюстрацию понятия системы. Они говорят об одном из самых плодотворных путей анализа физических систем - пути, который должен быть признан основным методом науки, а именно о методе абстракции и моделирования.
Возвращаясь к простейшему примеру соединения груза и пружины, получим ясную иллюстрацию этого метода. В статическом случае нас интересуют свойства: постоянная k, обозначающая пружину, перемещение x и вес G. Они связаны (в пределах закона упругости Гука) линейным уравнением
kx = G.
Уже здесь проявляется тесная внутренняя связь между абстрактной системой (аналогичной системе уравнений) и её физической реализацией. Для изучения физической системы её заменяют абстрактной системой с теми же отношениями, и задача становится чисто математической. Нетрудно показать, что такого рода аналогия имеет место и в динамическом случае, но тогда физическая система представляется системой дифференциальных, а не линейных алгебраических уравнений.
Подобная практика, несомненно, хорошо знакома физикам, химикам и инженерам; в этом случае обычно говорят о создании математической модели. Степень, с которой модель согласуется с реальным поведением системы, является мерой применимости модели к рассматриваемой ситуации. С другой стороны, легкость, с которой данная система может быть точно представлена математической моделью - мера легкости анализа данной системы.
Для успешного изучения системы с помощью математических методов последняя должна обладать рядом специальных свойств. Во-первых, должны быть известны имеющиеся в ней связи, во-вторых, количественно определены существенные для системы свойства (их число не должно быть столь большим, чтобы анализ становился невозможным) и, в-третьих, известны при заданном множестве связей формы поведения системы (задаются физическими законами, в нашем случае законом Гука). К сожалению, системы, обладающие всеми этими свойствами, встречаются чрезвычайно редко. Точнее говоря, системы обладают этими свойствами лишь до некоторой степени, причем наиболее важные для нас системы - живые организмы, экономические и социальные системы обладают ими в меньшей степени, чем более простые, механические системы типа “пружина - груз”.
И, в заключении, рассмотрим еще два определения представляющие интерес при анализе систем.
Централизованной системой называется система, в которой некоторый элемент (подсистема) играет главную, доминирующую роль в функционировании системы. Этот элемент называется ведущей частью системы или её центром. Небольшие изменения ведущей части вызывают значительные изменения всей системы.
Децентрализованная система - это система, в которой нет главной подсистемы; важнейшие подсистемы имеют приблизительно одинаковую ценность и построены не вокруг центральной подсистемы, а соединены между собой последовательно или параллельно.
2.5 Вопросы для самопроверки
Что такое системный подход и системный анализ?
Основные особенности системного анализа.
Дайте определение системы.
Что такое объект, свойство объекта, связи в объекте?
Структура и состав системы, понятие модели состава системы.
Относительность понятий элемент системы, подсистема. Причины этой относительности.
Какие типы систем Вам известны?
Что такое статическая система и динамическая система?
Дайте понятие централизованной и децентрализованной системы.
3. СИСТЕМНОСТЬ И УПРАВЛЕНИЕ
Развитие научного знания и его приложений к практической деятельности привело к все возрастающей дифференциации научных и прикладных направлений. Возникло много специальных дисциплин, которые часто используют сходные формальные методы, но настолько преломляют их с учетом потребностей конкретных приложений, что специалисты, работающие в этих областях знания (так называемые “узкие специалисты”), перестают понимать друг друга.
При этом наше время характеризуется резким увеличением числа различных комплексных проектов и программ, требующих для своего решения участия специалистов различных областей знаний. Таким образом, появилась потребность и в специалистах “широкого профиля”, обладающих знаниями не только в своей области, но и в смежных областях и умеющих эти знания обобщать, использовать аналогии, формировать комплексные модели и т.п. Понятие системы, ранее употреблявшееся в обыденном смысле, превратилось, как мы видели выше, в специальную общенаучную категорию.
В предыдущих главах были рассмотрены предлагаемые в данном курсе общие подходы к определению основных понятий и определений системных исследований. Целью данной главы является рассмотрение основных структур и механизмов управления, сложившихся в сложных управляемых системах. Достаточно подробно рассматривается генезис механизмов управления в сложных системах.
3.1 Этапы становления механизма управления
Слово “генезис” означает возникновение и становление какого-либо развивающегося явления. Именно к таким явлениям относится и феномен управления. В данном разделе говорится о возникновении и этапах становления механизма управления, как функциональной системы, развившейся в процессе эволюции и лежащей в основе процессов саморегуляции и саморазвития живой природы, общественных систем и их экономики, всей ноосферы, а также процессов познания.
Феномен управления долгое время считался исключительно общественным явлением, результатом сознательной деятельности человека. Успехи биологических наук, а также исследования при создании сложных технических систем на рубеже 40-50-х годов нашего столетия позволили существенно расширить видимую сферу действия управленческих процессов и подойти вплотную к более глубокому пониманию сущности феномена управления.
Тем не менее, в нашей философской и экономической литературе еще широко бытуют неадекватные определения управления - лишь как воздействия на объект. Многие авторы, даже спустя 40 лет после становления кибернетики, продолжают игнорировать (или не понимать) значение и определяющую роль обратных связей. Например, Философский словарь (1991 г.) трактует управление без привлечения понятий обратной связи, адаптации и самоорганизации. Здесь объяснение феномена управления философами лежит не в научной, а в прежней, идеологической, конфронтационной плоскости: “На практике наблюдаются два типа управления: стихийный и сознательный (плановый)”.
Стихийный - это, разумеется, “у них”, где и рынок, как нам представляли обществоведы десятки лет, не более чем зловещая “стихия рынка”. Если вникать в значения слов, то стихийно - значит непредсказуемо, что-то совершающееся без участия человека, его сознания и интеллекта. Но тогда не понятно, почему у них хорошо получается? И зачем они разработали даже науку управления - кибернетику? Ради чего еще более 100 лет тому назад открыли школы менеджмента и с тех пор обучение управлению, постоянно расширяясь, ныне превратилось в подлинную индустрию знаний?
Авторы словаря поясняют: “При первом типе управления воздействие на общество происходит в результате взаимодействия различных социальных сил (рынок, традиции, обычаи и т. п.), второй предполагает наличие специальных органов управления, действующих по заданной программе. Из социального управления как его особые отрасли выделяются управление государством, управление производством, управление в технике и др. Новые проблемы, связанные с совершенствованием управления при социализме, возникли в связи с осуществляемой в нашей стране радикальной реформой во всех сферах жизни” [7].
Оказывается, теперешнее состояние во всем - экономике, финансах, социальной сфере - результат сознательного управления? Авторам невдомек, что “радикальную реформу во всех сферах жизни” и не надо было бы проводить, если бы управление осуществлялось хотя бы на уровне здравого смысла, не говоря уже о научном управлении и использовании мирового опыта. Если бы познание этого важнейшего философского и социального феномена у нас не пребывало бы на столь низком уровне.
Здесь выход из тупика, по-видимому, должен осуществляться двумя параллельными путями: по линии массового ликбеза, а также по линии борьбы с нашим национальным бедствием - невостребованностью новых знаний, сознательным поворотом к ним спиной. Иначе как объяснить тот парадокс, что в десятках книг по экономике великое множество схем без обратных связей называются “схемами управления”, тогда как на самом деле они отражают лишь иерархию подчинения в командно-административной системе низших звеньев высшим звеньям. Именно в той самой командно-административной системе, осуществлявшей “воздействие” и приведшей нашу экономику к уровню, который мы наблюдали в середине 80-х годов.
При анализе центральной категории диалектики - категории развития, явно недостаточно внимания уделяется раскрытию ее связи с такими понятиями как информация, организация и управление. Тогда как в действительности развитие не есть просто изменения вообще, присущие всякому движению, а представляет собой изменения, связанные с процессами отражения (как всеобщего свойства материи), сопровождаемые упорядочением связей, накоплением информации, возникновением новых структур, их усложнением и детерминацией. Это - процесс самоорганизации, в котором важнейшее значение имеет генезис механизма управления.
Механизм управления не дан нам изначально. Он возник и развивался в ходе эволюции и имеет свои переходы от простых форм к более сложным формам (рис. 3.1). Физическое взаимодействие объектов и элементарные формы отражения (этап 0) здесь явились необходимой предпосылкой. Далее можно выделить три этапа:
Этап 1 - простейший замкнутый контур с обратной связью на уровне обычного регулятора (гомеостазиса), с реакцией лишь на текущие воздействия. Появляется цель - самосохранение;
Этап 2 - промежуточный, с программным изменением характера воздействия управляющего звена на объект при сохранении его устойчивости;
Этап 3 - механизм управления самоорганизующихся систем. Отличается наличием 2-го контура обратной связи и органов памяти. Во 2-ом контуре осуществляется отбор полезной информации из 1-го контура: эта информация накапливается, формируя опыт, знания, синтезируется в определенные структуры, повышая уровень организации, активность и живучесть системы.
Особенностью первого этапа является то, что управляющее звено начинает выявлять и оценивать процесс функционирования объекта путем фиксации отклонений от нормального режима функционирования, задаваемого некоторой целевой функцией. Поскольку обратная связь призвана уменьшить отклонение, то такая связь называется отрицательной обратной связи. Таким образом, можно сказать, что этот этап характеризуется появлением таких понятий, как отклонение и 1-й контур обратной связи.
Объектами нашего рассмотрения являются в основном открытые системы (объекты). Воздействие внешней среды вызывает отклонение параметра объекта от нормы. Возникает информация, обратная связь, что в конечном итоге формирует замкнутые контуры и функциональные системы.
Движения системы, направленные на сохранение устойчивости, являются положительными сторонами процесса развития, а отклонения, которые призвана убирать (уменьшать, исключать) система, можно назвать отрицательными сторонами процесса. Движущей силой развития выступает целенаправленная борьба противоположностей - положительной и отрицательной сторон процесса.
В “Диалектике природы” Энгельс отмечает особую роль в этой борьбе отрицательной стороны процесса, учет которой в процессах управления, как мы теперь понимаем, и есть использование отрицательной обратной связи. По существу и базирующаяся на множестве случайных отклонений так называемая стихия рынка является своего рода механизмом социальной саморегуляции на основе непрерывного учета отклонения спроса от предложения.
Таким образом, истоки активности системы связаны с исходными моментами любого управленческого процесса - с целевой функцией и отклонением. В силу сказанного, понятие отклонения заслуживает быть включенным в разряд общенаучных понятий. Оно является универсальным элементом взаимодействия, присущим любым системам. Без отклонения нет информации и процесса управления, нет развития. Определяющая роль отклонения отражена и в “золотом правиле” саморегуляции. Это правило звучит так: “Само отклонение от нормы служит стимулом возвращения к норме” [8]. Система вне среды не может быть активной, ибо только взаимодействие со средой, возникающие при этом отклонения, противоречия создают необходимое условие активности системы, ее самодвижение в направлении самосохранения. Такой средой явились, в частности, геосфера и атмосфера нашей Земли, где с возникновением органических соединений начали появляться и усложняться преемственные связи как реализация элементарных форм активности.
Любого типа упорядоченность возникает в результате какого-то воздействия окружающей среды на систему, которая, приспосабливаясь к изменяющимся условиям, накапливает полезную для себя информацию, повышает уровень своей организации. По существу, как считают биологи, вся содержащаяся в организме структурная информация вводится окружающей средой и ее изменение (саморазвитие) обусловлено в основном длительным влиянием среды. Следовательно, о прогрессивном развитии можно говорить только по отношению к открытым системам. О всяком развитии в замкнутой системе не может быть и речи.
Достаточно вспомнить десятилетия “железного занавеса” в истории нашей страны. Отгородившись от внешнего мира, от потока новых технологий, от воздействия мирового рынка, страна отставала в науке и технике, товары становились неконкурентоспособными, рубль -- неконвертируемым и т.п.
В основе эволюции, которой руководит “мудрость природы”, лежит способ “проб и ошибок”, реализуемый через учет отклонений. Все те “пробы”, которые приводили к уменьшению отклонения, способствовали живучести образований и, таким образом, соответствовали требованиям эволюции, закреплялись, развивались дальше, приводя к упорядоченному усложнению внутренних связей, к качественным изменениям взаимодействий, к возрастанию активности.
Таким образом, отклонение и, в более широком плане, разнообразие являются неотъемлемыми атрибутами прогресса и самосовершенствования функциональных систем. Взять живую природу: даже на уровне “вершины” ее развития -- человека -- эволюция направленно моделирует разнообразие, несхожесть индивидов как необходимое условие дальнейшего развития сообщества. Индивидуальность каждого человека в биологическом плане обеспечивается различием генетического кода: каждый человек в мире имеет уникальный состав белков. Индивидуальность человека в социальном плане, его творческие способности объясняются полученным им образованием и жизненным опытом, тезаурусом, который у каждого тоже свой.
При полном сходстве людей друг с другом теряется смысл взаимного общения, исключается интерес, борьба мнений, творчество. Людская однородность создала бы, отмечает В.И. Говалпо, тупиковую ситуацию, ибо нет отклонений, не возникает информация как основа поведенческого акта. Следовательно, нет и целенаправленной деятельности, соревновательности, нет развития [5].
Подобные документы
Анализ и синтез как методы исследования. Задачи и принципы анализа и синтеза систем управления. Принцип целостности, системности, динамичности. Роль системного подхода в исследовании систем управления. Стремление системы к достижению соразмерности.
реферат [30,1 K], добавлен 29.05.2013Понятие организационной системы, ее признаки и структурные элементы. Рассмотрение проблемы повышения эффективности работы коммерческого банка с помощью методов системного анализа. Построение деревьев мероприятий по достижению целей всех уровней.
курсовая работа [100,7 K], добавлен 07.10.2013Классификация направлений исследований систем управления. Этапы общей процедуры прогнозирования. "Дерево целей" как процедура системного анализа. Формирование экспертной и рабочих групп. Основные методы экспертных оценок. Трудности проведения наблюдения.
контрольная работа [53,7 K], добавлен 24.02.2010Содержание системного анализа и область его применения, этапы, причины возникновения, признаки системности. Развитие системных представлений. Моделирование как метод познания. Типы систем в задачах управления экономикой. Эффективность принятия решений.
курс лекций [910,6 K], добавлен 16.10.2010Теоретический опыт науки управления. Процесс исследования систем управления. Виды познавательных моделей реальности. Загадка системного подхода и его теоретическая и практическая экспансия. Связь познавательных моделей реальности и системного подхода.
реферат [29,2 K], добавлен 20.07.2009Структуризация методов исследования систем управления, использование знаний и интуиции специалистов. Методы формализованного представления систем управления, исследование информационных потоков. Современные рыночные условия для системы управления.
реферат [38,1 K], добавлен 17.09.2010Определение системного анализа. Основные аспекты системного подхода. Процедура принятия решений. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач.
курсовая работа [46,5 K], добавлен 07.12.2009Состав и характеристика элементов и подсистем системы управления. Теоретические, эмпирические, теоретико-эмпирические методы исследования. Структуризация методов исследования систем управления по способу и источнику получения информации об объектах.
курсовая работа [35,1 K], добавлен 08.12.2009Понятия и направления системных исследований. Основные характеристики, типология, стадии и этапы исследования систем управления. Сущность основных направлений системных исследований: общей теории систем, системного подхода и системного анализа.
курсовая работа [44,8 K], добавлен 31.10.2008Характеристика исследования систем управления организациями, их роль в научной и практической деятельности человека. Основные понятия и принципы системного подхода к исследованию систем управления, разработка и содержание соответствующей концепции.
курсовая работа [65,1 K], добавлен 13.12.2013